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The classical Plancherel Theorem

For f ∈ L1(R) the Fourier transform of f is defined by

F(f )(p) =

∫
R

e−ixpf (x)dx ,

where dx denotes (suitably normalised) Lebesgue measure.

Theorem (Plancherel)

Let f ∈ L1(R) ∩ L2(R). Then

‖F(f )‖2
2 =

∫
R
|F(f )(p)|2dp =

∫
R
|f (x)|2dx = ‖f ‖2

2.

Hence F induces a unitary isomorphism L2(R2)→ L2(R2).
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The classical Plancherel Theorem

Let us reinterpret the Plancherel Theorem from a slightly more
general perspective.

Since R is a locally compact abelian group, it has a Pontrjagin
dual group R̂, consisting of all unitary characters of R.

The unitary characters of R are of the form

χp(x) = e−ixp

for p ∈ R.

In this way one obtains R̂ ∼= R.

Christian Voigt (joint with R. Yuncken)
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The classical Plancherel Theorem

The group C ∗-algebra C ∗(R) is a completion of C∞c (R), equipped
with the convolution product

(f ∗ g)(t) =

∫
R

f (−s)g(s + t)ds

and ∗-structure

f ∗(t) = f (−s).

In particular, for the one-dimensional representations corresponding
to the characters χp we obtain ∗-homomorphisms χp : C ∗(R)→ C
given by

χp(f ) =

∫
R

f (x)χp(x) =

∫
R

f (x)e−ipxdx = F(f )(p)

for f ∈ C∞c (R).
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Plancherel versus Peter-Weyl

Now let G be a compact group.

Write Irr(G ) for the set of equivalence classes of irreducible
representations of G , and πλ : G → U(Hλ) for λ ∈ Irr(G ).

Theorem (Peter-Weyl)

For f ∈ L1(G ) ∩ L2(G ) we have

‖f ‖2
2 =

∑
λ∈Irr(G)

tr(πλ(f )∗πλ(f )) dim(Hλ)−1
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Plancherel versus Peter-Weyl

Hence the formula

F(f ) =
⊕

λ∈Irr(G)

πλ(f )

for f ∈ L1(G ) ∩ L2(G ) extends to an isometric isomorphism

F : L2(G )→
⊕

λ∈Irr(G)

HS(Hλ),

if on Irr(G ) we consider the (Plancherel) measure

dm =
∑

λ∈Irr(G)

dim(Hλ)−1δλ.
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Abstract Plancherel Theorem

Assume that G is a type I locally compact unimodular group.

Theorem (Segal-Mautner)

Then there exists a standard measure m on Irr(G ), a measurable
field of Hilbert spaces (Hλ)λ∈Irr(G), and an isometric
G-equivariant isomorphism

F : L2(G )→
∫ ⊕

Irr(G)
HS(Hλ)dm(λ),

given by

F(f ) =

∫ ⊕
Irr(G)

πλ(f )dm(λ)

on a dense subspace of L1(G ) ∩ L2(G ).
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Abstract Plancherel Theorem

Assume that G is a type I locally compact possibly non-unimodular
group.

Theorem (Segal-Mautner, Duflo-Moore)

Then there exists a standard measure m on Irr(G ), a measurable
field of Hilbert spaces (Hλ)λ∈Irr(G), a measurable field (Dλ)λ∈Irr(G)

of self-adjoint strictly positive operators for (Hλ)λ∈Irr(G), and an
isometric G-equivariant isomorphism

F : L2(G )→
∫ ⊕

Irr(G)
HS(Hλ)dm(λ),

given by

F(f ) =

∫ ⊕
Irr(G)

πλ(f )D−1
λ dm(λ)

on a dense subspace of L1(G ) ∩ L2(G ).
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Remark on Duflo-Moore operators

The appearance of Duflo-Moore operators is not really due to
non-unimodularity, but rather related to the question of whether
the (left) Haar weight of the group algebra is a trace or not. In the
group case, this is equivalent to (non-) unimodularity.

For instance, for a compact quantum group, there are Duflo-Moore
operators in the Plancherel formula. These are trivial iff the
quantum group is of Kac type - note that compact quantum
groups are always unimodular.

If G is a compact quantum group the Plancherel formula becomes

ε(f ) =
∑

λ∈Irr(G)

dimq(Hλ) tr(πλ(f )D−2
λ )

for f ∈ O(G ).
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Complex semisimple quantum groups

A little bit of history:

I Podleś-Woronowicz (1990) construct complex semisimple
quantum groups on the C ∗-algebra level.

I Pusz (1993), Pusz-Woronowicz (1994, 2000) completely
classify the irreducible unitary representations of SLq(2,C).

I Buffenoir-Roche (1999) determine the Plancherel formula for
SLq(2,C).

I Arano (2014, 2016) completely classifies the irreducible
unitary representations of SLq(n,C), and most of the full dual
in general.
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Complex semisimple quantum groups

Here is a quick outline of the construction of the quantization Gq

of a (simply connected) complex semisimple group G :

I Start from the Iwasawa decomposition G = KAN.

I For the compact part K there exists a deformation Kq

obtained using quantized enveloping algebras.

I According to Drinfeld duality, a quantization of the Poisson
dual AN of K is given by the Pontrjagin dual K̂q of Kq.

I The complex quantum group Gq is the quantum double

Gq = Kq ./ K̂q.

We shall now explain the ingredients in these constructions in more
detail.

Christian Voigt (joint with R. Yuncken)
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Notation

I Fix q = eh ∈ (0, 1).

I Let g be a semisimple complex Lie algebra of rank N with
Cartan matrix (aij).

I h ⊂ g a Cartan subalgebra.

I ∆ = ∆+ ∪∆− the root system with simple roots
α1, . . . , αN ⊂ h∗.

I ( , ) the bilinear form on h∗ obtained by rescaling the Killing
form such that all short roots α satisfy (α, α) = 2.

I Set di = (αi , αi )/2 and qi = qdi .

I $1, . . . , $N ∈ h∗ are the fundamental weights.

I P =
⊕N

j=1 Z$j and Q =
⊕N

j=1 Zαj are the weight and root
lattices, respectively.

I P+ =
⊕N

j=1 N0$j are the dominant integral weights.

I W is the Weyl group of g.
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The Drinfeld-Jimbo algebra associated to g

The quantized universal enveloping algebra Uq(g) is the algebra
with generators Ej ,Fj for 1 ≤ j ≤ N and Kλ for λ ∈ P satisfying

K0 = 1, KλKµ = Kλ+µ,

KλEjK
−1
λ = q(λ,αj )Ej , KλFjK

−1
λ = q−(λ,αj )Fj ,

[Ei ,Fj ] = δij
Ki − K−1

i

qi − q−1
i

, where Ki = Kαi ,

1−aij∑
k=0

(−1)k
[

1− aij
k

]
qi

E k
i EjE

1−aij−k
i = 0 i 6= j ,

1−aij∑
k=0

(−1)k
[

1− aij
k

]
qi

F k
i FjF

1−aij−k
i = 0 i 6= j .
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The Drinfeld-Jimbo algebra associated to g

The algebra Uq(g) is a Hopf algebra.

For instance, the coproduct ∆̂ : Uq(g)→ Uq(g)⊗Uq(g) is given by

∆̂(Kλ) = Kλ ⊗ Kλ,

∆̂(Ei ) = Ei ⊗ Ki + 1⊗ Ei

∆̂(Fi ) = Fi ⊗ 1 + K−1
i ⊗ Fi .

Moreover Uq(g) is a ∗-algebra with the ∗-structure

E ∗i = KiFi , F ∗i = EiK
−1
i , K ∗λ = Kλ.

As a Hopf ∗-algebra, Uq(g) should be viewed as quantization of the
(complex) universal enveloping algebra of the (real) Lie algebra k.

Christian Voigt (joint with R. Yuncken)
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Representation theory and representative functions

The finite dimensional representation theory of Uq(g) is similar to
the one for U(g). In particular, for every µ ∈ P+ there exists a
unique irreducible representation V (µ) with a highest weight
vector vµ, satisfying

Kλvµ = q(λ,µ)vµ

Using the representations V (µ) one defines a compact quantum
group Kq as follows.

Definition
The algebra O(Kq) ⊂ Uq(g)∗ of representative functions on Kq is
the Hopf ∗-algebra of matrix coefficients of all V (µ) for µ ∈ P+.
We let C (Kq) be its universal C ∗-completion.

O(Kq) is a deformation of the algebra O(K ) of representative
functions on K , and C (Kq) is a deformation of C (K ).
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Example: the quantum group SUq(2)

The algebra O(SUq(2)) can be identified with the ∗-algebra
generated by elements α and γ satisfying the relations

αγ = qγα, αγ∗ = qγ∗α, γγ∗ = γ∗γ,

α∗α + γ∗γ = 1, αα∗ + q2γγ∗ = 1.

These relations are equivalent to saying that the fundamental
matrix (

α −qγ∗

γ α∗

)
is unitary.

The maximal torus survives the deformation untouched: There
exists a ∗-homomorphism π : O(SUq(2))→ O(T ) = C[z , z−1]
given by π(α) = z , π(γ) = 0.
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matrix (

α −qγ∗

γ α∗

)
is unitary.

The maximal torus survives the deformation untouched: There
exists a ∗-homomorphism π : O(SUq(2))→ O(T ) = C[z , z−1]
given by π(α) = z , π(γ) = 0.
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The quantization of AN

Every (locally compact) quantum group admits a Pontrjagin dual
(locally compact) quantum group.

In the case of Kq, the dual K̂q is encoded by the ∗-algebra

Cc(K̂q) = D(Kq) =
⊕
µ∈P+

End(V (µ)),

equipped with a suitable coproduct.

To the classical group A corresponds the quotient T̂ of K̂q

obtained from the projection O(Kq)→ O(T ). Here T ⊂ Kq is the
classical maximal torus.
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Complex semisimple quantum groups

Consider the vector space

D(Gq) = D(Kq) ./ O(Kq),

equipped with the multiplication

(x ./ f )(y ./ g) = x(f(1), y(1))y(2) ./ f(2)(f(3), Ŝ(y(3)))g

and the ∗-structure

(x ./ f )∗ = (1 ./ f ∗)(x∗ ./ 1).

Definition
The group C ∗-algebra C ∗(Gq) of the complex quantum group Gq

is the universal C ∗-completion of D(Gq).

Christian Voigt (joint with R. Yuncken)



Complex semisimple quantum groups

Consider the vector space

D(Gq) = D(Kq) ./ O(Kq),

equipped with the multiplication

(x ./ f )(y ./ g) = x(f(1), y(1))y(2) ./ f(2)(f(3), Ŝ(y(3)))g
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The representation theory of Gq

This leads to some natural tasks/questions.

I Describe all irreducible representations of Gq up to
isomorphism.

I Describe the (reduced) unitary dual of Gq.

I Describe the Plancherel formula.

I Describe the Fell topology of the (reduced) dual.
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The representation theory of Gq

By construction, a nondegenerate representation of C ∗(Gq) on a
Hilbert space H corresponds to a nondegenerate ∗-homomorphism
D(Gq)→ L(H).

This is the same thing as a unitary Yetter-Drinfeld module, that is,
a pair of a unital ∗-homomorphism O(Kq)→ L(H) and a unitary
corepresentation V ∈ M(C (Kq)⊗H) satisfying the Yetter-Drinfeld
compatibility condition, given by

f(1)ξ(−1)S(f(3))⊗ f(2) · ξ(0) = (f · ξ)(−1) ⊗ (f · ξ)(0)

for f ∈ O(Kq) and ξ in (a certain dense subspace of) H.
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Principal series representations

Let O(Eµ) ⊂ O(Kq) be the spectral subspace of O(Kq) associated
to µ ∈ P with respect to the right action of T .

For λ ∈ h∗ we define the twisted left adjoint representation of
O(Kq) on O(Eµ) by

f · ξ = f(1) ξ S(f(3))(Kλ+2ρ, f(2)).

Together with the comultiplication of O(Kq) this turns O(Eµ) into
a Yetter-Drinfeld module, which we will denote by O(Eµ,λ).

This is called the principal series Yetter-Drinfeld module with
parameter (µ, λ) ∈ P× h∗.

If λ ∈ ia∗ ⊂ h∗ then this Yetter-Drinfeld module is unitary. It
corresponds to a representation of C ∗(Gq) on the Hilbert space
completion of O(Eµ).
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The structure of principal series representations

For λ ∈ h∗, the operators Kλ are defined by Kλv = q(λ,ν)v .

Recall that q = eh, and let ~ = h
2π .

In particular, Kλ = Kλ′ if λ− λ′ ∈ i~−1Q∨. Here Q∨ is the coroot
lattice.

Hence, by their very construction, the principal series modules
O(Eµ,λ) and O(Eµ,λ′) are the same if λ− λ′ ∈ i~−1Q∨.

Write
h∗q = h∗/i~−1Q, a∗q = a∗/i~−1Q.

This notation allows us to remove the “obvious” redundancies in
the parametrisation of the principal series explained above.
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The structure of principal series representations

For λ ∈ h∗ and α ∈ ∆ write λα = 2(α, λ)/(α, α).

Theorem
Let (µ, λ) ∈ P× h∗q such that λα 6= ±(|µα|+ j) modulo i~−1Z for
all j ∈ N and all α ∈ ∆+. Then the principal series module with
parameter (µ, λ) is an irreducible Yetter-Drinfeld module.

Theorem
Let (µ, λ) ∈ P× it∗q. Then the principal series modules with
parameters (µ, λ) and (µ′, λ′) are equivalent iff
(µ′, λ′) = (w · µ,w · λ) for some w ∈W .

These results are (essentially) due to Joseph-Letzter and depend
on deep facts about the structure of Uq(g).
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The Plancherel formula

Theorem
Let q ∈ (0, 1) and let Gq be a complex semisimple quantum group.
Moreover let H = (Hµ,iν)µ,ν be the Hilbert space bundle of unitary
principal series representations over P× a∗q. Then there is a unitary
isomorphism

Q : L2(Gq) ∼=
⊕
µ∈P

∫ ⊕
ν∈a∗q

HS(Hµ,iν)dmµ(ν)

for the measures dmµ on a∗q given by

dmµ(ν) =
∏
α∈∆+

(q1/2
α − q−1/2

α )2[(µ+ iν)α]
q

1/2
α

[(µ− iν)α]
q

1/2
α

dν,

where dν denotes normalised Lebesgue measure on a∗q.
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Some remarks

The proof proceeds by verifying the Plancherel formula

εGq(f ) =
∑
µ∈P

∫
a∗q

tr(πµ,iν(f )D−2
µ,iν)dmµ(ν)

for elements of the form f = uβij ⊗ ω
γ
kl ∈ O(Kq)⊗D(Kq).

For this one starts by directly calculating the characters of principal
series representations.

In this computation, the universal R-matrix of Uq(g) enters
crucially.

The lowest order contribution in h of the quantum Plancherel
measure agrees with the classical Plancherel measure∏

α∈´+

|(µα + iνα)|2dν = (µ+ iν)α(µ− iν)αdν

on P× a∗.
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The reduced dual of Gq

The reduced group C ∗-algebra of Gq is the norm closure of D(Gq)
inside L(L2(Gq)) under the regular representation.

Theorem
Let q ∈ (0, 1) and let Gq be a complex semisimple quantum group.
Moreover let H = (Hµ,λ)µ,λ be the Hilbert space bundle of
principal series representations of Gq over P× a∗q. Then the
canonical ∗-homomorphism

π : C ∗r (Gq)→ C0(P× a∗q,K(H))W

is an isomorphism.

Setting formally h = 0 here (corresponding to q = 1), and a∗1 = a∗

one obtains the corresponding statement for the classical reduced
group C ∗-algebra C ∗r (G ).
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Baum-Connes

The deformation picture of the Baum-Connes assembly map for
the classical complex group G provides an isomorphism

K∗(C ∗(K nad k
∗)) = K∗(K nad C0(k))→ K∗(C ∗r (G )).

Let us restrict attention to the case G = SL(2,C).

Theorem
Fix q ∈ (0, 1). Then there is a commutative diagram

K∗(K nad C0(k))
µ //

��

K∗(C ∗r (G ))

��
K∗(K nad C (K ))

µq // K∗(C ∗r (Gq))

Both vertical maps are split injective, and the horizontal maps are
isomorphisms.
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