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The Setting

Ω1 Ω2

local interaction nonlocal interaction

nonlocal interaction
nonlinear drift
forcing term
boundary data

Ω1, Ω2 : nice open sets partitioning Rn.
Physical model based on surface quasigeostrophic equation, where
Ω1 is water (free lower boundary) and Ω2 is land (fixed lower
boundary).
Important: problem has an energy structure.



The PDE (in weak form)

u solves (P) on domain U × (0,T ] if for all φ ∈ C∞c (U × (0,T )),

ˆ
∂tφu +

ˆ
Ω1

∇u · ∇φ+

ˆ T

0

ˆ
Ω2×Ω2

[u(x , t)− u(y , t)][φ(x , t)− φ(y , t)]dxdy

|x − y |n+2s

+ ν

ˆ T

0

ˆ
Ω1×Ω2

[u(x , t)− u(y , t)][φ(x , t)− φ(y , t)]dxdy

|x − y |n+2s

−
ˆ

ub · ∇φ+ f φ = 0

Here ν > 0, b is a divergence-free vector field. Physical case:
n = 2, s = 1/2, b = (−R2u,R1u), Ri are Riesz transforms.



The PDE (stationary)

u solves (P) on domain U × (0,T ] if for all φ ∈ C∞c (U × (0,T )),

�
�
�
�Z

Z
Z
Z

ˆ
∂tφu +

ˆ
Ω1

∇u · ∇φ+

ˆ T

0

ˆ
Ω2×Ω2

[u(x , t)− u(y , t)][φ(x , t)− φ(y , t)]dxdy

|x − y |n+2s

+ ν

ˆ T

0

ˆ
Ω1×Ω2

[u(x , t)− u(y , t)][φ(x , t)− φ(y , t)]dxdy

|x − y |n+2s

−
ˆ

ub · ∇φ+ f φ = 0
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The PDE (simplified)

u solves (P) on domain U if for all φ ∈ C∞c (U)),

BL[u, φ] + BN [u, φ] = Blue



Goals

1. Do solutions exist?

2. Do they behave reasonably near the interface Γ = ∂Ω1 (e.g.
are they continuous?)

3. How do they look like near Γ?

4. Why do I call this a transmission problem?



Goals

1. Do solutions exist? Yes. u ∈ H1(Ω1) ∩ Hs

2. Do they behave reasonably near the interface Γ = ∂Ω1 (e.g.
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4. Why do I call this a transmission problem?



Continuity

I Not obvious.

I Idea: De Giorgi iteration.

I Difficulty: nonlocal

I Difficulty: not scale invariant near Γ: as you zoom in at x ∈ Γ,
solutions solve

BL[ur , φ] + r2(1−s)BN [ur , φ] = Blue,

which gives bad estimates on Ω2.
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Continuity

I Not obvious.

I Idea: De Giorgi iteration.
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I Difficulty: not scale invariant near Γ: as you zoom in at x ∈ Γ,
solutions solve

BL[ur , φ] + r2(1−s)BN [ur , φ] = Blue,

which gives bad estimates on Ω2.



Continuity

Solution: obtain an extra family of scale-invariant energy estimates
on Ω2.

Theorem
Assume u solves (P) on B1, that f ∈ L∞, Γ is a Lipschitz graph,
and one of:

1. s ≥ 1/2 and b ∈ Lp, p ≥ n
2s−1 , div b = 0

2. s ≥ 1/2 and b = (−R2u,R1u)

3. s ∈ (0, 1), b = 0.

Then u ∈ C 0,α(B1/2).

Note: f can be in the appropriate Lp spaces instead.
Note: I have no parabolic version of this.



Structure of solutions, simplest case

Assume Γ = {xn = 0}, Ω1 = {xn < 0}, b = 0. How do solutions
look like near Γ?

Theorem
There is an explicit number α0 = α0(ν, s) ∈ ((2s − 1)+, 2s) and
M0 = M0(ν, s) such that

1. u ∈ Cα0(Ω̄2) (with un = 0 from that side if α0 > 1)

2. u ∈ Cα0+2−2s(Ω̄1) (with un = 0 from that side)

3. limt↘0
u(x ′,−t)−u(x ′,0)

tα0+2−2s = M0 limt↘0
u(x ′,t)−u(x ′,0)

tα0 for all x ′.

Note: can obtain a whole asymptotic expansion for u.
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Structure of solutions, general case

Assume now Γ smooth, b continuous. Can localize and flatten
interface so that Γ is flat but now there are coefficients:

ˆ
Ω1

A∇u · ∇φ

+

ˆ
Ω2×Ω2

[u(x)− u(y)]a(x , y)[φ(x)− φ(y)]dxdy

|x − y |n+2s

+ ν

ˆ
Ω1×Ω2

[u(x)− u(y)]a(x , y)[φ(x)− φ(y)]dxdy

|x − y |n+2s

−
ˆ

ub · ∇φ+ f φ = 0



Structure of solutions, general case

Essentially everything still works if the compatibility condition is
satisfied. This is a single algebraic relation between the averages
and first moments of a(x , y), the matrix A, and the normal vector
to Γ. It asks that anisotropies are somehow matched appropriately.
Note: compatibility is conserved under (intelligent) interface
flattening.
Note: if s = 1/2, then α0,M0 depend on b(0) · en, the normal
component of the drift.



Open problems

I Parabolic version (with time-dependent coefficients and/or
critical drift)

I I can handle ν = 0 (if s ≥ 1/2). How about ν slightly
negative?

I What if the Ω1 × Ω2 term is higher-order than the Ω2 × Ω2

term?



Thank you!


