The Plancherel Formula for complex quantum groups

Christian Voigt
(joint with R. Yuncken)

University of Glasgow
christian.voigt@glasgow.ac.uk
http://www.maths.gla.ac.uk/~cvoigt/index.xhtml

Warsaw
October 25th, 2016
The classical Plancherel Theorem

For $f \in L^1(\mathbb{R})$ the Fourier transform of f is defined by

$$F(f)(p) = \int_{\mathbb{R}} e^{-ixp} f(x) \, dx,$$

where dx denotes (suitably normalised) Lebesgue measure.

Theorem (Plancherel)

Let $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$. Then

$$\|F(f)\|_2^2 = \int_{\mathbb{R}} |F(f)(p)|^2 \, dp = \int_{\mathbb{R}} |f(x)|^2 \, dx = \|f\|_2^2.$$

Hence F induces a unitary isomorphism $L^2(\mathbb{R}^2) \to L^2(\mathbb{R}^2)$.
The classical Plancherel Theorem

For $f \in L^1(\mathbb{R})$ the Fourier transform of f is defined by

$$\mathcal{F}(f)(p) = \int_{\mathbb{R}} e^{-ixp} f(x) dx,$$

where dx denotes (suitably normalised) Lebesgue measure.
The classical Plancherel Theorem

For $f \in L^1(\mathbb{R})$ the Fourier transform of f is defined by

$$\mathcal{F}(f)(p) = \int_{\mathbb{R}} e^{-ipx} f(x) dx,$$

where dx denotes (suitably normalised) Lebesgue measure.

Theorem (Plancherel)

Let $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$. Then

$$\|\mathcal{F}(f)\|_2^2 = \int_{\mathbb{R}} |\mathcal{F}(f)(p)|^2 dp = \int_{\mathbb{R}} |f(x)|^2 dx = \|f\|_2^2.$$

Hence \mathcal{F} induces a unitary isomorphism $L^2(\mathbb{R}^2) \to L^2(\mathbb{R}^2)$.

Christian Voigt (joint with R. Yuncken)
Let us reinterpret the Plancherel Theorem from a slightly more general perspective.
Let us reinterpret the Plancherel Theorem from a slightly more general perspective.

Since \(\mathbb{R} \) is a locally compact abelian group, it has a Pontrjagin dual group \(\hat{\mathbb{R}} \), consisting of all unitary characters of \(\mathbb{R} \).
Let us reinterpret the Plancherel Theorem from a slightly more general perspective.

Since \mathbb{R} is a locally compact abelian group, it has a Pontrjagin dual group $\hat{\mathbb{R}}$, consisting of all unitary characters of \mathbb{R}.

The unitary characters of \mathbb{R} are of the form

$$\chi_p(x) = e^{-ixp}$$

for $p \in \mathbb{R}$.

The classical Plancherel Theorem

Let us reinterpret the Plancherel Theorem from a slightly more general perspective.

Since \mathbb{R} is a locally compact abelian group, it has a Pontrjagin dual group $\hat{\mathbb{R}}$, consisting of all unitary characters of \mathbb{R}.

The unitary characters of \mathbb{R} are of the form

$$\chi_p(x) = e^{-ipx}$$

for $p \in \mathbb{R}$.

In this way one obtains $\hat{\mathbb{R}} \cong \mathbb{R}$.

Christian Voigt (joint with R. Yuncken)
The classical Plancherel Theorem

The group C^*-algebra $C^*(\mathbb{R})$ is a completion of $C_c^\infty(\mathbb{R})$, equipped with the convolution product

$$(f \ast g)(t) = \int_{\mathbb{R}} f(-s)g(s + t)ds$$

and \ast-structure

$$f^*(t) = \overline{f(-s)}.$$
The classical Plancherel Theorem

The group C^*-algebra $C^*(\mathbb{R})$ is a completion of $C^\infty_c(\mathbb{R})$, equipped with the convolution product

$$(f * g)(t) = \int_{\mathbb{R}} f(-s)g(s + t) \, ds$$

and $*$-structure

$$f^*(t) = \overline{f(-s)}.$$

In particular, for the one-dimensional representations corresponding to the characters χ_p we obtain $*$-homomorphisms $\chi_p : C^*(\mathbb{R}) \to \mathbb{C}$ given by

$$\chi_p(f) = \int_{\mathbb{R}} f(x)\chi_p(x) = \int_{\mathbb{R}} f(x)e^{-ipx} \, dx = \mathcal{F}(f)(p)$$

for $f \in C^\infty_c(\mathbb{R})$.

Christian Voigt (joint with R. Yuncken)
The classical Plancherel Theorem

For $f \in C^\infty_c(\mathbb{R})$ we have

$$
(f \ast f)(0) = \int_{\mathbb{R}} f(s)f(s) \, ds = \|f\|_2^2 = \|\mathcal{F}(f)\|_2^2 = \int_{\widehat{\mathbb{R}}} \mathcal{F}(f)(p)\mathcal{F}(f)(p) \, dp = \int_{\widehat{\mathbb{R}}} \chi_p(f)^\ast \chi_p(f) \, dp = \int_{\widehat{\mathbb{R}}} \chi_p(f \ast f) \, dp,
$$

or equivalently,

Theorem (Plancherel formula)

For any $h \in C^\infty_c(\mathbb{R})$ we have

$$
h(0) = \int_{\widehat{\mathbb{R}}} \chi_p(h) \, dp.
$$

Christian Voigt (joint with R. Yuncken)
The classical Plancherel Theorem

For \(f \in C_c^\infty(\mathbb{R}) \) we have

\[
(f^* \ast f)(0) = \int_{\mathbb{R}} \overline{f(s)} f(s) ds = \|f\|_2^2 = \|\mathcal{F}(f)\|_2^2 = \int_{\hat{\mathbb{R}}} \overline{\mathcal{F}(f)(p)} \mathcal{F}(f)(p) dp
\]

\[
= \int_{\hat{\mathbb{R}}} \chi_p(f)^* \chi_p(f) dp = \int_{\hat{\mathbb{R}}} \chi_p(f^* \ast f) dp,
\]

or equivalently,
The classical Plancherel Theorem

For $f \in C_c^\infty(\mathbb{R})$ we have

$$(f^* \ast f)(0) = \int_\mathbb{R} \overline{f(s)}f(s)ds$$

$$= \|f\|_2^2 = \|\mathcal{F}(f)\|_2^2 = \int_{\hat{\mathbb{R}}} \overline{\mathcal{F}(f)(p)}\mathcal{F}(f)(p)dp$$

$$= \int_{\hat{\mathbb{R}}} \chi_p(f)^*\chi_p(f)dp = \int_{\hat{\mathbb{R}}} \chi_p(f^* \ast f)dp,$$

or equivalently,

Theorem (Plancherel formula)

For any $h \in C_c^\infty(\mathbb{R})$ we have

$$h(0) = \int_{\hat{\mathbb{R}}} \chi_p(h)dp.$$
Now let G be a compact group. Write $\text{Irr}(G)$ for the set of equivalence classes of irreducible representations of G, and $\pi_\lambda: G \to U(H_\lambda)$ for $\lambda \in \text{Irr}(G)$.

Theorem (Peter-Weyl)

For $f \in L^1(G) \cap L^2(G)$ we have

$$\|f\|_2^2 = \sum_{\lambda \in \text{Irr}(G)} \text{tr}(\pi_\lambda(f)^* \pi_\lambda(f)) \dim(H_\lambda) - 1.$$
Now let G be a compact group.

Write $\operatorname{Irr}(G)$ for the set of equivalence classes of irreducible representations of G, and $\pi_\lambda : G \to U(\mathcal{H}_\lambda)$ for $\lambda \in \operatorname{Irr}(G)$.
Now let G be a compact group.

Write $\text{Irr}(G)$ for the set of equivalence classes of irreducible representations of G, and $\pi_\lambda : G \to U(\mathcal{H}_\lambda)$ for $\lambda \in \text{Irr}(G)$.

Theorem (Peter-Weyl)

For $f \in L^1(G) \cap L^2(G)$ we have

$$\|f\|_2^2 = \sum_{\lambda \in \text{Irr}(G)} \text{tr}(\pi_\lambda(f)^* \pi_\lambda(f)) \dim(\mathcal{H}_\lambda)^{-1}$$
Hence the formula

\[\mathcal{F}(f) = \bigoplus_{\lambda \in \text{Irr}(G)} \pi_\lambda(f) \]

for \(f \in L^1(G) \cap L^2(G) \) extends to an isometric isomorphism

\[\mathcal{F} : L^2(G) \rightarrow \bigoplus_{\lambda \in \text{Irr}(G)} HS(\mathcal{H}_\lambda), \]

if on \(\text{Irr}(G) \) we consider the (Plancherel) measure

\[dm = \sum_{\lambda \in \text{Irr}(G)} \frac{\dim(\mathcal{H}_\lambda)^{-1}}{\delta_\lambda}. \]
Abstract Plancherel Theorem

Assume that G is a type I locally compact unimodular group.

Theorem (Segal-Mautner)

Then there exists a standard measure m on $\text{Irr}(G)$, a measurable field of Hilbert spaces $(\mathcal{H}_\lambda)_{\lambda \in \text{Irr}(G)}$, and an isometric G-equivariant isomorphism

$$
\mathcal{F} : L^2(G) \to \int_{\text{Irr}(G)}^{\oplus} HS(\mathcal{H}_\lambda)dm(\lambda),
$$

given by

$$
\mathcal{F}(f) = \int_{\text{Irr}(G)}^{\oplus} \pi_\lambda(f)dm(\lambda)
$$

on a dense subspace of $L^1(G) \cap L^2(G)$.
Assume that G is a type I locally compact possibly non-unimodular group.

Theorem (Segal-Mautner, Duflo-Moore)

Then there exists a standard measure m on $\text{Irr}(G)$, a measurable field of Hilbert spaces $(\mathcal{H}_\lambda)_{\lambda \in \text{Irr}(G)}$, a measurable field $(D_\lambda)_{\lambda \in \text{Irr}(G)}$ of self-adjoint strictly positive operators for $(\mathcal{H}_\lambda)_{\lambda \in \text{Irr}(G)}$, and an isometric G-equivariant isomorphism

$$
\mathcal{F} : L^2(G) \rightarrow \int_{\text{Irr}(G)} \bigoplus \text{HS}(\mathcal{H}_\lambda) \, dm(\lambda),
$$

given by

$$
\mathcal{F}(f) = \int_{\text{Irr}(G)} \bigoplus \pi_\lambda(f) D_\lambda^{-1} \, dm(\lambda)
$$

on a dense subspace of $L^1(G) \cap L^2(G)$.

Christian Voigt (joint with R. Yuncken)
Assume that G is a type I locally compact possibly non-unimodular quantum group.

Theorem (Segal-Mautner, Duflo-Moore, Desmedt)

Then there exists a standard measure m on $\text{Irr}(G)$, a measurable field of Hilbert spaces $(\mathcal{H}_\lambda)_{\lambda \in \text{Irr}(G)}$, a measurable field $(D_\lambda)_{\lambda \in \text{Irr}(G)}$ of self-adjoint strictly positive operators for $(\mathcal{H}_\lambda)_{\lambda \in \text{Irr}(G)}$, and an isometric G-equivariant isomorphism

$$\mathcal{F} : L^2(G) \rightarrow \int_{\text{Irr}(G)} \oplus \text{HS}(\mathcal{H}_\lambda) dm(\lambda),$$

given by

$$\mathcal{F}(f) = \int_{\text{Irr}(G)} \oplus \pi_\lambda(f) D_\lambda^{-1} dm(\lambda)$$

on a dense subspace of $L^1(G) \cap L^2(G)$.

Christian Voigt (joint with R. Yuncken)
Remark on Duflo-Moore operators

The appearance of Duflo-Moore operators is not really due to non-unimodularity, but rather related to the question of whether the (left) Haar weight of the group algebra is a trace or not. In the group case, this is equivalent to (non-) unimodularity.
The appearance of Duflo-Moore operators is not really due to non-unimodularity, but rather related to the question of whether the (left) Haar weight of the group algebra is a trace or not. In the group case, this is equivalent to (non-) unimodularity.

For instance, for a compact quantum group, there are Duflo-Moore operators in the Plancherel formula. These are trivial iff the quantum group is of Kac type - note that compact quantum groups are always unimodular.

If G is a compact quantum group the Plancherel formula becomes

$$\epsilon(f) = \sum_{\lambda \in \text{Irr}(G)} \dim_q(H_\lambda) \text{tr}(\pi_\lambda(f) D^{-2}_\lambda)$$

for $f \in \mathcal{O}(G)$.

Christian Voigt (joint with R. Yuncken)
A little bit of history:

- Podleś-Woronowicz (1990) construct complex semisimple quantum groups on the C^*-algebra level.
- Buffenoir-Roche (1999) determine the Plancherel formula for $SL_q(2, \mathbb{C})$.
- Arano (2014, 2016) completely classifies the irreducible unitary representations of $SL_q(n, \mathbb{C})$, and most of the full dual in general.

Christian Voigt (joint with R. Yuncken)
A little bit of history:
A little bit of history:

- Podleś-Woronowicz (1990) construct complex semisimple quantum groups on the C^*-algebra level.

- Buffenoir-Roche (1999) determine the Plancherel formula for $SL_q(2, \mathbb{C})$.

- Arano (2014, 2016) completely classifies the irreducible unitary representations of $SL_q(n, \mathbb{C})$, and most of the full dual in general.
Here is a quick outline of the construction of the quantization G^q of a (simply connected) complex semisimple group G:

▶ Start from the Iwasawa decomposition $G = KAN$.

▶ For the compact part K, there exists a deformation K^q obtained using quantized enveloping algebras.

▶ According to Drinfeld duality, a quantization of the Poisson dual \hat{AN} of K is given by the Pontrjagin dual \hat{K}^q of K^q.

▶ The complex quantum group G^q is the quantum double $G^q = K^q ⊠ \hat{K}^q$.

We shall now explain the ingredients in these constructions in more detail.
Here is a quick outline of the construction of the quantization G_q of a (simply connected) complex semisimple group G:

1. Start from the Iwasawa decomposition $G = K A N$.
2. For the compact part K, there exists a deformation K_q obtained using quantized enveloping algebras.
3. According to Drinfeld duality, a quantization of the Poisson dual A_N of K is given by the Pontrjagin dual \hat{K}_q of K_q.
4. The complex quantum group G_q is the quantum double $G_q = K_q \bowtie \hat{K}_q$.

We shall now explain the ingredients in these constructions in more detail.
Here is a quick outline of the construction of the quantization G_q of a (simply connected) complex semisimple group G:

- Start from the Iwasawa decomposition $G = KAN$.
- For the compact part K there exists a deformation K_q obtained using quantized enveloping algebras.
- According to Drinfeld duality, a quantization of the Poisson dual \hat{A} of K is given by the Pontrjagin dual \hat{K}_q of K_q.
- The complex quantum group G_q is the quantum double $G_q = K_q ⊘◁ \hat{K}_q$.
Here is a quick outline of the construction of the quantization G_q of a (simply connected) complex semisimple group G:

- Start from the Iwasawa decomposition $G = KAN$.
- For the compact part K there exists a deformation K_q obtained using quantized enveloping algebras.
Complex semisimple quantum groups

Here is a quick outline of the construction of the quantization G_q of a (simply connected) complex semisimple group G:

- Start from the Iwasawa decomposition $G = KAN$.
- For the compact part K there exists a deformation K_q obtained using quantized enveloping algebras.
- According to Drinfeld duality, a quantization of the Poisson dual AN of K is given by the Pontrjagin dual \hat{K}_q of K_q.
Here is a quick outline of the construction of the quantization G_q of a (simply connected) complex semisimple group G:

- Start from the Iwasawa decomposition $G = K AN$.
- For the compact part K there exists a deformation K_q obtained using quantized enveloping algebras.
- According to Drinfeld duality, a quantization of the Poisson dual AN of K is given by the Pontrjagin dual \hat{K}_q of K_q.
- The complex quantum group G_q is the quantum double

$$G_q = K_q \boxtimes \hat{K}_q.$$

We shall now explain the ingredients in these constructions in more detail.
Notation

- Fix $q = e^h \in (0, 1)$.
- Let g be a semisimple complex Lie algebra of rank N with Cartan matrix (a_{ij}).
- $h \subset g$ a Cartan subalgebra.
- $\Delta = \Delta^+ \cup \Delta^-$ the root system with simple roots $\alpha_1, \ldots, \alpha_N \subset h^*$.
- (\cdot, \cdot) the bilinear form on h^* obtained by rescaling the Killing form such that all short roots α_s satisfy $(\alpha, \alpha) = 2$.
- Set $d_i = (\alpha_i, \alpha_i)/2$ and $q_i = q^{d_i}$.
- $\varpi_1, \ldots, \varpi_N \in h^*$ are the fundamental weights.
- $P = \bigoplus_{j=1}^N \mathbb{Z} \varpi_j$ and $Q = \bigoplus_{j=1}^N \mathbb{Z} \alpha_j$ are the weight and root lattices, respectively.
- $P^+ = \bigoplus_{j=1}^N N_0 \varpi_j$ are the dominant integral weights.
- W is the Weyl group of g.

Christian Voigt (joint with R. Yuncken)
Fix \(q = e^h \in (0, 1) \).

Let \(\mathfrak{g} \) be a semisimple complex Lie algebra of rank \(N \) with Cartan matrix \((a_{ij}) \).

\(\mathfrak{h} \subset \mathfrak{g} \) a Cartan subalgebra.

\(\Delta = \Delta^+ \cup \Delta^- \) the root system with simple roots \(\alpha_1, \ldots, \alpha_N \subset \mathfrak{h}^* \).

\((\ , \) \) the bilinear form on \(\mathfrak{h}^* \) obtained by rescaling the Killing form such that all short roots \(\alpha \) satisfy \((\alpha, \alpha) = 2 \).

Set \(d_i = (\alpha_i, \alpha_i)/2 \) and \(q_i = q^{d_i} \).

\(\varpi_1, \ldots, \varpi_N \in \mathfrak{h}^* \) are the fundamental weights.

\(P = \bigoplus_{j=1}^{N} \mathbb{Z}\varpi_j \) and \(Q = \bigoplus_{j=1}^{N} \mathbb{Z}\alpha_j \) are the weight and root lattices, respectively.

\(P^+ = \bigoplus_{j=1}^{N} \mathbb{N}_0 \varpi_j \) are the dominant integral weights.

\(W \) is the Weyl group of \(\mathfrak{g} \).
The Drinfeld-Jimbo algebra associated to \mathfrak{g}

The quantized universal enveloping algebra $U_q(\mathfrak{g})$ is the algebra with generators E_j, F_j for $1 \leq j \leq N$ and K_λ for $\lambda \in \mathfrak{p}$ satisfying $K_0 = 1$, $K_\lambda K_\mu = K_{\lambda + \mu}$, $K_\lambda E_j K_{-1}^{\lambda} = q^{(\lambda,\alpha_j)} E_j$, $K_\lambda F_j K_{-1}^{\lambda} = q^{- (\lambda,\alpha_j)} F_j$, $[E_i, F_j] = \delta_{ij} K_i - K_{-1}^{i} q_i - q_{-1}^{i}$, where $K_i = K_{\alpha_i}$.
The quantized universal enveloping algebra $U_q(\mathfrak{g})$ is the algebra with generators E_j, F_j for $1 \leq j \leq N$ and K_λ for $\lambda \in \mathfrak{P}$ satisfying

\[
K_0 = 1, \quad K_\lambda K_\mu = K_{\lambda + \mu},
\]

\[
K_\lambda E_j K^-1_\lambda = q^{(\lambda, \alpha_j)} E_j, \quad K_\lambda F_j K^-1_\lambda = q^{-(\lambda, \alpha_j)} F_j,
\]

\[
[E_i, F_j] = \delta_{ij} \frac{K_i - K_i^{-1}}{q_i - q_i^{-1}}, \quad \text{where } K_i = K_{\alpha_i},
\]

\[
\sum_{k=0}^{1-a_{ij}} (-1)^k \binom{1-a_{ij}}{k} q_i E_i^{-a_{ij}-k} = 0 \quad i \neq j,
\]

\[
\sum_{k=0}^{1-a_{ij}} (-1)^k \binom{1-a_{ij}}{k} q_i F_i^{-a_{ij}-k} = 0 \quad i \neq j.
\]
The Drinfeld-Jimbo algebra associated to \mathfrak{g}

The algebra $U_q(\mathfrak{g})$ is a Hopf algebra. For instance, the coproduct $\hat{\Delta}: U_q(\mathfrak{g}) \to U_q(\mathfrak{g}) \otimes U_q(\mathfrak{g})$ is given by

\[
\hat{\Delta}(K_\lambda) = K_\lambda \otimes K_\lambda,
\]

\[
\hat{\Delta}(E_i) = E_i \otimes K_i + 1 \otimes E_i
\]

\[
\hat{\Delta}(F_i) = F_i \otimes 1 + K_{i-1} \otimes F_i
\]

Moreover $U_q(\mathfrak{g})$ is a \ast-algebra with the \ast-structure $E_i = K_i F_i$, $F_i = E_i K_{i-1}$, $K_\lambda \ast = K_\lambda$. As a Hopf \ast-algebra, $U_q(\mathfrak{g})$ should be viewed as quantization of the (complex) universal enveloping algebra of the (real) Lie algebra \mathfrak{k}.

Christian Voigt (joint with R. Yuncken)
The Drinfeld-Jimbo algebra associated to \mathfrak{g}

The algebra $U_q(\mathfrak{g})$ is a Hopf algebra.

For instance, the coproduct $\hat{\Delta} : U_q(\mathfrak{g}) \to U_q(\mathfrak{g}) \otimes U_q(\mathfrak{g})$ is given by

$$
\hat{\Delta}(K_\lambda) = K_\lambda \otimes K_\lambda,
$$
$$
\hat{\Delta}(E_i) = E_i \otimes K_i + 1 \otimes E_i
$$
$$
\hat{\Delta}(F_i) = F_i \otimes 1 + K_i^{-1} \otimes F_i.
$$
The Drinfeld-Jimbo algebra associated to \mathfrak{g}

The algebra $U_q(\mathfrak{g})$ is a Hopf algebra.

For instance, the coproduct $\hat{\Delta} : U_q(\mathfrak{g}) \to U_q(\mathfrak{g}) \otimes U_q(\mathfrak{g})$ is given by

$$\hat{\Delta}(K_\lambda) = K_\lambda \otimes K_\lambda,$$

$$\hat{\Delta}(E_i) = E_i \otimes K_i + 1 \otimes E_i,$$

$$\hat{\Delta}(F_i) = F_i \otimes 1 + K_i^{-1} \otimes F_i.$$

Moreover $U_q(\mathfrak{g})$ is a $*$-algebra with the $*$-structure

$$E_i^* = K_i F_i, \quad F_i^* = E_i K_i^{-1}, \quad K_\lambda^* = K_\lambda.$$

As a Hopf $*$-algebra, $U_q(\mathfrak{g})$ should be viewed as quantization of the (complex) universal enveloping algebra of the (real) Lie algebra \mathfrak{k}.

Christian Voigt (joint with R. Yuncken)
The finite dimensional representation theory of $U_q(g)$ is similar to the one for $U(g)$. In particular, for every $\mu \in P^+$ there exists a unique irreducible representation $V(\mu)$ with a highest weight vector v_μ, satisfying

$$K_\lambda v_\mu = q^{(\lambda, \mu)} v_\mu$$
The finite dimensional representation theory of $U_q(g)$ is similar to the one for $U(g)$. In particular, for every $\mu \in \mathbb{P}^+$ there exists a unique irreducible representation $V(\mu)$ with a highest weight vector v_μ, satisfying

$$K_\lambda v_\mu = q^{(\lambda, \mu)} v_\mu$$

Using the representations $V(\mu)$ one defines a compact quantum group K_q as follows.

Definition

The algebra $\mathcal{O}(K_q) \subset U_q(g)^*$ of representative functions on K_q is the Hopf $*$-algebra of matrix coefficients of all $V(\mu)$ for $\mu \in \mathbb{P}^+$. We let $C(K_q)$ be its universal C^*-completion.

$\mathcal{O}(K_q)$ is a deformation of the algebra $\mathcal{O}(K)$ of representative functions on K, and $C(K_q)$ is a deformation of $C(K)$.

Christian Voigt (joint with R. Yuncken)
Example: the quantum group $SU_q(2)$

The algebra $\mathcal{O}(SU_q(2))$ can be identified with the \ast-algebra generated by elements α and γ satisfying the relations

\begin{align*}
\alpha \gamma &= q \gamma \alpha, \\
\alpha \gamma^\ast &= q \gamma^\ast \alpha, \\
\gamma \gamma^\ast &= \gamma^\ast \gamma,
\end{align*}

\begin{align*}
\alpha^\ast \alpha + \gamma^\ast \gamma &= 1, \\
\alpha \alpha^\ast + q^2 \gamma \gamma^\ast &= 1.
\end{align*}

These relations are equivalent to saying that the fundamental matrix $(\alpha - q \gamma^\ast \gamma \alpha^\ast)$ is unitary.

The maximal torus survives the deformation untouched: There exists a \ast-homomorphism $\pi: \mathcal{O}(SU_q(2)) \to \mathcal{O}(T) = \mathbb{C}[z, z^{-1}]$ given by $\pi(\alpha) = z$, $\pi(\gamma) = 0$.

Christian Voigt (joint with R. Yuncken)
Example: the quantum group $SU_q(2)$

The algebra $\mathcal{O}(SU_q(2))$ can be identified with the \ast-algebra generated by elements α and γ satisfying the relations

$$\alpha \gamma = q \gamma \alpha, \quad \alpha \gamma^* = q \gamma^* \alpha, \quad \gamma \gamma^* = \gamma^* \gamma,$$

$$\alpha^* \alpha + \gamma^* \gamma = 1, \quad \alpha \alpha^* + q^2 \gamma \gamma^* = 1.$$

These relations are equivalent to saying that the fundamental matrix

$$
\begin{pmatrix}
\alpha & -q \gamma^*
\
\gamma & \alpha^*
\end{pmatrix}
$$

is unitary.
Example: the quantum group $SU_q(2)$

The algebra $\mathcal{O}(SU_q(2))$ can be identified with the \ast-algebra generated by elements α and γ satisfying the relations

\[
\begin{align*}
\alpha \gamma &= q \gamma \alpha, & \alpha \gamma^* &= q \gamma^* \alpha, & \gamma \gamma^* &= \gamma^* \gamma, \\
\alpha^* \alpha + \gamma^* \gamma &= 1, & \alpha \alpha^* + q^2 \gamma \gamma^* &= 1.
\end{align*}
\]

These relations are equivalent to saying that the fundamental matrix

\[
\begin{pmatrix}
\alpha & -q \gamma^* \\
\gamma & \alpha^*
\end{pmatrix}
\]

is unitary.

The maximal torus survives the deformation untouched: There exists a \ast-homomorphism $\pi : \mathcal{O}(SU_q(2)) \to \mathcal{O}(T) = \mathbb{C}[z, z^{-1}]$ given by $\pi(\alpha) = z, \pi(\gamma) = 0$.

The quantization of AN

Every (locally compact) quantum group admits a Pontrjagin dual (locally compact) quantum group.
Every (locally compact) quantum group admits a Pontrjagin dual (locally compact) quantum group.

In the case of K_q, the dual \hat{K}_q is encoded by the $*$-algebra

$$C_c(\hat{K}_q) = \mathcal{D}(K_q) = \bigoplus_{\mu \in P^+} \text{End}(V(\mu)),$$

equipped with a suitable coproduct.
Every (locally compact) quantum group admits a Pontrjagin dual (locally compact) quantum group.

In the case of K_q, the dual \hat{K}_q is encoded by the \ast-algebra

$$C_c(\hat{K}_q) = \mathcal{D}(K_q) = \bigoplus_{\mu \in P^+} \text{End}(V(\mu)),$$

equipped with a suitable coproduct.

To the classical group A corresponds the quotient \hat{T} of \hat{K}_q obtained from the projection $\mathcal{O}(K_q) \to \mathcal{O}(T)$. Here $T \subset K_q$ is the classical maximal torus.
Consider the vector space $D(G_q) = D(K_q) \triangleright\triangleleft O(K_q)$, equipped with the multiplication $(x \triangleright\triangleleft f)(y \triangleright\triangleleft g) = x(f(1), y(1))y(2) \triangleright\triangleleft f(2)(f(3), \hat{S}(y(3)))g$ and the \ast-structure $(x \triangleright\triangleleft f)^\ast = (1 \triangleright\triangleleft f^\ast)(x^\ast \triangleright\triangleleft 1)$.

Definition The group C^\ast-algebra $C^\ast(G_q)$ of the complex quantum group G_q is the universal C^\ast-completion of $D(G_q)$.

Christian Voigt (joint with R. Yuncken)
Consider the vector space

$$\mathcal{D}(G_q) = \mathcal{D}(K_q) \otimes \mathcal{O}(K_q),$$

equipped with the multiplication

$$(x \otimes f)(y \otimes g) = x(f(1), y(1))y(2) \otimes f(2)(f(3), \hat{S}(y(3)))g$$

and the $*$-structure

$$(x \otimes f)^* = (1 \otimes f^*)(x^* \otimes 1).$$
Consider the vector space

\[\mathcal{D}(G_q) = \mathcal{D}(K_q) \Join \mathcal{O}(K_q), \]

equipped with the multiplication

\[(x \Join f)(y \Join g) = x(f_1, y_1)y_2 \Join f_2(f_3, \hat{S}(y_3))g \]

and the \(\ast \)-structure

\[(x \Join f)^\ast = (1 \Join f^\ast)(x^\ast \Join 1). \]

Definition

The group \(\mathbb{C}^\ast \)-algebra \(\mathbb{C}^\ast(G_q) \) of the complex quantum group \(G_q \) is the universal \(\mathbb{C}^\ast \)-completion of \(\mathcal{D}(G_q) \).
The representation theory of G_q

This leads to some natural tasks/questions.

Describe all irreducible representations of G_q up to isomorphism.

Describe the (reduced) unitary dual of G_q.

Describe the Plancherel formula.

Describe the Fell topology of the (reduced) dual.
The representation theory of G_q

This leads to some natural tasks/questions.

- Describe all irreducible representations of G_q up to isomorphism.
- Describe the (reduced) unitary dual of G_q.
- Describe the Plancherel formula.
- Describe the Fell topology of the (reduced) dual.
By construction, a nondegenerate representation of $C^*(G_q)$ on a Hilbert space \mathcal{H} corresponds to a nondegenerate \ast-homomorphism $\mathcal{D}(G_q) \to \mathcal{L}(\mathcal{H})$. This is the same thing as a unitary Yetter-Drinfeld module, that is, a pair of a unital \ast-homomorphism $\mathcal{O}(K_q) \to \mathcal{L}(\mathcal{H})$ and a unitary corepresentation $V \in M(C(K_q) \otimes \mathcal{H})$ satisfying the Yetter-Drinfeld compatibility condition, given by

$$f(1)\xi(-1)S(f(3)) \otimes f(2) \cdot \xi(0) = (f \cdot \xi)(-1) \otimes (f \cdot \xi)(0)$$

for $f \in \mathcal{O}(K_q)$ and ξ in (a certain dense subspace of) \mathcal{H}.

Christian Voigt (joint with R. Yuncken)
The representation theory of G_q

By construction, a nondegenerate representation of $C^*(G_q)$ on a Hilbert space \mathcal{H} corresponds to a nondegenerate \ast-homomorphism $D(G_q) \to L(\mathcal{H})$.

This is the same thing as a unitary Yetter-Drinfeld module, that is, a pair of a unital \ast-homomorphism $\mathcal{O}(K_q) \to L(\mathcal{H})$ and a unitary corepresentation $V \in M(C(K_q) \otimes \mathcal{H})$ satisfying the Yetter-Drinfeld compatibility condition, given by

$$f(1)\xi(-1)S(f(3)) \otimes f(2) \cdot \xi(0) = (f \cdot \xi)(-1) \otimes (f \cdot \xi)(0)$$

for $f \in \mathcal{O}(K_q)$ and ξ in (a certain dense subspace of) \mathcal{H}.
Let $O(E^\mu) \subset O(Kq)$ be the spectral subspace of $O(Kq)$ associated to $\mu \in P$ with respect to the right action of T.

For $\lambda \in h^*$ we define the twisted left adjoint representation of $O(Kq)$ on $O(E^\mu)$ by

$$f \cdot \xi = f(1) \xi S(f(3))(K\lambda + 2\rho, f(2)).$$

Together with the comultiplication of $O(Kq)$ this turns $O(E^\mu)$ into a Yetter-Drinfeld module, which we will denote by $O(E^\mu, \lambda)$. This is called the principal series Yetter-Drinfeld module with parameter $(\mu, \lambda) \in P \times h^*$. If $\lambda \in i_{a^*} \subset h^*$ then this Yetter-Drinfeld module is unitary. It corresponds to a representation of $C^*(G^q)$ on the Hilbert space completion of $O(E^\mu)$.

Christian Voigt (joint with R. Yuncken)
Let $\mathcal{O}(\mathcal{E}_\mu) \subset \mathcal{O}(K_q)$ be the spectral subspace of $\mathcal{O}(K_q)$ associated to $\mu \in \mathbf{P}$ with respect to the right action of T. For $\lambda \in \mathfrak{h}^*$ we define the twisted left adjoint representation of $\mathcal{O}(K_q)$ on $\mathcal{O}(\mathcal{E}_\mu)$ by $f \cdot \xi = f(1)\xi S(f(3))(K_{\lambda}+2\rho, f(2))$. Together with the comultiplication of $\mathcal{O}(K_q)$ this turns $\mathcal{O}(\mathcal{E}_\mu)$ into a Yetter-Drinfeld module, which we will denote by $\mathcal{O}(\mathcal{E}_\mu,\lambda)$. This is called the principal series Yetter-Drinfeld module with parameter $(\mu,\lambda) \in \mathbf{P} \times \mathfrak{h}^*$. If $\lambda \in i\mathfrak{a}^* \subset \mathfrak{h}^*$ then this Yetter-Drinfeld module is unitary. It corresponds to a representation of $C^*(G_q)$ on the Hilbert space completion of $\mathcal{O}(\mathcal{E}_\mu)$.

Christian Voigt (joint with R. Yuncken)
Let $\mathcal{O}(\mathcal{E}_\mu) \subset \mathcal{O}(K_q)$ be the spectral subspace of $\mathcal{O}(K_q)$ associated to $\mu \in \mathcal{P}$ with respect to the right action of T.

For $\lambda \in \mathfrak{h}^*$ we define the twisted left adjoint representation of $\mathcal{O}(K_q)$ on $\mathcal{O}(\mathcal{E}_\mu)$ by

$$f \cdot \xi = f(1) \xi S(f(3))(K_{\lambda+2\rho}, f(2)).$$

Together with the comultiplication of $\mathcal{O}(K_q)$ this turns $\mathcal{O}(\mathcal{E}_\mu)$ into a Yetter-Drinfeld module, which we will denote by $\mathcal{O}(\mathcal{E}_\mu, \lambda)$.

This is called the principal series Yetter-Drinfeld module with parameter $(\mu, \lambda) \in \mathcal{P} \times \mathfrak{h}^*$. If $\lambda \in i\mathfrak{a}^* \subset \mathfrak{h}^*$ then this Yetter-Drinfeld module is unitary. It corresponds to a representation of $C^*(G_q)$ on the Hilbert space completion of $\mathcal{O}(\mathcal{E}_\mu)$.

Christian Voigt (joint with R. Yuncken)
Let \(\mathcal{O}(\mathcal{E}_\mu) \subset \mathcal{O}(K_q) \) be the spectral subspace of \(\mathcal{O}(K_q) \) associated to \(\mu \in P \) with respect to the right action of \(T \).

For \(\lambda \in \mathfrak{h}^* \) we define the twisted left adjoint representation of \(\mathcal{O}(K_q) \) on \(\mathcal{O}(\mathcal{E}_\mu) \) by

\[
f \cdot \xi = f_1(1) \xi S(f_3)(K_{\lambda+2\rho}, f_2).
\]

Together with the comultiplication of \(\mathcal{O}(K_q) \) this turns \(\mathcal{O}(\mathcal{E}_\mu) \) into a Yetter-Drinfeld module, which we will denote by \(\mathcal{O}(\mathcal{E}_\mu, \lambda) \).

This is called the principal series Yetter-Drinfeld module with parameter \((\mu, \lambda) \in P \times \mathfrak{h}^* \).

If \(\lambda \in i\mathfrak{a}^* \subset \mathfrak{h}^* \) then this Yetter-Drinfeld module is unitary. It corresponds to a representation of \(C^*(G_q) \) on the Hilbert space completion of \(\mathcal{O}(\mathcal{E}_\mu) \).
The structure of principal series representations

For $\lambda \in h^*$, the operators K_λ are defined by $K_\lambda v = q(\lambda, \nu)v$. Recall that $q = e^{\hbar}$, and let $\hbar = \frac{h}{2\pi}$. In particular, $K_\lambda = K_{\lambda'}$ if $\lambda - \lambda' \in i\hbar - 1Q^\vee$. Here Q^\vee is the coroot lattice. Hence, by their very construction, the principal series modules $O(E_{\mu, \lambda})$ and $O(E_{\mu, \lambda'})$ are the same if $\lambda - \lambda' \in i\hbar - 1Q^\vee$.

Write $h^*q = h^*/i\hbar - 1Q$, $a^*q = a^*/i\hbar - 1Q$. This notation allows us to remove the "obvious" redundancies in the parametrisation of the principal series explained above.

Christian Voigt (joint with R. Yuncken)
For \(\lambda \in \mathfrak{h}^* \), the operators \(K_\lambda \) are defined by \(K_\lambda \nu = q^{(\lambda, \nu)} \nu \).
For \(\lambda \in \mathfrak{h}^* \), the operators \(K_\lambda \) are defined by \(K_\lambda \nu = q^{(\lambda,\nu)} \nu \).

Recall that \(q = e^h \), and let \(\hbar = \frac{h}{2\pi} \).
For \(\lambda \in \mathfrak{h}^* \), the operators \(K_\lambda \) are defined by \(K_\lambda \nu = q^{(\lambda,\nu)} \nu \).

Recall that \(q = e^h \), and let \(\hbar = \frac{h}{2\pi} \).

In particular, \(K_\lambda = K_{\lambda'} \) if \(\lambda - \lambda' \in i\hbar^{-1}Q^\lor \). Here \(Q^\lor \) is the coroot lattice.

Christian Voigt (joint with R. Yuncken)
For \(\lambda \in \mathfrak{h}^* \), the operators \(K_\lambda \) are defined by \(K_\lambda \nu = q^{(\lambda, \nu)} \nu \).

Recall that \(q = e^h \), and let \(\hbar = \frac{h}{2\pi} \).

In particular, \(K_\lambda = K_{\lambda'} \) if \(\lambda - \lambda' \in i\hbar^{-1}Q^\vee \). Here \(Q^\vee \) is the coroot lattice.

Hence, by their very construction, the principal series modules \(\mathcal{O}(\mathcal{E}_{\mu, \lambda}) \) and \(\mathcal{O}(\mathcal{E}_{\mu, \lambda'}) \) are \textit{the same} if \(\lambda - \lambda' \in i\hbar^{-1}Q^\vee \).
For $\lambda \in \mathfrak{h}^*$, the operators K_λ are defined by $K_\lambda \nu = q^{(\lambda,\nu)} \nu$.

Recall that $q = e^h$, and let $\hbar = \frac{h}{2\pi}$.

In particular, $K_\lambda = K_{\lambda'}$ if $\lambda - \lambda' \in i\hbar^{-1}Q^\vee$. Here Q^\vee is the coroot lattice.

Hence, by their very construction, the principal series modules $O(\mathcal{E}_{\mu,\lambda})$ and $O(\mathcal{E}_{\mu,\lambda'})$ are the same if $\lambda - \lambda' \in i\hbar^{-1}Q^\vee$.

Write

$$\mathfrak{h}_q^* = \mathfrak{h}^*/i\hbar^{-1}Q, \quad \mathfrak{a}_q^* = \mathfrak{a}^*/i\hbar^{-1}Q.$$

This notation allows us to remove the “obvious” redundancies in the parametrisation of the principal series explained above.
The structure of principal series representations

For $\lambda \in h^*$ and $\alpha \in \Delta$, write $\lambda \alpha = 2(\alpha, \lambda) / (\alpha, \alpha)$.

Theorem

Let $(\mu, \lambda) \in P \times h^*$ such that $\lambda \alpha \neq \pm (|\mu\alpha| + j)$ modulo $i \hbar - 1 Z$ for all $j \in \mathbb{N}$ and all $\alpha \in \Delta^+$. Then the principal series module with parameter (μ, λ) is an irreducible Yetter-Drinfeld module.

Theorem

Let $(\mu, \lambda) \in P \times i^*$. Then the principal series modules with parameters (μ, λ) and (μ', λ') are equivalent iff $(\mu', \lambda') = (w \cdot \mu, w \cdot \lambda)$ for some $w \in W$.

These results are (essentially) due to Joseph-Letzter and depend on deep facts about the structure of $U_q(g)$.
The structure of principal series representations

For $\lambda \in \mathfrak{h}^*$ and $\alpha \in \Delta$ write $\lambda_\alpha = 2(\alpha, \lambda)/(\alpha, \alpha)$.
The structure of principal series representations

For $\lambda \in \mathfrak{h}^*$ and $\alpha \in \Delta$ write $\lambda_\alpha = 2(\alpha, \lambda)/(\alpha, \alpha)$.

Theorem

Let $(\mu, \lambda) \in P \times \mathfrak{h}_q^*$ such that $\lambda_\alpha \neq \pm (|\mu_\alpha| + j)$ modulo $i\hbar^{-1}\mathbb{Z}$ for all $j \in \mathbb{N}$ and all $\alpha \in \Delta^+$. Then the principal series module with parameter (μ, λ) is an irreducible Yetter-Drinfeld module.
The structure of principal series representations

For $\lambda \in \mathfrak{h}^*$ and $\alpha \in \Delta$ write $\lambda_\alpha = 2(\alpha, \lambda)/(\alpha, \alpha)$.

Theorem

Let $(\mu, \lambda) \in P \times \mathfrak{h}_q^*$ such that $\lambda_\alpha \neq \pm(|\mu_\alpha| + j)$ modulo $i\hbar^{-1}\mathbb{Z}$ for all $j \in \mathbb{N}$ and all $\alpha \in \Delta^+$. Then the principal series module with parameter (μ, λ) is an irreducible Yetter-Drinfeld module.

Theorem

Let $(\mu, \lambda) \in P \times i\mathfrak{t}_q^*$. Then the principal series modules with parameters (μ, λ) and (μ', λ') are equivalent iff $(\mu', \lambda') = (w \cdot \mu, w \cdot \lambda)$ for some $w \in W$.

These results are (essentially) due to Joseph-Letzter and depend on deep facts about the structure of $U_q(\mathfrak{g})$.
The Plancherel formula

Theorem

Let $q \in (0, 1)$ and let G_q be a complex semisimple quantum group. Moreover let $H = (H_{\mu, \nu})_{\mu, \nu}$ be the Hilbert space bundle of unitary principal series representations over $P \times \mathfrak{a}^*$. Then there is a unitary isomorphism $Q : L^2(G_q) \cong \bigoplus_{\mu \in P} \int_{\mathfrak{a}^*} \otimes_{\nu \in \mathfrak{a}^*} HS(H_{\mu, \nu}) \, d\nu$ for the measures $d\mu \nu$ on \mathfrak{a}^* given by

$$d\mu \nu = \prod_{\alpha \in \Delta^+} \left(q^{1/2} \alpha^{-q^{-1}/2} \right) \left(\mu + i \nu \right)^{\alpha} q^{1/2} \left(\mu - i \nu \right)^{\alpha} d\nu,$$

where $d\nu$ denotes normalised Lebesgue measure on \mathfrak{a}^*.

Christian Voigt (joint with R. Yuncken)
Theorem

Let $q \in (0, 1)$ and let G_q be a complex semisimple quantum group. Moreover let $\mathcal{H} = (\mathcal{H}_{\mu, i\nu})_{\mu, \nu}$ be the Hilbert space bundle of unitary principal series representations over $P \times a_q^*$. Then there is a unitary isomorphism

$$Q : L^2(G_q) \cong \bigoplus_{\mu \in P} \int_{\nu \in a_q^*}^{\oplus} HS(\mathcal{H}_{\mu, i\nu}) dm_\mu(\nu)$$

for the measures dm_μ on a_q^* given by

$$dm_\mu(\nu) = \prod_{\alpha \in \Delta^+} (q_\alpha^{1/2} - q_\alpha^{-1/2})^2 [(\mu + i\nu)_\alpha]_{q_\alpha^{1/2}} [(\mu - i\nu)_\alpha]_{q_\alpha^{1/2}} d\nu,$$

where $d\nu$ denotes normalised Lebesgue measure on a_q^*.

Christian Voigt (joint with R. Yuncken)
Some remarks

The proof proceeds by verifying the Plancherel formula
\[\varepsilon_G q(f) = \sum_{\mu \in P} \int a^* q \, \text{tr}(\pi_{\mu}, i_{\nu}(f)) D^{-2}_{\mu, i_{\nu}} \, dm_{\mu}(\nu) \]
for elements of the form
\[f = u_{\beta}^{ij} \otimes \omega_{\gamma}^{kl} \in \mathcal{O}(K q) \otimes D(K q). \]

For this one starts by directly calculating the characters of principal series representations.

In this computation, the universal \(R \)-matrix of \(U_q(g) \) enters crucially.

The lowest order contribution in \(h \) of the quantum Plancherel measure agrees with the classical Plancherel measure
\[\prod_{\alpha \in \dot{\alpha}} |(\mu + i\nu_{\alpha})|^{2} \, d\nu_{\alpha} = (\mu + i\nu_{\alpha})^{\alpha}(\mu - i\nu_{\alpha})^{\alpha} \]
on \(P \times a^* \).

Christian Voigt (joint with R. Yuncken)
Some remarks

The proof proceeds by verifying the Plancherel formula

$$\epsilon_{G_q}(f) = \sum_{\mu \in P} \int_{a_q^*} \text{tr}(\pi_{\mu,i\nu}(f)D_{\mu,i\nu}^{-2})dm_\mu(\nu)$$

for elements of the form $f = u_{ij}^\beta \otimes \omega_{kl}^{\gamma} \in \mathcal{O}(K_q) \otimes \mathcal{D}(K_q)$.

For this one starts by directly calculating the characters of principal series representations.

In this computation, the universal R-matrix of $U_q(g)$ enters crucially.
Some remarks

The proof proceeds by verifying the Plancherel formula

$$\epsilon_{G_q}(f) = \sum_{\mu \in P} \int_{a_q^*} \text{tr}(\pi_{\mu,i\nu}(f)D_{\mu,i\nu}^{-2})dm_{\mu}(\nu)$$

for elements of the form $f = u_{ij}^\beta \otimes \omega_{kl}^\gamma \in \mathcal{O}(K_q) \otimes D(K_q)$.

For this one starts by directly calculating the characters of principal series representations.

In this computation, the universal R-matrix of $U_q(g)$ enters crucially.

The lowest order contribution in h of the quantum Plancherel measure agrees with the classical Plancherel measure

$$\prod_{\alpha \in \check{\gamma}^+} |(\mu_\alpha + i\nu_\alpha)|^2 d\nu = (\mu + i\nu)_\alpha (\mu - i\nu)_\alpha d\nu$$

on $P \times a^*$.
The reduced dual of G_q is the norm closure of $D(G_q)$ inside $L(L^2(G_q))$ under the regular representation.

Theorem

Let $q \in (0,1)$ and let G_q be a complex semisimple quantum group. Moreover let $H = (H_{\mu,\lambda})_{\mu,\lambda}$ be the Hilbert space bundle of principal series representations of G_q over $P \times a^*$. Then the canonical \ast-homomorphism $\pi : C^*_r(G_q) \to C^0(P \times a^*, K(H))$ is an isomorphism.

Setting formally $h = 0$ here (corresponding to $q = 1$), and $a^*1 = a^*$ one obtains the corresponding statement for the classical reduced \ast-algebra $C^*_r(G)$.

Christian Voigt (joint with R. Yuncken)
The reduced dual of G_q

The reduced group C^*-algebra of G_q is the norm closure of $\mathcal{D}(G_q)$ inside $\mathcal{L}(L^2(G_q))$ under the regular representation.
The reduced dual of G_q

The reduced group C^*-algebra of G_q is the norm closure of $\mathcal{D}(G_q)$ inside $\mathcal{L}(L^2(G_q))$ under the regular representation.

Theorem

Let $q \in (0, 1)$ and let G_q be a complex semisimple quantum group. Moreover let $\mathcal{H} = (\mathcal{H}_{\mu, \lambda})_{\mu, \lambda}$ be the Hilbert space bundle of principal series representations of G_q over $P \times a^*_q$. Then the canonical $*$-homomorphism

\[
\pi : C^*_r(G_q) \to C_0(P \times a^*_q, \mathbb{K}(\mathcal{H}))^W
\]

is an isomorphism.

Setting formally $h = 0$ here (corresponding to $q = 1$), and $a^*_1 = a^*$ one obtains the corresponding statement for the classical reduced group C^*-algebra $C^*_r(G)$.

Christian Voigt (joint with R. Yuncken)
The deformation picture of the Baum-Connes assembly map for the classical complex group G provides an isomorphism $K^*(C^*(K \rtimes \text{ad}k)) \to K^*(C^r(G))$. Let us restrict attention to the case $G = \text{SL}(2, \mathbb{C})$.

Theorem

Fix $q \in (0,1)$. Then there is a commutative diagram

$$
\begin{array}{ccc}
K^*(C^*(k)) & \xrightarrow{\mu} & K^*(C^r(G)) \\
\downarrow & & \downarrow \\
K^*(C^*(K \rtimes \text{ad}C)) & \xrightarrow{\mu_q} & K^*(C^r(G_q))
\end{array}
$$

Both vertical maps are split injective, and the horizontal maps are isomorphisms.
The deformation picture of the Baum-Connes assembly map for the classical complex group G provides an isomorphism

$$ K_\ast(C^*(K \rtimes_{ad} \mathfrak{k}^*)) = K_\ast(K \rtimes_{ad} C_0(\mathfrak{k})) \to K_\ast(C_\ast_r(G)). $$

Christian Voigt (joint with R. Yuncken)
The deformation picture of the Baum-Connes assembly map for the classical complex group G provides an isomorphism

$$K_\ast(C^*(K \ltimes \text{ad } \mathfrak{k}^*)) = K_\ast(K \ltimes \text{ad } C_0(\mathfrak{k})) \rightarrow K_\ast(C_r^*(G)).$$

Let us restrict attention to the case $G = SL(2, \mathbb{C})$.
The deformation picture of the Baum-Connes assembly map for the classical complex group G provides an isomorphism

$$K_\ast(C^\ast(K \rtimes_{ad} \mathfrak{k}^\ast)) = K_\ast(K \rtimes_{ad} C_0(\mathfrak{k})) \to K_\ast(C_r^\ast(G)).$$

Let us restrict attention to the case $G = SL(2, \mathbb{C})$.

Theorem

Fix $q \in (0, 1)$. Then there is a commutative diagram

$$
\begin{array}{ccc}
K_\ast(K \rtimes_{ad} C_0(\mathfrak{k})) & \xrightarrow{\mu} & K_\ast(C_r^\ast(G)) \\
\downarrow & & \downarrow \\
K_\ast(K \rtimes_{ad} C(K)) & \xrightarrow{\mu_q} & K_\ast(C_r^\ast(G_q))
\end{array}
$$

Both vertical maps are split injective, and the horizontal maps are isomorphisms.