The Plancherel Formula for complex quantum groups

Christian Voigt (joint with R. Yuncken)
University of Glasgow christian.voigt@glasgow.ac.uk
http://www.maths.gla.ac.uk/~cvoigt/index.xhtml

Warsaw

October 25th, 2016

The classical Plancherel Theorem

The classical Plancherel Theorem

For $f \in L^{1}(\mathbb{R})$ the Fourier transform of f is defined by

$$
\mathcal{F}(f)(p)=\int_{\mathbb{R}} e^{-i x p} f(x) d x
$$

where $d x$ denotes (suitably normalised) Lebesgue measure.

The classical Plancherel Theorem

For $f \in L^{1}(\mathbb{R})$ the Fourier transform of f is defined by

$$
\mathcal{F}(f)(p)=\int_{\mathbb{R}} e^{-i x p} f(x) d x
$$

where $d x$ denotes (suitably normalised) Lebesgue measure.

Theorem (Plancherel)
Let $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$. Then

$$
\|\mathcal{F}(f)\|_{2}^{2}=\int_{\mathbb{R}}|\mathcal{F}(f)(p)|^{2} d p=\int_{\mathbb{R}}|f(x)|^{2} d x=\|f\|_{2}^{2}
$$

Hence \mathcal{F} induces a unitary isomorphism $L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$.

The classical Plancherel Theorem

Let us reinterpret the Plancherel Theorem from a slightly more general perspective.

The classical Plancherel Theorem

Let us reinterpret the Plancherel Theorem from a slightly more general perspective.

Since \mathbb{R} is a locally compact abelian group, it has a Pontrjagin dual group $\hat{\mathbb{R}}$, consisting of all unitary characters of \mathbb{R}.

The classical Plancherel Theorem

Let us reinterpret the Plancherel Theorem from a slightly more general perspective.

Since \mathbb{R} is a locally compact abelian group, it has a Pontrjagin dual group $\hat{\mathbb{R}}$, consisting of all unitary characters of \mathbb{R}.

The unitary characters of \mathbb{R} are of the form

$$
\chi_{p}(x)=e^{-i x p}
$$

for $p \in \mathbb{R}$.

The classical Plancherel Theorem

Let us reinterpret the Plancherel Theorem from a slightly more general perspective.

Since \mathbb{R} is a locally compact abelian group, it has a Pontrjagin dual group $\hat{\mathbb{R}}$, consisting of all unitary characters of \mathbb{R}.

The unitary characters of \mathbb{R} are of the form

$$
\chi_{p}(x)=e^{-i x p}
$$

for $p \in \mathbb{R}$.
In this way one obtains $\hat{\mathbb{R}} \cong \mathbb{R}$.

The classical Plancherel Theorem

The group C^{*}-algebra $C^{*}(\mathbb{R})$ is a completion of $C_{c}^{\infty}(\mathbb{R})$, equipped with the convolution product

$$
(f * g)(t)=\int_{\mathbb{R}} f(-s) g(s+t) d s
$$

and *-structure

$$
f^{*}(t)=\overline{f(-s)}
$$

The classical Plancherel Theorem

The group C^{*}-algebra $C^{*}(\mathbb{R})$ is a completion of $C_{c}^{\infty}(\mathbb{R})$, equipped with the convolution product

$$
(f * g)(t)=\int_{\mathbb{R}} f(-s) g(s+t) d s
$$

and *-structure

$$
f^{*}(t)=\overline{f(-s)} .
$$

In particular, for the one-dimensional representations corresponding to the characters χ_{p} we obtain $*$-homomorphisms $\chi_{p}: C^{*}(\mathbb{R}) \rightarrow \mathbb{C}$ given by

$$
\chi_{p}(f)=\int_{\mathbb{R}} f(x) \chi_{p}(x)=\int_{\mathbb{R}} f(x) e^{-i p x} d x=\mathcal{F}(f)(p)
$$

for $f \in C_{c}^{\infty}(\mathbb{R})$.

The classical Plancherel Theorem

The classical Plancherel Theorem

For $f \in C_{c}^{\infty}(\mathbb{R})$ we have

$$
\begin{aligned}
\left(f^{*} * f\right)(0) & =\int_{\mathbb{R}} \overline{f(s)} f(s) d s \\
& =\|f\|_{2}^{2}=\|\mathcal{F}(f)\|_{2}^{2}=\int_{\hat{\mathbb{R}}} \overline{\mathcal{F}(f)(p)} \mathcal{F}(f)(p) d p \\
& =\int_{\hat{\mathbb{R}}} \chi_{p}(f)^{*} \chi_{p}(f) d p=\int_{\hat{\mathbb{R}}} \chi_{p}\left(f^{*} * f\right) d p,
\end{aligned}
$$

or equivalently,

The classical Plancherel Theorem

For $f \in C_{c}^{\infty}(\mathbb{R})$ we have

$$
\begin{aligned}
\left(f^{*} * f\right)(0) & =\int_{\mathbb{R}} \overline{f(s)} f(s) d s \\
& =\|f\|_{2}^{2}=\|\mathcal{F}(f)\|_{2}^{2}=\int_{\hat{\mathbb{R}}} \overline{\mathcal{F}(f)(p)} \mathcal{F}(f)(p) d p \\
& =\int_{\hat{\mathbb{R}}} \chi_{p}(f)^{*} \chi_{p}(f) d p=\int_{\hat{\mathbb{R}}} \chi_{p}\left(f^{*} * f\right) d p,
\end{aligned}
$$

or equivalently,
Theorem (Plancherel formula)
For any $h \in C_{c}^{\infty}(\mathbb{R})$ we have

$$
h(0)=\int_{\hat{\mathbb{R}}} \chi_{p}(h) d p .
$$

Plancherel versus Peter-Weyl

Plancherel versus Peter-Weyl

Now let G be a compact group.

Write $\operatorname{lrr}(G)$ for the set of equivalence classes of irreducible representations of G, and $\pi_{\lambda}: G \rightarrow U\left(\mathcal{H}_{\lambda}\right)$ for $\lambda \in \operatorname{Irr}(G)$.

Plancherel versus Peter-Weyl

Now let G be a compact group.

Write $\operatorname{lrr}(G)$ for the set of equivalence classes of irreducible representations of G, and $\pi_{\lambda}: G \rightarrow U\left(\mathcal{H}_{\lambda}\right)$ for $\lambda \in \operatorname{Irr}(G)$.

Theorem (Peter-Weyl)
For $f \in L^{1}(G) \cap L^{2}(G)$ we have

$$
\|f\|_{2}^{2}=\sum_{\lambda \in \operatorname{lrr}(G)} \operatorname{tr}\left(\pi_{\lambda}(f)^{*} \pi_{\lambda}(f)\right) \operatorname{dim}\left(\mathcal{H}_{\lambda}\right)^{-1}
$$

Plancherel versus Peter-Weyl

Hence the formula

$$
\mathcal{F}(f)=\bigoplus_{\lambda \in \operatorname{lrr}(G)} \pi_{\lambda}(f)
$$

for $f \in L^{1}(G) \cap L^{2}(G)$ extends to an isometric isomorphism

$$
\mathcal{F}: L^{2}(G) \rightarrow \bigoplus_{\lambda \in \operatorname{lrr}(G)} H S\left(\mathcal{H}_{\lambda}\right)
$$

if on $\operatorname{lrr}(G)$ we consider the (Plancherel) measure

$$
d m=\sum_{\lambda \in \operatorname{lrr}(G)} \operatorname{dim}\left(\mathcal{H}_{\lambda}\right)^{-1} \delta_{\lambda} .
$$

Abstract Plancherel Theorem

Assume that G is a type I locally compact unimodular group.
Theorem (Segal-Mautner)
Then there exists a standard measure m on $\operatorname{lrr}(G)$, a measurable field of Hilbert spaces $\left(\mathcal{H}_{\lambda}\right)_{\lambda \in \operatorname{lrr}(G)}$, and an isometric G-equivariant isomorphism

$$
\mathcal{F}: L^{2}(G) \rightarrow \int_{\operatorname{lrr}(G)}^{\oplus} H S\left(\mathcal{H}_{\lambda}\right) d m(\lambda)
$$

given by

$$
\mathcal{F}(f)=\int_{\operatorname{lrr}(G)}^{\oplus} \pi_{\lambda}(f) d m(\lambda)
$$

on a dense subspace of $L^{1}(G) \cap L^{2}(G)$.

Abstract Plancherel Theorem

Assume that G is a type I locally compact possibly non-unimodular group.

Theorem (Segal-Mautner, Duflo-Moore)

Then there exists a standard measure m on $\operatorname{lrr}(G)$, a measurable field of Hilbert spaces $\left(\mathcal{H}_{\lambda}\right)_{\lambda \in \operatorname{lrr}(G)}$, a measurable field $\left(D_{\lambda}\right)_{\lambda \in \operatorname{lrr}(G)}$ of self-adjoint strictly positive operators for $\left(\mathcal{H}_{\lambda}\right)_{\lambda \in \operatorname{lrr}(G)}$, and an isometric G-equivariant isomorphism

$$
\mathcal{F}: L^{2}(G) \rightarrow \int_{\operatorname{lrr}(G)}^{\oplus} H S\left(\mathcal{H}_{\lambda}\right) d m(\lambda)
$$

given by

$$
\mathcal{F}(f)=\int_{\operatorname{Irr}(G)}^{\oplus} \pi_{\lambda}(f) D_{\lambda}^{-1} d m(\lambda)
$$

on a dense subspace of $L^{1}(G) \cap L^{2}(G)$.

Abstract Plancherel Theorem

Assume that G is a type I locally compact possibly non-unimodular quantum group.

Theorem (Segal-Mautner, Duflo-Moore, Desmedt)

Then there exists a standard measure m on $\operatorname{Irr}(G)$, a measurable field of Hilbert spaces $\left(\mathcal{H}_{\lambda}\right)_{\lambda \in \operatorname{lrr}(G)}$, a measurable field $\left(D_{\lambda}\right)_{\lambda \in \operatorname{lrr}(G)}$ of self-adjoint strictly positive operators for $\left(\mathcal{H}_{\lambda}\right)_{\lambda \in \operatorname{lrr}(G)}$, and an isometric G-equivariant isomorphism

$$
\mathcal{F}: L^{2}(G) \rightarrow \int_{\operatorname{lrr}(G)}^{\oplus} H S\left(\mathcal{H}_{\lambda}\right) d m(\lambda)
$$

given by

$$
\mathcal{F}(f)=\int_{\operatorname{lrr}(G)}^{\oplus} \pi_{\lambda}(f) D_{\lambda}^{-1} d m(\lambda)
$$

on a dense subspace of $L^{1}(G) \cap L^{2}(G)$.

Remark on Duflo-Moore operators

The appearance of Duflo-Moore operators is not really due to non-unimodularity, but rather related to the question of whether the (left) Haar weight of the group algebra is a trace or not. In the group case, this is equivalent to (non-) unimodularity.

Remark on Duflo-Moore operators

The appearance of Duflo-Moore operators is not really due to non-unimodularity, but rather related to the question of whether the (left) Haar weight of the group algebra is a trace or not. In the group case, this is equivalent to (non-) unimodularity.

For instance, for a compact quantum group, there are Duflo-Moore operators in the Plancherel formula. These are trivial iff the quantum group is of Kac type - note that compact quantum groups are always unimodular.

If G is a compact quantum group the Plancherel formula becomes

$$
\epsilon(f)=\sum_{\lambda \in \operatorname{lrr}(G)} \operatorname{dim}_{q}\left(\mathcal{H}_{\lambda}\right) \operatorname{tr}\left(\pi_{\lambda}(f) D_{\lambda}^{-2}\right)
$$

for $f \in \mathcal{O}(G)$.

Complex semisimple quantum groups

Complex semisimple quantum groups

A little bit of history:

Complex semisimple quantum groups

A little bit of history:

- Podleś-Woronowicz (1990) construct complex semisimple quantum groups on the C^{*}-algebra level.
- Pusz (1993), Pusz-Woronowicz $(1994,2000)$ completely classify the irreducible unitary representations of $S L_{q}(2, \mathbb{C})$.
- Buffenoir-Roche (1999) determine the Plancherel formula for $S L_{q}(2, \mathbb{C})$.
- Arano $(2014,2016)$ completely classifies the irreducible unitary representations of $S L_{q}(n, \mathbb{C})$, and most of the full dual in general.

Complex semisimple quantum groups

Complex semisimple quantum groups

Here is a quick outline of the construction of the quantization G_{q} of a (simply connected) complex semisimple group G :

Complex semisimple quantum groups

Here is a quick outline of the construction of the quantization G_{q} of a (simply connected) complex semisimple group G :

- Start from the Iwasawa decomposition $G=K A N$.

Complex semisimple quantum groups

Here is a quick outline of the construction of the quantization G_{q} of a (simply connected) complex semisimple group G :

- Start from the Iwasawa decomposition $G=K A N$.
- For the compact part K there exists a deformation K_{q} obtained using quantized enveloping algebras.

Complex semisimple quantum groups

Here is a quick outline of the construction of the quantization G_{q} of a (simply connected) complex semisimple group G :

- Start from the Iwasawa decomposition $G=K A N$.
- For the compact part K there exists a deformation K_{q} obtained using quantized enveloping algebras.
- According to Drinfeld duality, a quantization of the Poisson dual $A N$ of K is given by the Pontrjagin dual \hat{K}_{q} of K_{q}.

Complex semisimple quantum groups

Here is a quick outline of the construction of the quantization G_{q} of a (simply connected) complex semisimple group G :

- Start from the Iwasawa decomposition $G=K A N$.
- For the compact part K there exists a deformation K_{q} obtained using quantized enveloping algebras.
- According to Drinfeld duality, a quantization of the Poisson dual $A N$ of K is given by the Pontrjagin dual \hat{K}_{q} of K_{q}.
- The complex quantum group G_{q} is the quantum double

$$
G_{q}=K_{q} \bowtie \hat{K}_{q} .
$$

We shall now explain the ingredients in these constructions in more detail.

Notation

Christian Voigt (joint with R. Yuncken)

Notation

- Fix $q=e^{h} \in(0,1)$.
- Let \mathfrak{g} be a semisimple complex Lie algebra of rank N with Cartan matrix ($a_{i j}$).
- $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra.
- $\Delta=\Delta^{+} \cup \Delta^{-}$the root system with simple roots $\alpha_{1}, \ldots, \alpha_{N} \subset \mathfrak{h}^{*}$.
- (,) the bilinear form on \mathfrak{h}^{*} obtained by rescaling the Killing form such that all short roots α satisfy $(\alpha, \alpha)=2$.
- Set $d_{i}=\left(\alpha_{i}, \alpha_{i}\right) / 2$ and $q_{i}=q^{d_{i}}$.
- $\varpi_{1}, \ldots, \varpi_{N} \in \mathfrak{h}^{*}$ are the fundamental weights.
- $\mathbf{P}=\bigoplus_{j=1}^{N} \mathbb{Z} \varpi_{j}$ and $\mathbf{Q}=\bigoplus_{j=1}^{N} \mathbb{Z} \alpha_{j}$ are the weight and root lattices, respectively.
- $\mathbf{P}^{+}=\bigoplus_{j=1}^{N} \mathbb{N}_{0} \varpi_{j}$ are the dominant integral weights.
- W is the Weyl group of \mathfrak{g}.

The Drinfeld-Jimbo algebra associated to \mathfrak{g}

The Drinfeld-Jimbo algebra associated to \mathfrak{g}

The quantized universal enveloping algebra $U_{q}(\mathfrak{g})$ is the algebra with generators E_{j}, F_{j} for $1 \leq j \leq N$ and K_{λ} for $\lambda \in \mathbf{P}$ satisfying

$$
\begin{aligned}
& K_{0}=1, K_{\lambda} K_{\mu}=K_{\lambda+\mu}, \\
& K_{\lambda} E_{j} K_{\lambda}^{-1}=q^{\left(\lambda, \alpha_{j}\right)} E_{j}, \quad K_{\lambda} F_{j} K_{\lambda}^{-1}=q^{-\left(\lambda, \alpha_{j}\right)} F_{j}, \\
& {\left[E_{i}, F_{j}\right]=\delta_{i j} \frac{K_{i}-K_{i}^{-1}}{q_{i}-q_{i}^{-1}}, \quad \text { where } K_{i}=K_{\alpha_{i}}, } \\
& \sum_{k=0}^{1-a_{i j}}(-1)^{k}\left[\begin{array}{c}
1-a_{i j} \\
k
\end{array}\right]_{q_{i}} E_{i}^{k} E_{j} E_{i}^{1-a_{i j}-k}=0 \quad i \neq j, \\
& \sum_{k=0}^{1-a_{i j}}(-1)^{k}\left[\begin{array}{c}
1-a_{i j} \\
k
\end{array}\right]_{q_{i}} F_{i}^{k} F_{j} F_{i}^{1-a_{i j}-k}=0 \quad i \neq j .
\end{aligned}
$$

The Drinfeld-Jimbo algebra associated to \mathfrak{g}

The Drinfeld-Jimbo algebra associated to \mathfrak{g}

The algebra $U_{q}(\mathfrak{g})$ is a Hopf algebra.
For instance, the coproduct $\hat{\Delta}: U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g}) \otimes U_{q}(\mathfrak{g})$ is given by

$$
\begin{aligned}
\hat{\Delta}\left(K_{\lambda}\right) & =K_{\lambda} \otimes K_{\lambda} \\
\hat{\Delta}\left(E_{i}\right) & =E_{i} \otimes K_{i}+1 \otimes E_{i} \\
\hat{\Delta}\left(F_{i}\right) & =F_{i} \otimes 1+K_{i}^{-1} \otimes F_{i}
\end{aligned}
$$

The Drinfeld-Jimbo algebra associated to \mathfrak{g}

The algebra $U_{q}(\mathfrak{g})$ is a Hopf algebra.
For instance, the coproduct $\hat{\Delta}: U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g}) \otimes U_{q}(\mathfrak{g})$ is given by

$$
\begin{aligned}
\hat{\Delta}\left(K_{\lambda}\right) & =K_{\lambda} \otimes K_{\lambda} \\
\hat{\Delta}\left(E_{i}\right) & =E_{i} \otimes K_{i}+1 \otimes E_{i} \\
\hat{\Delta}\left(F_{i}\right) & =F_{i} \otimes 1+K_{i}^{-1} \otimes F_{i}
\end{aligned}
$$

Moreover $U_{q}(\mathfrak{g})$ is a $*$-algebra with the $*$-structure

$$
E_{i}^{*}=K_{i} F_{i}, \quad F_{i}^{*}=E_{i} K_{i}^{-1}, \quad K_{\lambda}^{*}=K_{\lambda}
$$

As a Hopf $*$-algebra, $U_{q}(\mathfrak{g})$ should be viewed as quantization of the (complex) universal enveloping algebra of the (real) Lie algebra \mathfrak{k}.

Representation theory and representative functions

The finite dimensional representation theory of $U_{q}(\mathfrak{g})$ is similar to the one for $U(\mathfrak{g})$. In particular, for every $\mu \in \mathbf{P}^{+}$there exists a unique irreducible representation $V(\mu)$ with a highest weight vector v_{μ}, satisfying

$$
K_{\lambda} v_{\mu}=q^{(\lambda, \mu)} v_{\mu}
$$

Representation theory and representative functions

The finite dimensional representation theory of $U_{q}(\mathfrak{g})$ is similar to the one for $U(\mathfrak{g})$. In particular, for every $\mu \in \mathbf{P}^{+}$there exists a unique irreducible representation $V(\mu)$ with a highest weight vector v_{μ}, satisfying

$$
K_{\lambda} v_{\mu}=q^{(\lambda, \mu)} v_{\mu}
$$

Using the representations $V(\mu)$ one defines a compact quantum group K_{q} as follows.

Definition

The algebra $\mathcal{O}\left(K_{q}\right) \subset U_{q}(\mathfrak{g})^{*}$ of representative functions on K_{q} is the Hopf $*$-algebra of matrix coefficients of all $V(\mu)$ for $\mu \in \mathbf{P}^{+}$. We let $C\left(K_{q}\right)$ be its universal C^{*}-completion.
$\mathcal{O}\left(K_{q}\right)$ is a deformation of the algebra $\mathcal{O}(K)$ of representative functions on K, and $C\left(K_{q}\right)$ is a deformation of $C(K)$.

Example: the quantum group $S U_{q}(2)$

Example: the quantum group $S U_{q}(2)$

The algebra $\mathcal{O}\left(S U_{q}(2)\right)$ can be identified with the $*$-algebra generated by elements α and γ satisfying the relations

$$
\begin{gathered}
\alpha \gamma=q \gamma \alpha, \quad \alpha \gamma^{*}=q \gamma^{*} \alpha, \quad \gamma \gamma^{*}=\gamma^{*} \gamma, \\
\alpha^{*} \alpha+\gamma^{*} \gamma=1, \quad \alpha \alpha^{*}+q^{2} \gamma \gamma^{*}=1
\end{gathered}
$$

These relations are equivalent to saying that the fundamental matrix

$$
\left(\begin{array}{cc}
\alpha & -q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right)
$$

is unitary.

Example: the quantum group $S U_{q}(2)$

The algebra $\mathcal{O}\left(S U_{q}(2)\right)$ can be identified with the $*$-algebra generated by elements α and γ satisfying the relations

$$
\begin{gathered}
\alpha \gamma=q \gamma \alpha, \quad \alpha \gamma^{*}=q \gamma^{*} \alpha, \quad \gamma \gamma^{*}=\gamma^{*} \gamma, \\
\alpha^{*} \alpha+\gamma^{*} \gamma=1, \quad \alpha \alpha^{*}+q^{2} \gamma \gamma^{*}=1
\end{gathered}
$$

These relations are equivalent to saying that the fundamental matrix

$$
\left(\begin{array}{cc}
\alpha & -q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right)
$$

is unitary.
The maximal torus survives the deformation untouched: There exists a $*$-homomorphism $\pi: \mathcal{O}\left(S U_{q}(2)\right) \rightarrow \mathcal{O}(T)=\mathbb{C}\left[z, z^{-1}\right]$ given by $\pi(\alpha)=z, \pi(\gamma)=0$.

The quantization of $A N$

Every (locally compact) quantum group admits a Pontrjagin dual (locally compact) quantum group.

The quantization of $A N$

Every (locally compact) quantum group admits a Pontrjagin dual (locally compact) quantum group.

In the case of K_{q}, the dual \hat{K}_{q} is encoded by the $*$-algebra

$$
C_{c}\left(\hat{K}_{q}\right)=\mathcal{D}\left(K_{q}\right)=\bigoplus_{\mu \in \mathbf{P}^{+}} \operatorname{End}(V(\mu))
$$

equipped with a suitable coproduct.

The quantization of $A N$

Every (locally compact) quantum group admits a Pontrjagin dual (locally compact) quantum group.

In the case of K_{q}, the dual \hat{K}_{q} is encoded by the $*$-algebra

$$
C_{c}\left(\hat{K}_{q}\right)=\mathcal{D}\left(K_{q}\right)=\bigoplus_{\mu \in \mathbf{P}^{+}} \operatorname{End}(V(\mu))
$$

equipped with a suitable coproduct.
To the classical group A corresponds the quotient \hat{T} of \hat{K}_{q} obtained from the projection $\mathcal{O}\left(K_{q}\right) \rightarrow \mathcal{O}(T)$. Here $T \subset K_{q}$ is the classical maximal torus.

Complex semisimple quantum groups

Complex semisimple quantum groups

Consider the vector space

$$
\mathcal{D}\left(G_{q}\right)=\mathcal{D}\left(K_{q}\right) \bowtie \mathcal{O}\left(K_{q}\right)
$$

equipped with the multiplication

$$
(x \bowtie f)(y \bowtie g)=x\left(f_{(1)}, y_{(1)}\right) y_{(2)} \bowtie f_{(2)}\left(f_{(3)}, \hat{S}\left(y_{(3)}\right)\right) g
$$

and the $*$-structure

$$
(x \bowtie f)^{*}=\left(1 \bowtie f^{*}\right)\left(x^{*} \bowtie 1\right) .
$$

Complex semisimple quantum groups

Consider the vector space

$$
\mathcal{D}\left(G_{q}\right)=\mathcal{D}\left(K_{q}\right) \bowtie \mathcal{O}\left(K_{q}\right)
$$

equipped with the multiplication

$$
(x \bowtie f)(y \bowtie g)=x\left(f_{(1)}, y_{(1)}\right) y_{(2)} \bowtie f_{(2)}\left(f_{(3)}, \hat{S}\left(y_{(3)}\right)\right) g
$$

and the $*$-structure

$$
(x \bowtie f)^{*}=\left(1 \bowtie f^{*}\right)\left(x^{*} \bowtie 1\right)
$$

Definition

The group C^{*}-algebra $C^{*}\left(G_{q}\right)$ of the complex quantum group G_{q} is the universal C^{*}-completion of $\mathcal{D}\left(G_{q}\right)$.

The representation theory of G_{q}

This leads to some natural tasks/questions.

The representation theory of G_{q}

This leads to some natural tasks/questions.

- Describe all irreducible representations of G_{q} up to isomorphism.
- Describe the (reduced) unitary dual of G_{q}.
- Describe the Plancherel formula.
- Describe the Fell topology of the (reduced) dual.

The representation theory of G_{q}

By construction, a nondegenerate representation of $C^{*}\left(G_{q}\right)$ on a Hilbert space \mathcal{H} corresponds to a nondegenerate $*$-homomorphism $\mathcal{D}\left(G_{q}\right) \rightarrow \mathcal{L}(\mathcal{H})$.

The representation theory of G_{q}

By construction, a nondegenerate representation of $C^{*}\left(G_{q}\right)$ on a Hilbert space \mathcal{H} corresponds to a nondegenerate $*$-homomorphism $\mathcal{D}\left(G_{q}\right) \rightarrow \mathcal{L}(\mathcal{H})$.

This is the same thing as a unitary Yetter-Drinfeld module, that is, a pair of a unital $*$-homomorphism $\mathcal{O}\left(K_{q}\right) \rightarrow \mathcal{L}(\mathcal{H})$ and a unitary corepresentation $V \in M\left(C\left(K_{q}\right) \otimes \mathcal{H}\right)$ satisfying the Yetter-Drinfeld compatibility condition, given by

$$
f_{(1)} \xi_{(-1)} S\left(f_{(3)}\right) \otimes f_{(2)} \cdot \xi_{(0)}=(f \cdot \xi)_{(-1)} \otimes(f \cdot \xi)_{(0)}
$$

for $f \in \mathcal{O}\left(K_{q}\right)$ and ξ in (a certain dense subspace of) \mathcal{H}.

Principal series representations

Principal series representations

Let $\mathcal{O}\left(\mathcal{E}_{\mu}\right) \subset \mathcal{O}\left(K_{q}\right)$ be the spectral subspace of $\mathcal{O}\left(K_{q}\right)$ associated to $\mu \in \mathbf{P}$ with respect to the right action of T.

Principal series representations

Let $\mathcal{O}\left(\mathcal{E}_{\mu}\right) \subset \mathcal{O}\left(K_{q}\right)$ be the spectral subspace of $\mathcal{O}\left(K_{q}\right)$ associated to $\mu \in \mathbf{P}$ with respect to the right action of T.

For $\lambda \in \mathfrak{h}^{*}$ we define the twisted left adjoint representation of $\mathcal{O}\left(K_{q}\right)$ on $\mathcal{O}\left(\mathcal{E}_{\mu}\right)$ by

$$
f \cdot \xi=f_{(1)} \xi S\left(f_{(3)}\right)\left(K_{\lambda+2 \rho}, f_{(2)}\right)
$$

Together with the comultiplication of $\mathcal{O}\left(K_{q}\right)$ this turns $\mathcal{O}\left(\mathcal{E}_{\mu}\right)$ into a Yetter-Drinfeld module, which we will denote by $\mathcal{O}\left(\mathcal{E}_{\mu, \lambda}\right)$.

Principal series representations

Let $\mathcal{O}\left(\mathcal{E}_{\mu}\right) \subset \mathcal{O}\left(K_{q}\right)$ be the spectral subspace of $\mathcal{O}\left(K_{q}\right)$ associated to $\mu \in \mathbf{P}$ with respect to the right action of T.

For $\lambda \in \mathfrak{h}^{*}$ we define the twisted left adjoint representation of $\mathcal{O}\left(K_{q}\right)$ on $\mathcal{O}\left(\mathcal{E}_{\mu}\right)$ by

$$
f \cdot \xi=f_{(1)} \xi S\left(f_{(3)}\right)\left(K_{\lambda+2 \rho}, f_{(2)}\right)
$$

Together with the comultiplication of $\mathcal{O}\left(K_{q}\right)$ this turns $\mathcal{O}\left(\mathcal{E}_{\mu}\right)$ into a Yetter-Drinfeld module, which we will denote by $\mathcal{O}\left(\mathcal{E}_{\mu, \lambda}\right)$.
This is called the principal series Yetter-Drinfeld module with parameter $(\mu, \lambda) \in \mathbf{P} \times \mathfrak{h}^{*}$.
If $\lambda \in \mathfrak{i \mathfrak { a } ^ { * }} \subset \mathfrak{h}^{*}$ then this Yetter-Drinfeld module is unitary. It corresponds to a representation of $C^{*}\left(G_{q}\right)$ on the Hilbert space completion of $\mathcal{O}\left(\mathcal{E}_{\mu}\right)$.

The structure of principal series representations

The structure of principal series representations

For $\lambda \in \mathfrak{h}^{*}$, the operators K_{λ} are defined by $K_{\lambda} v=q^{(\lambda, \nu)} v$.

The structure of principal series representations

For $\lambda \in \mathfrak{h}^{*}$, the operators K_{λ} are defined by $K_{\lambda} v=q^{(\lambda, \nu)} v$.
Recall that $q=e^{h}$, and let $\hbar=\frac{h}{2 \pi}$.

The structure of principal series representations

For $\lambda \in \mathfrak{h}^{*}$, the operators K_{λ} are defined by $K_{\lambda} v=q^{(\lambda, \nu)} v$.
Recall that $q=e^{h}$, and let $\hbar=\frac{h}{2 \pi}$.
In particular, $K_{\lambda}=K_{\lambda^{\prime}}$ if $\lambda-\lambda^{\prime} \in i \hbar^{-1} \mathbf{Q}^{\vee}$. Here \mathbf{Q}^{\vee} is the coroot lattice.

The structure of principal series representations

For $\lambda \in \mathfrak{h}^{*}$, the operators K_{λ} are defined by $K_{\lambda} v=q^{(\lambda, \nu)} v$.
Recall that $q=e^{h}$, and let $\hbar=\frac{h}{2 \pi}$.
In particular, $K_{\lambda}=K_{\lambda^{\prime}}$ if $\lambda-\lambda^{\prime} \in i \hbar^{-1} \mathbf{Q}^{\vee}$. Here \mathbf{Q}^{\vee} is the coroot lattice.

Hence, by their very construction, the principal series modules $\mathcal{O}\left(\mathcal{E}_{\mu, \lambda}\right)$ and $\mathcal{O}\left(\mathcal{E}_{\mu, \lambda^{\prime}}\right)$ are the same if $\lambda-\lambda^{\prime} \in i \hbar^{-1} \mathbf{Q}^{\vee}$.

The structure of principal series representations

For $\lambda \in \mathfrak{h}^{*}$, the operators K_{λ} are defined by $K_{\lambda} v=q^{(\lambda, \nu)} v$.
Recall that $q=e^{h}$, and let $\hbar=\frac{h}{2 \pi}$.
In particular, $K_{\lambda}=K_{\lambda^{\prime}}$ if $\lambda-\lambda^{\prime} \in i \hbar^{-1} \mathbf{Q}^{\vee}$. Here \mathbf{Q}^{\vee} is the coroot lattice.

Hence, by their very construction, the principal series modules $\mathcal{O}\left(\mathcal{E}_{\mu, \lambda}\right)$ and $\mathcal{O}\left(\mathcal{E}_{\mu, \lambda^{\prime}}\right)$ are the same if $\lambda-\lambda^{\prime} \in i \hbar^{-1} \mathbf{Q}^{\vee}$.

Write

$$
\mathfrak{h}_{q}^{*}=\mathfrak{h}^{*} / i \hbar^{-1} \mathbf{Q}, \quad \mathfrak{a}_{q}^{*}=\mathfrak{a}^{*} / i \hbar^{-1} \mathbf{Q} .
$$

This notation allows us to remove the "obvious" redundancies in the parametrisation of the principal series explained above.

The structure of principal series representations

The structure of principal series representations

For $\lambda \in \mathfrak{h}^{*}$ and $\alpha \in \Delta$ write $\lambda_{\alpha}=2(\alpha, \lambda) /(\alpha, \alpha)$.

The structure of principal series representations

For $\lambda \in \mathfrak{h}^{*}$ and $\alpha \in \Delta$ write $\lambda_{\alpha}=2(\alpha, \lambda) /(\alpha, \alpha)$.
Theorem
Let $(\mu, \lambda) \in \mathbf{P} \times \mathfrak{h}_{q}^{*}$ such that $\lambda_{\alpha} \neq \pm\left(\left|\mu_{\alpha}\right|+j\right)$ modulo $i \hbar^{-1} \mathbb{Z}$ for all $j \in \mathbb{N}$ and all $\alpha \in \Delta^{+}$. Then the principal series module with parameter (μ, λ) is an irreducible Yetter-Drinfeld module.

The structure of principal series representations

For $\lambda \in \mathfrak{h}^{*}$ and $\alpha \in \Delta$ write $\lambda_{\alpha}=2(\alpha, \lambda) /(\alpha, \alpha)$.
Theorem
Let $(\mu, \lambda) \in \mathbf{P} \times \mathfrak{h}_{q}^{*}$ such that $\lambda_{\alpha} \neq \pm\left(\left|\mu_{\alpha}\right|+j\right)$ modulo $i \hbar^{-1} \mathbb{Z}$ for all $j \in \mathbb{N}$ and all $\alpha \in \Delta^{+}$. Then the principal series module with parameter (μ, λ) is an irreducible Yetter-Drinfeld module.

Theorem

Let $(\mu, \lambda) \in \mathbf{P} \times i t_{q}^{*}$. Then the principal series modules with parameters (μ, λ) and ($\mu^{\prime}, \lambda^{\prime}$) are equivalent iff
$\left(\mu^{\prime}, \lambda^{\prime}\right)=(w \cdot \mu, w \cdot \lambda)$ for some $w \in W$.
These results are (essentially) due to Joseph-Letzter and depend on deep facts about the structure of $U_{q}(\mathfrak{g})$.

The Plancherel formula

Christian Voigt (joint with R. Yuncken)

The Plancherel formula

Theorem

Let $q \in(0,1)$ and let G_{q} be a complex semisimple quantum group. Moreover let $\mathcal{H}=\left(\mathcal{H}_{\mu, i \nu}\right)_{\mu, \nu}$ be the Hilbert space bundle of unitary principal series representations over $\mathbf{P} \times \mathfrak{a}_{q}^{*}$. Then there is a unitary isomorphism

$$
Q: L^{2}\left(G_{q}\right) \cong \bigoplus_{\mu \in \mathbf{P}} \int_{\nu \in \mathfrak{a}_{q}^{*}}^{\oplus} H S\left(\mathcal{H}_{\mu, i \nu}\right) d m_{\mu}(\nu)
$$

for the measures $d m_{\mu}$ on \mathfrak{a}_{q}^{*} given by

$$
d m_{\mu}(\nu)=\prod_{\alpha \in \Delta^{+}}\left(q_{\alpha}^{1 / 2}-q_{\alpha}^{-1 / 2}\right)^{2}\left[(\mu+i \nu)_{\alpha}\right]_{q_{\alpha}^{1 / 2}}\left[(\mu-i \nu)_{\alpha}\right]_{q_{\alpha}^{1 / 2}} d \nu
$$

where $d \nu$ denotes normalised Lebesgue measure on \mathfrak{a}_{q}^{*}.

Some remarks

Christian Voigt (joint with R. Yuncken)

Some remarks

The proof proceeds by verifying the Plancherel formula

$$
\epsilon_{G_{q}}(f)=\sum_{\mu \in \mathbf{P}} \int_{\mathfrak{a}_{q}^{*}} \operatorname{tr}\left(\pi_{\mu, i \nu}(f) D_{\mu, i \nu}^{-2}\right) d m_{\mu}(\nu)
$$

for elements of the form $f=u_{i j}^{\beta} \otimes \omega_{k l}^{\gamma} \in \mathcal{O}\left(K_{q}\right) \otimes \mathcal{D}\left(K_{q}\right)$.
For this one starts by directly calculating the characters of principal series representations.
In this computation, the universal R-matrix of $U_{q}(\mathfrak{g})$ enters
crucially.

Some remarks

The proof proceeds by verifying the Plancherel formula

$$
\epsilon_{G_{q}}(f)=\sum_{\mu \in \mathbf{P}} \int_{\mathfrak{a}_{q}^{*}} \operatorname{tr}\left(\pi_{\mu, i \nu}(f) D_{\mu, i \nu}^{-2}\right) d m_{\mu}(\nu)
$$

for elements of the form $f=u_{i j}^{\beta} \otimes \omega_{k l}^{\gamma} \in \mathcal{O}\left(K_{q}\right) \otimes \mathcal{D}\left(K_{q}\right)$.
For this one starts by directly calculating the characters of principal series representations.
In this computation, the universal R-matrix of $U_{q}(\mathfrak{g})$ enters
crucially.
The lowest order contribution in h of the quantum Plancherel measure agrees with the classical Plancherel measure

$$
\prod_{\alpha \in^{+}+}\left|\left(\mu_{\alpha}+i \nu_{\alpha}\right)\right|^{2} d \nu=(\mu+i \nu)_{\alpha}(\mu-i \nu)_{\alpha} d \nu
$$

on $\mathbf{P} \times \mathfrak{a}^{*}$.

The reduced dual of G_{q}

The reduced dual of G_{q}

The reduced group C^{*}-algebra of G_{q} is the norm closure of $\mathcal{D}\left(G_{q}\right)$ inside $\mathcal{L}\left(L^{2}\left(G_{q}\right)\right)$ under the regular representation.

The reduced dual of G_{q}

The reduced group C^{*}-algebra of G_{q} is the norm closure of $\mathcal{D}\left(G_{q}\right)$ inside $\mathcal{L}\left(L^{2}\left(G_{q}\right)\right)$ under the regular representation.

Theorem

Let $q \in(0,1)$ and let G_{q} be a complex semisimple quantum group. Moreover let $\mathcal{H}=\left(\mathcal{H}_{\mu, \lambda}\right)_{\mu, \lambda}$ be the Hilbert space bundle of principal series representations of G_{q} over $\mathbf{P} \times \mathfrak{a}_{q}^{*}$. Then the canonical *-homomorphism

$$
\pi: C_{r}^{*}\left(G_{q}\right) \rightarrow C_{0}\left(\mathbf{P} \times \mathfrak{a}_{q}^{*}, \mathbb{K}(\mathcal{H})\right)^{W}
$$

is an isomorphism.
Setting formally $h=0$ here (corresponding to $q=1$), and $\mathfrak{a}_{1}^{*}=\mathfrak{a}^{*}$ one obtains the corresponding statement for the classical reduced group C^{*}-algebra $C_{r}^{*}(G)$.

Baum-Connes

Christian Voigt (joint with R. Yuncken)

Baum-Connes

The deformation picture of the Baum-Connes assembly map for the classical complex group G provides an isomorphism

$$
K_{*}\left(C^{*}\left(K \ltimes_{\mathrm{ad}} \mathfrak{k}^{*}\right)\right)=K_{*}\left(K \ltimes_{\mathrm{ad}} C_{0}(\mathfrak{k})\right) \rightarrow K_{*}\left(C_{\mathrm{r}}^{*}(G)\right) .
$$

Baum-Connes

The deformation picture of the Baum-Connes assembly map for the classical complex group G provides an isomorphism

$$
K_{*}\left(C^{*}\left(K \ltimes_{\mathrm{ad}} \mathfrak{k}^{*}\right)\right)=K_{*}\left(K \ltimes_{\mathrm{ad}} C_{0}(\mathfrak{k})\right) \rightarrow K_{*}\left(C_{\mathrm{r}}^{*}(G)\right) .
$$

Let us restrict attention to the case $G=S L(2, \mathbb{C})$.

Baum-Connes

The deformation picture of the Baum-Connes assembly map for the classical complex group G provides an isomorphism

$$
K_{*}\left(C^{*}\left(K \ltimes_{\mathrm{ad}} \mathfrak{k}^{*}\right)\right)=K_{*}\left(K \ltimes_{\mathrm{ad}} C_{0}(\mathfrak{k})\right) \rightarrow K_{*}\left(C_{\mathrm{r}}^{*}(G)\right) .
$$

Let us restrict attention to the case $G=S L(2, \mathbb{C})$.
Theorem
Fix $q \in(0,1)$. Then there is a commutative diagram

$$
\begin{gathered}
K_{*}\left(K \ltimes_{\mathrm{ad}} C_{0}(\mathfrak{k})\right) \xrightarrow{\mu} K_{*}\left(C_{\mathrm{r}}^{*}(G)\right) \\
\downarrow \\
K_{*}\left(K \ltimes_{\mathrm{ad}} C(K)\right) \xrightarrow{\mu_{q}} K_{*}\left(C_{\mathrm{r}}^{*}\left(G_{q}\right)\right)
\end{gathered}
$$

Both vertical maps are split injective, and the horizontal maps are isomorphisms.

