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Strings and D-branes

Strings interact on surfaces called D-branes.
Wednesday, September 14, 20168:33 AM

   New Section 1 Page 1    

Where string hits D-brane is not precisely determined.

Shown: fuzzy sphere, fuzzy torus.
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Emergent geometry in string theory

Berenstein and Dzienkowski [1]: “emergent geometry”

D-branes might have three observables of position:
noncommuting hermitian matrices X,Y,Z.

A fermionic probe at position (x,y, z) leads to the effective
Hamiltonian

/D(x,y,z) =

[
(X− x) (Y − y)− i(Z− z)

(Y − y) + i(Z− z) −(X− x)

]
.

They call this the (shifted) Dirac operator.

It’s square is almost the Laplace operator:

/D2
0 =

[
X2 + Y2 + Z2 0

0 X2 + Y2 + Z2

]
+

[
i [Y,Z] [X,Y]− i [X,Z]

− [X,Y]− i [X,Z] −i [Y,Z]

]
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Clifford spectrum – zero modes

Karczmarek and Yeh [2]:

The emergent surface is defined as the locus of
possible positions for the probe brane where a
fermionic string stretched from the stack to the
probe brane has a massless mode.

So the emergent surface is what mathematicians call the
Joint Clifford Spectrum.

Definition

For Hermitian operators X,Y,Z the Clifford spectrum is the set

Λ(X,Y,Z) =
{

λ ∈ Rd | /Dλ(X,Y,Z) is singular
}
.
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The unfuzzy case

We have also the Laplacian:

∆λ(X,Y,Z) = (X− λ1)
2 + (Y − λ2)

2 + (Z− λ3)
2

In the case of commuting hermitian X, Y and Z,

/Dλ(X,Y,Z) is singular

⇐⇒ ∆λ(X,Y,Z) is singular

⇐⇒ ∃v a unit vector with Xv = λ1v, Yv = λ2v, Zv = λ3v

This means Λ(X,Y,Z) is a finite set.
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Two fuzzy spheres

At each positive half integer n, use a rescaled representation
of SU(2), so

Xn =
1
n


n

n− 1
.. .

1− n
−n

 ,

Yn =
1
2n

(T∗n + Tn) , Zn =
i

2n
(T∗n − Tn)

where we set Nn = n(n+ 1) and

Tn =


0
√
Nn − (n− 1)n

0
√
Nn − (n− 2)(n− 1)

. . .
. . .
0

√
Nn − (−n)(1− n)

0

 .
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Two fuzzy spheres

The second example is Xn, Ỹn, Z̃n where

Yn =
1
2n

(S∗n + Sn) , Zn =
i

2n
(S∗n − Sn)

and

Sn =


0 1

0 1
.. .

. . .
0 1

0

 .
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We’ll see Λ(X,Y,Z) and Λ(X, Ỹ, Z̃) are uncountable sets.

Can
we use a computer to calculate these? We can calculate∥∥∥/Dλ(X,Y,Z)

−1
∥∥∥−1

at a grid of points. Keep points where this is less than some
cutoff, like 0.012.

Definition

For Hermitian operators X,Y,Z and ε ≥ 0, define the Clifford
ε-pseudospectrum to be the set

Λε(X,Y,Z) =
{

λ ∈ Rd
∣∣∣∣ ∥∥∥/Dλ(X,Y,Z)

−1
∥∥∥−1
≤ ε

}
with the convention that R singular means

∥∥R−1
∥∥−1

= 0.

Notice ∥∥∥/Dλ(X,Y,Z)
−1
∥∥∥−1

= |eigmin (Dλ(X,Y,Z))|

called the gap at λ.
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Obviously Λ(X,Y,Z) is a subset of Λε(X,Y,Z). Could be a
finite set?

Definition

The local index for the finite system (X,Y,Z) is then

Indλ(X,Y,Z) =
1
2

Sig(/Dλ(X,Y,Z))

defined at every point where /Dλ is invertible.

Signature is the number of positive eigenvalues minus the
number of negative eigenvalues.

36 /74



Obviously Λ(X,Y,Z) is a subset of Λε(X,Y,Z). Could be a
finite set?

Definition

The local index for the finite system (X,Y,Z) is then

Indλ(X,Y,Z) =
1
2

Sig(/Dλ(X,Y,Z))

defined at every point where /Dλ is invertible.

Signature is the number of positive eigenvalues minus the
number of negative eigenvalues.

37 /74



Obviously Λ(X,Y,Z) is a subset of Λε(X,Y,Z). Could be a
finite set?

Definition

The local index for the finite system (X,Y,Z) is then

Indλ(X,Y,Z) =
1
2

Sig(/Dλ(X,Y,Z))

defined at every point where /Dλ is invertible.

Signature is the number of positive eigenvalues minus the
number of negative eigenvalues.

38 /74



Commuting case, again

The spectrum of

/Dλ(r1, r2, r3) =
[

r3 − λ3 r1 − λ1 − i(r2 − λ2)
r1 − λ1 + i(r2 − λ2) −r3 + λ3

]
is just {

±
√
(r1 − λ1)2 + (r2 − λ2)2 + (r3 − λ3)2

}
.

Thus

λ ∈ Λ(r1, r2, r3) or Indλ(/Dλ(r1, r2, r3)) = 0.

In the commuting case,

Indλ(X,Y,Z) = 0

(or is undefined). From this one shows: for a given X, Y and

Z there is some C so that

|λ| > C =⇒ Indλ(X,Y,Z) = 0.
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Theorem

If Indλ(X,Y,Z) 6= Indµ(X,Y,Z) and λt is any curve between λ
and µ then there is at least one value of s so that

λs 6∈ Λ(X,Y,Z).

Corollary

If for any λ we have Indλ(X,Y,Z) 6= 0 then Λ(X,Y,Z)
separates λ from ∞.
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Fuzzy Tori

Consider

U =


0 1
1 0

.. .
. . .
1 0

1 0

 , V =


ω

ω2

. . .
ωn−1

1

 ,

(1)
(ω = e

2πi
n ) which represent an embedding of a fuzzy torus

into R4. We seek an embedding into R3. Set

An =
1
2

(
R+

r
2
U∗ +

r
2
U
)
V∗ +

1
2
V
(
R+

r
2
U∗ +

r
2
U
)

Bn =
i
2

(
R+

r
2
U∗ +

r
2
U
)
V∗ − i

2
V
(
R+

r
2
U∗ +

r
2
U
)

Cn =
ri
2
U∗ −U

ri
2
.

Good choices for the radii are R = 0.8 and r = 0.4.
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Emergent tori, showing K-theory
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Figure : Left: approximation of part of a fuzzy torus, n = 4. Right:
Same matrices, pseudospectrum cut open and showing some index
values.
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Figure : Now n = 6.
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Figure : Now n = 10.
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Insulators

In finite models of condensed matter, many use periodic
boundary conditions.

Edge modes are important; I prefer open boundaries.

For a (d− 1)-dimensional physical system, the matrix model
is then

(X1, . . . ,Xd−1,H)

where the Xj are commuting matrices for position, and H is
the Hamiltonian, corresponding to energy.
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Topological insulators

In the case d = 3, there is a simple model of what is called a
Chern insulator. A homologically non-trivial surface emerged,
as Λ(X,Y,H).
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Figure : Part of the pseudospectrum of a Chern insulator on an
18-by-18 lattice with no disorder. The vertical axis is energy, the
others are position. The crosses at the Fermi level (energy zero)
indicate nontrivial index, while the circles indicate trivial index.
Reproduced from [3].
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Figure : Part of the pseudospectrum of a Chern insulator on an
18-by-18 lattice with disorder sufficient to half close the gap in the
bulk spectrum. Reproduced from [3].
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A finite volume index theorem

Theorem (L. & Schulz-Baldes)

Suppose H = H∗ is bounded on H = `2(Z2)⊗Cr is invertible
and local. Specifically assume

δ = max (‖[H,X]‖ , ‖[H,Y]‖)

is finite and σ(H) ∩ (−∆,∆) = ∅. There exists L0 so that for
L ≥ L0 we have

Indλ(XL,YL,HL) = IndPH

(
P
X+ iY
|X+ iY|P

)
where XL, YL and HL are formed by restriction to
H = `2([−L,L]× [−L,L])⊗Cr, with HL given Dirichlet boundary
conditions, and where P is the spectral projection for H
corresponding to [0,∞).

Also have results for H invertible and local on
H = `2(Z2d)⊗Cr, etc.
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Used the following to understand the boundary map.

0 // J // Cδ(Dd) // Cδ(Sd−1) // 0

where

Cδ(D) = C∗1

〈
x1, . . . ,xd

∣∣∣∣∣∣∣
x∗j = xj

‖xjxk − xkxj‖ ≤ δ

∑ x2
j ≤ 1

〉

is a “soft d-ball” which is projective (L. & Shulman).

Also

Cδ(S
d−1) = C∗1

〈
x1, . . . ,xd

∣∣∣∣∣∣∣
x∗j = xj

‖xjxk − xkxj‖ ≤ δ

1− δ ≤ ∑ x2
j ≤ 1

〉

about which we know less.
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The usual formulas for mapping the d-ball onto the d-sphere
lead to a coboundary map for

0→ I→ A→ B→ 0

in term of ”fuzzy” or “soft” spheres:

Cδ′(S
d−1)→ B # Cδ(S

d)→ J̃
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Following the ideas in cohomotopy:

0 // I // A // B // 0

0 // J ////

OO

Cδ(Dd) //

OO

Cδ(Sd−1) //

OO

0

Cδ′(R
d)

OO
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