A Local-Nonlocal Transmission Problem

Dennis Kriventsov

Courant Institute
June 28, 2015

The Setting

Ω_{1}, Ω_{2} : nice open sets partitioning \mathbb{R}^{n}.
Physical model based on surface quasigeostrophic equation, where
Ω_{1} is water (free lower boundary) and Ω_{2} is land (fixed lower boundary).
Important: problem has an energy structure.

The PDE (in weak form)

u solves (P) on domain $U \times(0, T]$ if for all $\phi \in C_{c}^{\infty}(U \times(0, T))$,

$$
\begin{aligned}
\int \partial_{t} \phi u & +\int_{\Omega_{1}} \nabla u \cdot \nabla \phi+\int_{0}^{T} \int_{\Omega_{2} \times \Omega_{2}} \frac{[u(x, t)-u(y, t)][\phi(x, t)-\phi(y, t)]}{|x-y|^{n+2 s}} \\
& +\nu \int_{0}^{T} \int_{\Omega_{1} \times \Omega_{2}} \frac{[u(x, t)-u(y, t)][\phi(x, t)-\phi(y, t)] d x d y}{|x-y|^{n+2 s}} \\
& -\int u b \cdot \nabla \phi+f \phi=0
\end{aligned}
$$

Here $\nu>0, b$ is a divergence-free vector field. Physical case:
$n=2, s=1 / 2, b=\left(-R_{2} u, R_{1} u\right), R_{i}$ are Riesz transforms.

The PDE (stationary)

u solves (P) on domain $U \times(0, T]$ if for all $\phi \in C_{c}^{\infty}(U \times(0, T))$,

$$
\begin{aligned}
& \int 2 t \phi+\int_{\Omega_{1}} \nabla u \cdot \nabla \phi+\int_{0}^{T} \int_{\Omega_{2} \times \Omega_{2}} \frac{[u(x, t)-u(y, t)][\phi(x, t)-\phi(y, t)]}{|x-y|^{n+2 s}} \\
& \quad+\nu \int_{0}^{T} \int_{\Omega_{1} \times \Omega_{2}} \frac{[u(x, t)-u(y, t)][\phi(x, t)-\phi(y, t)] d x d y}{|x-y|^{n+2 s}} \\
& \\
& \quad-\int u b \cdot \nabla \phi+f \phi=0
\end{aligned}
$$

The PDE (stationary)

u solves (P) on domain U if for all $\left.\phi \in C_{c}^{\infty}(U)\right)$,

$$
\begin{aligned}
\int_{\Omega_{1}} \nabla u \cdot \nabla \phi & +\int_{\Omega_{2} \times \Omega_{2}} \frac{[u(x)-u(y)][\phi(x)-\phi(y)] d x d y}{|x-y|^{n+2 s}} \\
& +\nu \int_{\Omega_{1} \times \Omega_{2}} \frac{[u(x)-u(y)][\phi(x)-\phi(y)] d x d y}{|x-y|^{n+2 s}} \\
& -\int u b \cdot \nabla \phi+f \phi=0
\end{aligned}
$$

The PDE (simplified)

u solves (P) on domain U if for all $\left.\phi \in C_{c}^{\infty}(U)\right)$,

$$
B_{L}[u, \phi]+B_{N}[u, \phi]=\text { Blue }
$$

Goals

1. Do solutions exist?
2. Do they behave reasonably near the interface $\Gamma=\partial \Omega_{1}$ (e.g. are they continuous?)
3. How do they look like near Г?
4. Why do I call this a transmission problem?

Goals

1. Do solutions exist? Yes. $u \in H^{1}\left(\Omega_{1}\right) \cap H^{s}$
2. Do they behave reasonably near the interface $\Gamma=\partial \Omega_{1}$ (e.g. are they continuous?)
3. How do they look like near Г?
4. Why do I call this a transmission problem?

Continuity

- Not obvious.
- Idea: De Giorgi iteration.

Continuity

- Not obvious.
- Idea: De Giorgi iteration.
- Difficulty: nonlocal

Continuity

- Not obvious.
- Idea: De Giorgi iteration.
- Difficulty: nonlocal
- Difficulty: not scale invariant near Γ : as you zoom in at $x \in \Gamma$, solutions solve

$$
B_{L}\left[u_{r}, \phi\right]+r^{2(1-s)} B_{N}\left[u_{r}, \phi\right]=\text { Blue }
$$

which gives bad estimates on Ω_{2}.

Continuity

- Not obvious.
- Idea: De Giorgi iteration.
- Difficulty:-nonlocal: [Caffarelli, Chan, Vasseur 2011]
- Difficulty: not scale invariant near Γ : as you zoom in at $x \in \Gamma$, solutions solve

$$
B_{L}\left[u_{r}, \phi\right]+r^{2(1-s)} B_{N}\left[u_{r}, \phi\right]=\text { Blue }
$$

which gives bad estimates on Ω_{2}.

Continuity

Solution: obtain an extra family of scale-invariant energy estimates on Ω_{2}.

Theorem
Assume u solves (P) on B_{1}, that $f \in L^{\infty}, \Gamma$ is a Lipschitz graph, and one of:

1. $s \geq 1 / 2$ and $b \in L^{p}, p \geq \frac{n}{2 s-1}, \operatorname{div} b=0$
2. $s \geq 1 / 2$ and $b=\left(-R_{2} u, R_{1} u\right)$
3. $s \in(0,1), b=0$.

Then $u \in C^{0, \alpha}\left(B_{1 / 2}\right)$.
Note: f can be in the appropriate L^{p} spaces instead.
Note: I have no parabolic version of this.

Structure of solutions, simplest case

Assume $\Gamma=\left\{x_{n}=0\right\}, \Omega_{1}=\left\{x_{n}<0\right\}, b=0$. How do solutions look like near Γ ?

Structure of solutions, simplest case

Assume $\Gamma=\left\{x_{n}=0\right\}, \Omega_{1}=\left\{x_{n}<0\right\}, b=0$. How do solutions look like near Γ ?

Theorem
There is an explicit number $\alpha_{0}=\alpha_{0}(\nu, s) \in\left((2 s-1)_{+}, 2 s\right)$ and $M_{0}=M_{0}(\nu, s)$ such that

1. $u \in C^{\alpha_{0}}\left(\bar{\Omega}_{2}\right)$ (with $u_{n}=0$ from that side if $\alpha_{0}>1$)
2. $u \in C^{\alpha_{0}+2-2 s}\left(\bar{\Omega}_{1}\right)$ (with $u_{n}=0$ from that side)
3. $\lim _{t \searrow 0} \frac{u\left(x^{\prime},-t\right)-u\left(x^{\prime}, 0\right)}{t^{\alpha} 0^{+2-2 s}}=M_{0} \lim _{t \searrow 0} \frac{u\left(x^{\prime}, t\right)-u\left(x^{\prime}, 0\right)}{t^{\alpha} 0}$ for all x^{\prime}.

Note: can obtain a whole asymptotic expansion for u.

Structure of solutions, general case

Assume now Γ smooth, b continuous. Can localize and flatten interface so that Γ is flat but now there are coefficients:

$$
\begin{aligned}
& \int_{\Omega_{1}} A \nabla u \cdot \nabla \phi \\
& +\int_{\Omega_{2} \times \Omega_{2}} \frac{[u(x)-u(y)] a(x, y)[\phi(x)-\phi(y)] d x d y}{|x-y|^{n+2 s}} \\
& +\nu \int_{\Omega_{1} \times \Omega_{2}} \frac{[u(x)-u(y)] a(x, y)[\phi(x)-\phi(y)] d x d y}{|x-y|^{n+2 s}} \\
& -\int u b \cdot \nabla \phi+f \phi=0
\end{aligned}
$$

Structure of solutions, general case

Essentially everything still works if the compatibility condition is satisfied. This is a single algebraic relation between the averages and first moments of $a(x, y)$, the matrix A, and the normal vector to Γ. It asks that anisotropies are somehow matched appropriately. Note: compatibility is conserved under (intelligent) interface flattening.
Note: if $s=1 / 2$, then α_{0}, M_{0} depend on $b(0) \cdot e_{n}$, the normal component of the drift.

Open problems

- Parabolic version (with time-dependent coefficients and/or critical drift)
- I can handle $\nu=0$ (if $s \geq 1 / 2$). How about ν slightly negative?
- What if the $\Omega_{1} \times \Omega_{2}$ term is higher-order than the $\Omega_{2} \times \Omega_{2}$ term?

Thank you!

