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rity Theory: Rev and recent results
esult: Holder es ate for diu

Linear elliptic operators of order o € (0, 2)

Roughly speaking, Lu(z) measures the discrepancy between a
singular weighted average of u about x and u(z).
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esult: Hold ¢

Linear elliptic operators of order o € (0, 2)

Lu(x) = lim AP (u(z+y) — u(a;))W

e—0
n
~ z a;j0iu(z)  Md < (a;;) < Ald symmetric
ij=1
Roughly speaking, Lu(z) measures the discrepancy between a
singular weighted average of u about x and u(z).

Ellipticity: Given that K > 0, if u attains its global minimum
(maximum) at x, then Lu(z) > 0 (Lu(z) < 0).
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rity Theory: Rev recent results
esult: Hold ¢

Linear elliptic operators of order o € (0, 2)

Lu(x) = lim AP (u(z+y) — u(a;))W

e—0

~ z a;j0iu(z)  Md < (a;;) < Ald symmetric

i,j=1

Roughly speaking, Lu(z) measures the discrepancy between a
singular weighted average of u about x and u(z).

Ellipticity: Given that K > 0, if u attains its global minimum
(maximum) at x, then Lu(z) > 0 (Lu(z) < 0).

For K =1,

7 2y(z) = ¢ u(x —u(x ﬂw u(x
AP ua) = e [ o +3) = @) ez ~ Auta)
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Introduction
The d recent results
esult: HGOld

Nonlinear elliptic operators of order o € (0, 2)

I applied to u : R™ — R gives [Tu : 2 C R™ — R such that
Tu = 0 if u = constant ~ F(D?u,x,t) where F(0,2,t) =0
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I applied to u : R™ — R gives [Tu : 2 C R™ — R such that
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recent results

I applied to u : R™ — R gives [Tu : 2 C R™ — R such that
Tu = 0 if u = constant ~ F(D?u,x,t) where F(0,2,t) =0
Ellipticity:

= Tu(z) < Iv(z)

—o—>

Uniform Ellipticity: For 0 < A < A <

inf L(u—v)<Iu—1Iv< sup L(u—v)
Ke[M\A] Ke[MA]
even even

~ ANd < O F((mij), z,t) < Ald
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nd recent results
ssult: Holde for Oru

Nonlinear elliptic operators of order o € (0, 2)

I applied to u : R™ — R gives [Tu : 2 C R™ — R such that
Tu = 0 if u = constant ~ F(D?u,x,t) where F(0,2,t) =0
Ellipticity:

= Tu(z) < Iv(z)

—o—>

Uniform Ellipticity: For 0 < A < A <

inf L(u—v)<Iu—1Iv< sup L(u—v)

Ke[M\A] Ke[MA]
even even

~ ANd < O F((mij), z,t) < Ald

In particular, uniform ellipticity = ellipticity.
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Introduction Setup
’ d recent results
Ot u

Examples

» Linear operators with variable coefficients:
Ve e Q, K(-,z) : R" — [\, A] C (0,00) even

Luf) = [ (ute+1) — ul)
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Examples

» Linear operators with variable coefficients:
Ve e Q, K(-,z) : R" — [\, A] C (0,00) even

Luf) = [ (ute+1) — ul)

» Extremal operators:

MIu= sup Lu and Mou= inf Lu

Ke[\A] KENA]
even
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Introduction Setup
Regul

Examples

» Linear operators with variable coefficients:
Ve e Q, K(-,z) : R" — [\, A] C (0,00) even

Luf) = [ (ute+1) — ul)

» Extremal operators:

MIu= sup Lu and Mou= inf Lu

Ke[\A] KENA]
even

» Inf/sup combinations:

Iv = inf sup L, gu Ko p5(y) € [N\, A] even
(63
g
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Introduction
cent results

Initial-boundary value problem

Let u solve
Owu—ITu= f(z,t) in Q1 =B x(-1,0]
u=g on (R"™\ By) x (—1,0]
U = Ug on t=-1

If I = A°/2 and f = 0, then the values of u evolve in order to
“reduce the discrepancy with respect to its averages.”
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Initial-boundary value problem

Let u solve
Owu—ITu= f(z,t) in Q1 =B x(-1,0]
u=g on (R"™\ By) x (—1,0]
U = Ug on t=-1

If I = A°/2 and f = 0, then the values of u evolve in order to
“reduce the discrepancy with respect to its averages.”

w AN A”/Quw/(u(a:+y)—u(x)) W_ (<o)

|ly|nteo
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if  w has a global minimum (maximum) at x
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Introduction
recent results

Initial-boundary value problem

Let u solve
Owu—ITu= f(z,t) in Q1 =B x(-1,0]
u=g on (R"™\ By) x (—1,0]
U = Ug on t=-1

If I = A°/2 and f = 0, then the values of u evolve in order to
“reduce the discrepancy with respect to its averages.”

w AN A”/Quw/(u(a:+y)—u(x)) W_ (<o)

|ly|nteo

if  w has a global minimum (maximum) at x

How do the data influence the regularity of u?
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Introduction Setup
Theory: Review and recent results
1lt: Holder estimate for Oru

Regularity theory for

» Krylov-Safonov (1979): For AId < (a; j(z,t)) < AId symmetric

Opu — Z(J,,,jj(m,t)a,;ju, € L>™(Q1) = uecCQq2)
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rity Theory: Review and recent results
Holder estimate for Oru

Regularity theory for

» Krylov-Safonov (1979): For AId < (a; j(z,t)) < AId symmetric

Opu — Z(J,,,jj(m,t)a,;ju, € L>™(Q1) = uecCQq2)

» For F(D?u,z,t) = F(D?u) translation invariant

Ou— F(D*u)=0in Q1 = O, Du € C*(Q1/2)
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rity Theory: Review and recent results
: Holder estimate for O;u

Regularity theory for

» Krylov-Safonov (1979): For AId < (a; j(z,t)) < AId symmetric

Opu — Z aij(x,t)05u € L(Q1) = ue C¥Qq)2)

» For F(D?u,z,t) = F(D?u) translation invariant

Ou— F(D*u)=0in Q1 = O, Du € C*(Q1/2)

» Evans-Krylov (1982): For F' translation invariant and concave

du—F(D*u)=0in Q1 = D*ue C*Q2)
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Introduction Setup
rity Theory: Review and recent results
: Holder estimate for Oru

Regularity theory for dyu — Iu = f(x,t)

> Caffarelli-Silvestre (2009): For K (y;z) € [\, A] even in y

Lu = /(U($+y)—u(x))w €EL®(B;) = ueC*(Byp)
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Introduction Setup
rity Theory: Review and recent results
: Holder estimate for Oru

Regularity theory for dyu — Iu = f(x,t)

> Caffarelli-Silvestre (2009): For K (y;z) € [\, A] even in y
K(y;x)d o o
Lu= [ <u<x+y)—u(w>>W CL™B) = ueC(Bip)
» ChL-Davila (2012): For K (y;z,t) € [\, A] even in y
Ou—Lu€ L®(Q1) = u€C¥Q)
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Introduction Setup
Regularity Theory: Review and recent results
Main Result: Holder estimate for Oiu

Regularity theory for dyu — Iu = f(x,t)

> Caffarelli-Silvestre (2009): For K (y;z) € [\, A] even in y
K(y;x)d
Lu= / (u(x+y)—u(g;))|(yy|nﬁ YeI™B) = ueC(Bip)
» ChL-Davila (2012): For K (y;z,t) € [\, A] even in y
Owu — Lu € Loo(Ql) = uc Ca(Ql/g)
> Serra (2014): For I translation invariant
Ou—ITu=0in Q1 = ueC(Q)
for any 5 <o A (14 a).
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Regularity Theory: Review and recent results
Main Result: Holder estimate for Oiu

Regularity theory for dyu — Iu = f(x,t)

> Caffarelli-Silvestre (2009): For K (y;z) € [\, A] even in y
K(y;x)d
Lu= [ <u<x+y)_u(w>>m CL™B) = ueC(Bip)
» ChL-Davila (2012): For K (y;z,t) € [\, A] even in y
Ou—Lu€ L®(Q1) = u€C¥Q)
> Serra (2014): For I translation invariant
du—Tu=0in Q1 = ue Q)
for any 5 <o A (14 a).
»Ifo<l,uecCo=cCCl
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Introduction Setup
Regularity Theory: Review and recent results
Main Result: Holder estimate for Oiu

Regularity theory for dyu — Iu = f(x,t)

> Caffarelli-Silvestre (2009): For K (y;z) € [\, A] even in y
K(y;x)d
Lu:i/@4x+yyﬁdwﬂéﬁiizleL“KBﬂ = ueCBp)
» ChL-Davila (2012): For K (y;z,t) € [\, A] even in y
Owu — Lu € Loo(Ql) = uc Ca(Ql/g)
> Serra (2014): For I translation invariant
Ou—ITu=0in Q1 = ueC(Q)
for any 5 <o A (14 a).

»Ifo<l,uecCo=cCCl
» Aso =2, u e Ctte—s QCtl/Q+s
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Introduction Setup
Regularity Theory: Review and recent results
Main Result: Holder estimate for Oiu

Regularity theory for dyu — Iu = f(x,t)

> Caffarelli-Silvestre (2009): For K (y;z) € [\, A] even in y
K(y;x)d
Lu:i/@4x+yyﬁdwﬂéﬁiizleL“KBﬂ = ueCBp)
» ChL-Davila (2012): For K (y;z,t) € [\, A] even in y
Owu — Lu € Loo(Ql) = uc Ca(Ql/g)
> Serra (2014): For I translation invariant
Ou—ITu=0in Q1 = ueC(Q)
for any 5 <o A (14 a).

»Ifo<l,uecCo=cCCl
» Aso =2, u e Ctte—s QCtl/Q+s

Is it true that as o0 — 2, J;u is Holder continuous?
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Introduction Setup
Regularity Theory: Review and recent results
Main ult: Hélder estimate for Oru

ou = A%y

By R”™\ By

We need a hypothesis for g!
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y: Review and recent results
der estimate for O¢u

Theorem (ChL-Kriventsov, CPAM, to appear)

Let o € [1,2), I be translation invariant and uw € L= (R™ x (—1,0])
solve

Ou — ITu = f(x,t) in Q1= DB; x(—1,0]
u=g on (R™\ By) x (—1,0]

If f,g € C7 for some v sufficiently small, then dyu € C7.
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Introduction
E v and recent results
stlmate for d¢ru

Main Result: Holdel estimate for o,u

Theorem (ChL-Kriventsov, CPAM, to appear)

Let o € [1,2), I be translation invariant and uw € L= (R™ x (—1,0])
solve

Ou — ITu = f(x,t) in Q1= DB; x(—1,0]
u=g on (R™\ By) x (—1,0]

If f,g € C7 for some v sufficiently small, then dyu € C7.

We only require I translation invariant in time and
bup /\u (1A Jy|~ ")) dy < oo

sup [f(xv MNevre((=1,0)) <0
reBy

t— — t d
sup / l9(y,t — 1) —g(y, )| y+ -
(t—7,t]C(~1,0] JR"\ B, /e ly|"te
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Introduction

eview and recent results
stimate for d;u

Remarks about the corresponding local result

Corresponding local estimate seemed to be unknown.

Theorem (ChL-Kriventsov, Trans. Math. Res. Let., to appear)

Let u solve
Ou — F(D*u,x) = f(x,t) in Qy

Then, for v € (0,a) (o € (0,1) from Krylov-Safonov)

[Oiulcr(Q, ) < C (||u||L°°(Q1) + sup [f (z, ')]m/z(m])
x 1
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Let u solve
Ou — F(D*u,x) = f(x,t) in Qy

Then, for v € (0,a) (o € (0,1) from Krylov-Safonov)

[Oiulcr(Q, ) < C (||u||L°°(Q1) + sup [f (z, ')]m/z(m])
x 1

» F(D?u) € C7 does not contradict the counterexamples of
Nadirashvili-Vladut (D?u ¢ L* for some F)
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larity Theory: Review and recent results

Result: Holder estimate for 9z u

Remarks about the corresponding local result

Let u solve
Ou — F(D*u,x) = f(x,t) in Qy

Then, for v € (0,a) (o € (0,1) from Krylov-Safonov)

[Oiulcr(Q, ) < C (||u||Loo(Q1) + sup [f (z, ')]m/z(m])
x 1

» F(D?u) € C7 does not contradict the counterexamples of
Nadirashvili-Vladut (D?u ¢ L* for some F)
» Scaling for f corresponds to the scaling for 0;u
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arity Theory: Review and recent results
Result: Holder estimate for 9z u

Remarks about the corresponding local result

Corresponding local estimate seemed to be unknown.

Theorem (ChL-Kriventsov, Trans. Math. Res. Let., to appear)

Let u solve
Ou — F(D*u,x) = f(x,t) in Qy

Then, for v € (0,a) (o € (0,1) from Krylov-Safonov)

[Oiulcr(Q, ) < C (||u||Loo(Q1) + sup [f (z, ')]m/z(m])
x 1

» F(D?u) € C7 does not contradict the counterexamples of
Nadirashvili-Vladut, (D?u ¢ L for some F)

» Scaling for f corresponds to the scaling for 0;u

> f(z,t) = f(t) is trivial (Consider v =u — [ fdt...)

10/ 18
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More detailed review
Strategy Prelimin
Holder B

Review of the C1¢ regularity for

Let Oyu — F(D?*u) = 0 in Q1
1. From F(0) =0

Oyu = F(D*u) = Z aij(x,t) Jiju in Q1
——

=Jo Om,; F(sD2u)ds
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Strategy

Review of the C1¢ regularity for

Let Oyu — F(D?*u) = 0 in Q1
1. From F(0) =0

Oyu = F(D*u) = Z a;j(z,t) Oiju in Qq
: :
_f[) o F(sD2u)ds
2. By Krylov-Safonov u € C%(Q1/2) s0

ou  ur—u  ult—1)—u(t
Ur,q = ’;—T — - ( 7)_ ( ) € LOO(QI/4)

for any 7 € (0,1/4)
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Strategy Prelimi
Holder

Review of the C1¢ regularity for

3. From the translation invariance and the uniform elipticity

Optir.o = E aij(2,1)0ijUr o in Q14
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More detailed review
Strategy Pre idea
Holde

Review of the C1¢ regularity for

3. From the translation invariance and the uniform elipticity

Optir.o = E aij(2,1)0ijUr o in Q14

4. By Krylov-Safonov

Ur,a € Cu(Ql/g) = Ur2a € Loo(Ql/lG)

interpolation

uniformly in 7 € (0,1/16)
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Strategy

Review of the C1¢ regularity for

3. From the translation invariance and the uniform elipticity

atuT,u, = Z a’lﬁj(wat)aijuﬂa in Ql/4

4. By Krylov-Safonov

Ur,a € Ca(Ql/g) = Ur2a € Loo(Ql/lG)

interpolation

uniformly in 7 € (0,1/16)
5. Tterate (k4 1) times until ka < 1 < (k+ 1)a. By one final
interpolation at the last step we conclude that

&eu S Ca(Ql/4k+l)
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More detailed review
Strategy Preliminary i
Holder B

What fails in the nonlocal setting?

Short answer: The C'% estimate depends on the size of the tail.
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Strategy

What fails in the nonlocal setting?

Short answer: The C'% estimate depends on the size of the tail.

Theorem (ChL - Dévila, Calc. of Var. and PDE, 2014)

For K(y;z,t) € [\,A] even iny

Ou — Lu = f(x,t) in Q1
mplies

[ulce(@,5) < C (I1ull oo @nx(—1,0p + [ fllze(@n))
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Strategy

What fails in the nonlocal setting?

Short answer: The C'% estimate depends on the size of the tail.

Theorem (ChL - Dévila, Calc. of Var. and PDE, 2014)

For K(y;z,t) € [\,A] even iny

Ou — Lu = f(x,t) in Q1

mplies

[ulce(@,5) < C (I1ull oo @nx(—1,0p + [ fllze(@n))

In particular,
u € LOO(Rn X (_170]) = Ur,q € LOO(Ql/4)

but not in L= (R™ x (—1/4,0]) as required in the subsequent step.
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Strategy

Boundary data — Right-hand side

Standard trick: Multiply u (or u, ;o) by n € C5°(B,) such
that n =1 in B, .
> nu (Or Nur,iq) satisfies a simmilar equation in @, /o with a
different forcing term renewed from the truncation. We will

still denoted it by f and the hypothesis on ¢ still implies
fecCn.
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Strategy

Boundary data — Right-hand side

Standard trick: Multiply u (or u, ;o) by n € C5°(B,) such
that n =1 in B, .
> nu (Or Nur,iq) satisfies a simmilar equation in @, /o with a
different forcing term renewed from the truncation. We will
still denoted it by f and the hypothesis on ¢ still implies
fecCn.
» This truncation is applied at every step to go from
Urja € LOO(QT) to Ur (i+1)a € LOO(QT/AL)
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Strategy
Holder Bootstrap

Holder Bootstrap

Starting from
, 6
ur g — Lurg = —5 in @1 and for all 7

Ideally

lurpgllre <1 = [urglce <C

= [ur grallLe <C

But...
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Strategy

Holder Bootstrap

Starting from
orf .
Owur 3 — Lus g = g 1 and for all 7

Ideally

urpllre <1 = [ur gloe < C(7)

= [ur prallLe < C(7)

But... as 7 — 0 the right-hand side degenerates because f is
only in C7, and v/o could be less than .
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Strategy

Holder Bootstrap with stroger hypotheis

Starting from

orf .
Oyurpg — Lur g = T—[‘f in @1 and for all 7
What we managed to do:
suplurgloe <1 = sup[tr gl pate < C

= sup[tr gyl < C
T

Heuristically, we are borrowing a bit of the regulaity gained in
the previous step to have compactness and therefore have
control of the case when 7 is small.
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Closing remarks

Recap

For
Ou—ITu= f(xz,t) in @ =DB;x(-10]
u=g on (R™\ By) x (—1,0]
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Closing remarks

For
Ou—ITu= f(xz,t) in @ =DB;x(-10]
u=g on (R™\ By) x (—1,0]

» ¢ discontinuous in time might imply that u is not better
than Lipschitz in time.
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For
Ou—ITu= f(xz,t) in @ =DB;x(-10]
u=g on (R™\ By) x (—1,0]

» ¢ discontinuous in time might imply that u is not better
than Lipschitz in time.
» g and f Holder continuous imply O;u Holder continuous.
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Closing remarks

For
Ou—ITu= f(xz,t) in @ =DB;x(-10]
u=g on (R™\ By) x (—1,0]

» ¢ discontinuous in time might imply that u is not better
than Lipschitz in time.

» g and f Holder continuous imply O;u Holder continuous.

» For f € L>°(Q1) and

dy
sup / 909, 8) 2 < o
te(—1,0] JR\ By ly|"to

we get that u(z, ) € CP(—1/2,0] for all B € (0,1),
uniformly in z € By
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Closing remarks

For
Ou—ITu= f(xz,t) in @ =DB;x(-10]
u=g on (R™\ By) x (—1,0]

» ¢ discontinuous in time might imply that u is not better
than Lipschitz in time.

» g and f Holder continuous imply O;u Holder continuous.

» For f € L>°(Q1) and

dy
sup / 909, 8) 2 < o
te(—1,0] JR\ By ly|"to

we get that u(z, ) € CP(—1/2,0] for all B € (0,1),
uniformly in z € By

Do the previous hypothesis imply dyu € L>(Q/2)?
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Closing remarks

Applications

» Evans-Krylov type estimate: For [ translation
invariant and concave, and g Hélder continuous we have

AU/Z'LL S CQ(Q]_/Q).
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Closing remarks

Applications

» Evans-Krylov type estimate: For [ translation
invariant and concave, and g Hélder continuous we have
AU/Z'LL S CQ(Q]_/Q).

» Hele-Shaw: (Joint work with Guillén) Let u > 0 satisfy

Au=0in {u > 0}
8tu
| Dul

= |Du| over T = 9{u > 0}

Then if u is sufficiently close to a planar profile we get that
for every time I is given by the graph of a C'® function.
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Closing remarks

Applications

» Evans-Krylov type estimate: For [ translation
invariant and concave, and g Hélder continuous we have
AU/Z'LL S CQ(Q]_/Q).

» Hele-Shaw: (Joint work with Guillén) Let u > 0 satisfy

Au=0in {u > 0}
8tu
| Dul

= |Du| over T = 9{u > 0}

Then if u is sufficiently close to a planar profile we get that
for every time I is given by the graph of a C'® function.

Dzieki!
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