Further Time Regularity for Parabolic Equations Joint with Dennis Kriventsov

Héctor A. Chang-Lara

Mathematics Department, Columbia University

Będlewo, June 28th, 2016

For
$$K : \mathbb{R}^n \to [\lambda, \Lambda] \subseteq (0, \infty)$$
 and even $(K(y) = K(-y))$

$$Lu(x) = \int (u(x+y) - u(x)) \frac{K(y)dy}{|y|^{n+\sigma}}$$

Roughly speaking, Lu(x) measures the discrepancy between a singular weighted average of u about x and u(x).

For
$$K: \mathbb{R}^n \to [\lambda, \Lambda] \subseteq (0, \infty)$$
 and even $(K(y) = K(-y))$

$$Lu(x) = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^n \backslash B_{\varepsilon}} (u(x+y) - u(x)) \frac{K(y) dy}{|y|^{n+\sigma}}$$

Roughly speaking, Lu(x) measures the discrepancy between a singular weighted average of u about x and u(x).

For
$$K : \mathbb{R}^n \to [\lambda, \Lambda] \subseteq (0, \infty)$$
 and even $(K(y) = K(-y))$

$$Lu(x) = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^n \setminus B_{\varepsilon}} (u(x+y) - u(x)) \frac{K(y) dy}{|y|^{n+\sigma}}$$

$$\sim \sum_{i,j=1}^n a_{ij} \partial_{ij} u(x) \quad \lambda Id \le (a_{ij}) \le \Lambda Id \text{ symmetric}$$

Roughly speaking, Lu(x) measures the discrepancy between a singular weighted average of u about x and u(x).

For
$$K: \mathbb{R}^n \to [\lambda, \Lambda] \subseteq (0, \infty)$$
 and even $(K(y) = K(-y))$

$$Lu(x) = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^n \setminus B_{\varepsilon}} (u(x+y) - u(x)) \frac{K(y)dy}{|y|^{n+\sigma}}$$

$$\sim \sum_{i=0}^{n} a_{ij} \partial_{ij} u(x) \quad \lambda Id \le (a_{ij}) \le \Lambda Id \text{ symmetric}$$

Roughly speaking, Lu(x) measures the discrepancy between a singular weighted average of u about x and u(x).

Ellipticity: Given that $K \ge 0$, if u attains its global minimum (maximum) at x, then $Lu(x) \ge 0$ ($Lu(x) \le 0$).

For
$$K: \mathbb{R}^n \to [\lambda, \Lambda] \subseteq (0, \infty)$$
 and even $(K(y) = K(-y))$

$$Lu(x) = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^n \setminus B_{\varepsilon}} (u(x+y) - u(x)) \frac{K(y)dy}{|y|^{n+\sigma}}$$
$$\sim \sum_{i,j=1}^n a_{ij} \partial_{ij} u(x) \quad \lambda Id \le (a_{ij}) \le \Lambda Id \text{ symmetric}$$

Roughly speaking, Lu(x) measures the discrepancy between a singular weighted average of u about x and u(x).

Ellipticity: Given that $K \geq 0$, if u attains its global minimum (maximum) at x, then $Lu(x) \geq 0$ ($Lu(x) \leq 0$). For $K \equiv 1$,

$$\Delta^{\sigma/2}u(x) = c_{n,\sigma} \int (u(x+y) - u(x)) \frac{dy}{|y|^{n+\sigma}} \sim \Delta u(x)$$

I applied to $u: \mathbb{R}^n \to \mathbb{R}$ gives $Iu: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ such that Iu = 0 if $u \equiv constant \sim F(D^2u, x, t)$ where F(0, x, t) = 0

I applied to $u: \mathbb{R}^n \to \mathbb{R}$ gives $Iu: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ such that Iu = 0 if $u \equiv constant \sim F(D^2u, x, t)$ where F(0, x, t) = 0 Ellipticity:

I applied to $u: \mathbb{R}^n \to \mathbb{R}$ gives $Iu: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ such that Iu = 0 if $u \equiv constant \sim F(D^2u, x, t)$ where F(0, x, t) = 0 Ellipticity:

Uniform Ellipticity: For $0 < \lambda \le \Lambda < \infty$

$$\inf_{\substack{K \in [\lambda, \Lambda] \\ \text{even}}} L(u - v) \le Iu - Iv \le \sup_{\substack{K \in [\lambda, \Lambda] \\ \text{even}}} L(u - v)$$
$$\sim \lambda Id \le \partial_{m_{ij}} F((m_{ij}), x, t) \le \Lambda Id$$

I applied to $u: \mathbb{R}^n \to \mathbb{R}$ gives $Iu: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ such that Iu = 0 if $u \equiv constant \sim F(D^2u, x, t)$ where F(0, x, t) = 0 Ellipticity:

Uniform Ellipticity: For $0 < \lambda \le \Lambda < \infty$

$$\inf_{\substack{K \in [\lambda, \Lambda] \\ \text{even}}} L(u - v) \le Iu - Iv \le \sup_{\substack{K \in [\lambda, \Lambda] \\ \text{even}}} L(u - v)$$
$$\sim \lambda Id \le \partial_{m_{ij}} F((m_{ij}), x, t) \le \Lambda Id$$

In particular, uniform ellipticity \Rightarrow ellipticity.

Examples

▶ Linear operators with variable coefficients:

$$\forall x \in \Omega, K(\cdot, x) : \mathbb{R}^n \to [\lambda, \Lambda] \subseteq (0, \infty) \text{ even}$$

$$Lu(x) = \int (u(x+y) - u(y)) \frac{K(x;y)dy}{|y|^{n+\sigma}}$$

Examples

▶ Linear operators with variable coefficients:

$$\forall x \in \Omega, K(\cdot, x) : \mathbb{R}^n \to [\lambda, \Lambda] \subseteq (0, \infty) \text{ even}$$

$$Lu(x) = \int (u(x+y) - u(y)) \frac{K(x;y)dy}{|y|^{n+\sigma}}$$

► Extremal operators:

$$\mathcal{M}_{\sigma}^{+}u = \sup_{\substack{K \in [\lambda, \Lambda] \\ \text{even}}} Lu \quad \text{and} \quad \mathcal{M}_{\sigma}^{-}u = \inf_{\substack{K \in [\lambda, \Lambda] \\ \text{even}}} Lu$$

Examples

▶ Linear operators with variable coefficients:

$$\forall x \in \Omega, K(\cdot, x) : \mathbb{R}^n \to [\lambda, \Lambda] \subseteq (0, \infty) \text{ even}$$

$$Lu(x) = \int (u(x+y) - u(y)) \frac{K(x;y)dy}{|y|^{n+\sigma}}$$

► Extremal operators:

$$\mathcal{M}_{\sigma}^{+}u = \sup_{\substack{K \in [\lambda, \Lambda] \\ \text{even}}} Lu \quad \text{and} \quad \mathcal{M}_{\sigma}^{-}u = \inf_{\substack{K \in [\lambda, \Lambda] \\ \text{even}}} Lu$$

► Inf/sup combinations:

$$Iu = \inf_{\alpha} \sup_{\beta} L_{\alpha,\beta} u \qquad K_{\alpha,\beta}(y) \in [\lambda,\Lambda] \text{ even}$$

Let u solve

$$\partial_t u - Iu = f(x, t)$$
 in $Q_1 = B_1 \times (-1, 0]$
 $u = g$ on $(\mathbb{R}^n \setminus B_1) \times (-1, 0]$
 $u = u_0$ on $t = -1$

If $I = \Delta^{\sigma/2}$ and $f \equiv 0$, then the values of u evolve in order to "reduce the discrepancy with respect to its averages."

Let u solve

$$\partial_t u - Iu = f(x, t)$$
 in $Q_1 = B_1 \times (-1, 0]$
 $u = g$ on $(\mathbb{R}^n \setminus B_1) \times (-1, 0]$
 $u = u_0$ on $t = -1$

If $I = \Delta^{\sigma/2}$ and $f \equiv 0$, then the values of u evolve in order to "reduce the discrepancy with respect to its averages."

$$u \nearrow (\searrow)$$
 if $\Delta^{\sigma/2}u \sim \int (u(x+y) - u(x)) \frac{dy}{|y|^{n+\sigma}} > 0 \ (<0)$

Let u solve

$$\partial_t u - Iu = f(x, t)$$
 in $Q_1 = B_1 \times (-1, 0]$
 $u = g$ on $(\mathbb{R}^n \setminus B_1) \times (-1, 0]$
 $u = u_0$ on $t = -1$

If $I = \Delta^{\sigma/2}$ and $f \equiv 0$, then the values of u evolve in order to "reduce the discrepancy with respect to its averages."

$$u \nearrow (\searrow)$$
 if $\Delta^{\sigma/2}u \sim \int (u(x+y) - u(x)) \frac{dy}{|y|^{n+\sigma}} > 0 \ (< 0)$ if u has a global minimum (maximum) at x

Let u solve

$$\partial_t u - Iu = f(x, t)$$
 in $Q_1 = B_1 \times (-1, 0]$
 $u = g$ on $(\mathbb{R}^n \setminus B_1) \times (-1, 0]$
 $u = u_0$ on $t = -1$

If $I = \Delta^{\sigma/2}$ and $f \equiv 0$, then the values of u evolve in order to "reduce the discrepancy with respect to its averages."

$$u \nearrow (\searrow)$$
 if $\Delta^{\sigma/2}u \sim \int (u(x+y) - u(x)) \frac{dy}{|y|^{n+\sigma}} > 0 \ (<0)$ if u has a global minimum (maximum) at x

How do the data influence the regularity of u?

Regularity theory for $\partial_t u - F(D^2 u, x, t) = f(x, t)$

► Krylov-Safonov (1979): For $\lambda Id \leq (a_{i,j}(x,t)) \leq \Lambda Id$ symmetric

$$\partial_t u - \sum a_{ij}(x,t)\partial_{ij}u \in L^{\infty}(Q_1) \quad \Rightarrow \quad u \in C^{\alpha}(Q_{1/2})$$

Regularity theory for $\partial_t u - F(D^2 u, x, t) = f(x, t)$

► Krylov-Safonov (1979): For $\lambda Id \leq (a_{i,j}(x,t)) \leq \Lambda Id$ symmetric

$$\partial_t u - \sum a_{ij}(x,t)\partial_{ij}u \in L^\infty(Q_1) \quad \Rightarrow \quad u \in C^\alpha(Q_{1/2})$$

For $F(D^2u, x, t) = F(D^2u)$ translation invariant

$$\partial_t u - F(D^2 u) = 0 \text{ in } Q_1 \quad \Rightarrow \quad \partial_t u, Du \in C^{\alpha}(Q_{1/2})$$

Regularity theory for $\partial_t u - F(D^2 u, x, t) = f(x, t)$

► Krylov-Safonov (1979): For $\lambda Id \leq (a_{i,j}(x,t)) \leq \Lambda Id$ symmetric

$$\partial_t u - \sum a_{ij}(x,t)\partial_{ij}u \in L^{\infty}(Q_1) \quad \Rightarrow \quad u \in C^{\alpha}(Q_{1/2})$$

For $F(D^2u, x, t) = F(D^2u)$ translation invariant

$$\partial_t u - F(D^2 u) = 0 \text{ in } Q_1 \quad \Rightarrow \quad \partial_t u, Du \in C^{\alpha}(Q_{1/2})$$

 \triangleright Evans-Krylov (1982): For F translation invariant and concave

$$\partial_t u - F(D^2 u) = 0 \text{ in } Q_1 \quad \Rightarrow \quad D^2 u \in C^{\alpha}(Q_{1/2})$$

► Caffarelli-Silvestre (2009): For $K(y;x) \in [\lambda, \Lambda]$ even in y

$$Lu = \int (u(x+y) - u(x)) \frac{K(y;x)dy}{|y|^{n+\sigma}} \in L^{\infty}(B_1) \quad \Rightarrow \quad u \in C^{\alpha}(B_{1/2})$$

▶ Caffarelli-Silvestre (2009): For $K(y;x) \in [\lambda, \Lambda]$ even in y

$$Lu = \int (u(x+y) - u(x)) \frac{K(y; x)dy}{|y|^{n+\sigma}} \in L^{\infty}(B_1) \quad \Rightarrow \quad u \in C^{\alpha}(B_{1/2})$$

▶ ChL-Dávila (2012): For $K(y; x, t) \in [\lambda, \Lambda]$ even in y

$$\partial_t u - Lu \in L^{\infty}(Q_1) \quad \Rightarrow \quad u \in C^{\alpha}(Q_{1/2})$$

▶ Caffarelli-Silvestre (2009): For $K(y;x) \in [\lambda, \Lambda]$ even in y

$$Lu = \int (u(x+y) - u(x)) \frac{K(y; x)dy}{|y|^{n+\sigma}} \in L^{\infty}(B_1) \quad \Rightarrow \quad u \in C^{\alpha}(B_{1/2})$$

▶ ChL-Dávila (2012): For $K(y; x, t) \in [\lambda, \Lambda]$ even in y

$$\partial_t u - Lu \in L^{\infty}(Q_1) \quad \Rightarrow \quad u \in C^{\alpha}(Q_{1/2})$$

 \triangleright Serra (2014): For I translation invariant

$$\partial_t u - Iu = 0 \text{ in } Q_1 \quad \Rightarrow \quad u \in C^\beta(Q_{1/2})$$

for any $\beta < \sigma \wedge (1 + \alpha)$.

▶ Caffarelli-Silvestre (2009): For $K(y;x) \in [\lambda, \Lambda]$ even in y

$$Lu = \int (u(x+y) - u(x)) \frac{K(y; x)dy}{|y|^{n+\sigma}} \in L^{\infty}(B_1) \quad \Rightarrow \quad u \in C^{\alpha}(B_{1/2})$$

▶ ChL-Dávila (2012): For $K(y; x, t) \in [\lambda, \Lambda]$ even in y

$$\partial_t u - Lu \in L^{\infty}(Q_1) \quad \Rightarrow \quad u \in C^{\alpha}(Q_{1/2})$$

 \triangleright Serra (2014): For I translation invariant

$$\partial_t u - Iu = 0 \text{ in } Q_1 \quad \Rightarrow \quad u \in C^\beta(Q_{1/2})$$

for any $\beta < \sigma \wedge (1 + \alpha)$.

• If
$$\sigma < 1$$
, $u \in C^{\sigma - \varepsilon} \subseteq C_t^{1 - \varepsilon'}$

▶ Caffarelli-Silvestre (2009): For $K(y;x) \in [\lambda, \Lambda]$ even in y

$$Lu = \int (u(x+y) - u(x)) \frac{K(y; x) dy}{|y|^{n+\sigma}} \in L^{\infty}(B_1) \quad \Rightarrow \quad u \in C^{\alpha}(B_{1/2})$$

▶ ChL-Dávila (2012): For $K(y; x, t) \in [\lambda, \Lambda]$ even in y

$$\partial_t u - Lu \in L^{\infty}(Q_1) \quad \Rightarrow \quad u \in C^{\alpha}(Q_{1/2})$$

 \triangleright Serra (2014): For I translation invariant

$$\partial_t u - Iu = 0 \text{ in } Q_1 \quad \Rightarrow \quad u \in C^\beta(Q_{1/2})$$

for any $\beta < \sigma \wedge (1 + \alpha)$.

- If $\sigma < 1$, $u \in C^{\sigma \varepsilon} \subseteq C^{1 \varepsilon'}$
- As $\sigma \to 2$, $u \in C^{1+\alpha-\varepsilon} \subset C_{+}^{1/2+\varepsilon'}$

▶ Caffarelli-Silvestre (2009): For $K(y;x) \in [\lambda, \Lambda]$ even in y

$$Lu = \int (u(x+y) - u(x)) \frac{K(y; x)dy}{|y|^{n+\sigma}} \in L^{\infty}(B_1) \quad \Rightarrow \quad u \in C^{\alpha}(B_{1/2})$$

▶ ChL-Dávila (2012): For $K(y; x, t) \in [\lambda, \Lambda]$ even in y

$$\partial_t u - Lu \in L^{\infty}(Q_1) \quad \Rightarrow \quad u \in C^{\alpha}(Q_{1/2})$$

 \triangleright Serra (2014): For I translation invariant

$$\partial_t u - Iu = 0 \text{ in } Q_1 \quad \Rightarrow \quad u \in C^\beta(Q_{1/2})$$

for any $\beta < \sigma \wedge (1 + \alpha)$.

- If $\sigma < 1$, $u \in C^{\sigma \varepsilon} \subseteq C_t^{1 \varepsilon'}$
- As $\sigma \to 2$, $u \in C^{1+\alpha-\varepsilon} \subset C_{+}^{1/2+\varepsilon'}$

Is it true that as $\sigma \to 2$, $\partial_t u$ is Hölder continuous?

Answer: No!

Answer: No!

We need a hypothesis for g!

Main Result: Hölder estimate for $\partial_t u$

Theorem (ChL-Kriventsov, CPAM, to appear)

Let $\sigma \in [1,2)$, I be translation invariant and $u \in L^{\infty}(\mathbb{R}^n \times (-1,0])$ solve

$$\partial_t u - Iu = f(x,t)$$
 in $Q_1 = B_1 \times (-1,0]$
 $u = g$ on $(\mathbb{R}^n \setminus B_1) \times (-1,0]$

If $f, g \in C^{\gamma}$ for some γ sufficiently small, then $\partial_t u \in C^{\gamma}$.

Main Result: Hölder estimate for $\partial_t u$

Theorem (ChL-Kriventsov, CPAM, to appear)

Let $\sigma \in [1,2)$, I be translation invariant and $u \in L^{\infty}(\mathbb{R}^n \times (-1,0])$ solve

$$\partial_t u - Iu = f(x, t)$$
 in $Q_1 = B_1 \times (-1, 0]$
 $u = g$ on $(\mathbb{R}^n \setminus B_1) \times (-1, 0]$

If $f, g \in C^{\gamma}$ for some γ sufficiently small, then $\partial_t u \in C^{\gamma}$.

We only require I translation invariant in time and

$$\sup_{t \in [-1,0]} \int |u(y)| (1 \wedge |y|^{-(n+\sigma)}) dy < \infty$$

$$\sup_{x \in B_1} [f(x,\cdot)]_{C^{\gamma/\sigma}((-1,0])} < \infty$$

$$\sup_{(t-\tau,t] \subseteq (-1,0]} \int_{\mathbb{R}^n \setminus B_1} \frac{|g(y,t-\tau) - g(y,t)|}{\tau^{\gamma/\sigma}} \frac{dy}{|y|^{n+\sigma}} < \infty$$

Corresponding local estimate seemed to be unknown.

Theorem (ChL-Kriventsov, Trans. Math. Res. Let., to appear)

Let u solve

$$\partial_t u - F(D^2 u, x) = f(x, t) \text{ in } Q_1$$

Then, for $\gamma \in (0, \alpha)$ ($\alpha \in (0, 1)$ from Krylov-Safonov)

$$[\partial_t u]_{C^{\gamma}(Q_{1/2})} \le C \left(\|u\|_{L^{\infty}(Q_1)} + \sup_{x \in B_1} [f(x, \cdot)]_{C^{\gamma/2}(-1, 0]} \right)$$

Corresponding local estimate seemed to be unknown.

Theorem (ChL-Kriventsov, Trans. Math. Res. Let., to appear)

Let u solve

$$\partial_t u - F(D^2 u, x) = f(x, t) \text{ in } Q_1$$

Then, for $\gamma \in (0, \alpha)$ ($\alpha \in (0, 1)$ from Krylov-Safonov)

$$[\partial_t u]_{C^{\gamma}(Q_{1/2})} \le C \left(\|u\|_{L^{\infty}(Q_1)} + \sup_{x \in B_1} [f(x, \cdot)]_{C^{\gamma/2}(-1, 0]} \right)$$

▶ $F(D^2u) \in C^{\gamma}$ does not contradict the counterexamples of Nadirashvili-Vlăduţ $(D^2u \notin L^{\infty} \text{ for some } F)$

Corresponding local estimate seemed to be unknown.

Theorem (ChL-Kriventsov, Trans. Math. Res. Let., to appear)

Let u solve

$$\partial_t u - F(D^2 u, x) = f(x, t) \text{ in } Q_1$$

Then, for $\gamma \in (0,\alpha)$ ($\alpha \in (0,1)$ from Krylov-Safonov)

$$[\partial_t u]_{C^{\gamma}(Q_{1/2})} \le C \left(\|u\|_{L^{\infty}(Q_1)} + \sup_{x \in B_1} [f(x, \cdot)]_{C^{\gamma/2}(-1, 0]} \right)$$

- ▶ $F(D^2u) \in C^{\gamma}$ does not contradict the counterexamples of Nadirashvili-Vlădut $(D^2u \notin L^{\infty} \text{ for some } F)$
- Scaling for f corresponds to the scaling for $\partial_t u$

Corresponding local estimate seemed to be unknown.

Theorem (ChL-Kriventsov, Trans. Math. Res. Let., to appear)

Let u solve

$$\partial_t u - F(D^2 u, x) = f(x, t) \text{ in } Q_1$$

Then, for $\gamma \in (0,\alpha)$ ($\alpha \in (0,1)$ from Krylov-Safonov)

$$[\partial_t u]_{C^{\gamma}(Q_{1/2})} \le C \left(\|u\|_{L^{\infty}(Q_1)} + \sup_{x \in B_1} [f(x, \cdot)]_{C^{\gamma/2}(-1, 0]} \right)$$

- ► $F(D^2u) \in C^{\gamma}$ does not contradict the counterexamples of Nadirashvili-Vlăduţ $(D^2u \notin L^{\infty} \text{ for some } F)$
- ▶ Scaling for f corresponds to the scaling for $\partial_t u$
- ▶ f(x,t) = f(t) is trivial (Consider $v = u \int f dt...$)

Review of the $C^{1,\alpha}$ regularity for $\partial_t u - F(D^2 u) = 0$

Let
$$\partial_t u - F(D^2 u) = 0$$
 in Q_1

1. From F(0) = 0

$$\partial_t u = F(D^2 u) = \sum_{=\int_0^1 \partial_{m_{ij}} F(sD^2 u) ds} \partial_{ij} u \text{ in } Q_1$$

Review of the $C^{1,\alpha}$ regularity for $\partial_t u - F(D^2 u) = 0$

Let
$$\partial_t u - F(D^2 u) = 0$$
 in Q_1

1. From F(0) = 0

$$\partial_t u = F(D^2 u) = \sum_{=\int_0^1 \partial_{m_{ij}} F(sD^2 u) ds} \partial_{ij} u \text{ in } Q_1$$

2. By Krylov-Safonov $u \in C^{\alpha}(Q_{1/2})$ so

$$u_{\tau,\alpha} = \frac{\delta_{\tau} u}{\tau^{\alpha}} = \frac{u_{\tau} - u}{\tau} = \frac{u(t - \tau) - u(t)}{\tau} \in L^{\infty}(Q_{1/4})$$

for any $\tau \in (0, 1/4)$

Review of the $C^{1,\alpha}$ regularity for $\partial_t u - F(D^2 u) = 0$

3. From the translation invariance and the uniform elipticity

$$\partial_t u_{\tau,\alpha} = \sum a_{ij}(x,t)\partial_{ij}u_{\tau,\alpha}$$
 in $Q_{1/4}$

Review of the $C^{1,\alpha}$ regularity for $\partial_t u - F(D^2 u) = 0$

3. From the translation invariance and the uniform elipticity

$$\partial_t u_{\tau,\alpha} = \sum a_{ij}(x,t)\partial_{ij}u_{\tau,\alpha}$$
 in $Q_{1/4}$

4. By Krylov-Safonov

$$u_{\tau,\alpha} \in C^{\alpha}(Q_{1/8})$$
 \Longrightarrow $u_{\tau,2\alpha} \in L^{\infty}(Q_{1/16})$

uniformly in $\tau \in (0, 1/16)$

Review of the $C^{1,\alpha}$ regularity for $\partial_t u - F(D^2 u) = 0$

3. From the translation invariance and the uniform elipticity

$$\partial_t u_{\tau,\alpha} = \sum a_{ij}(x,t)\partial_{ij}u_{\tau,\alpha}$$
 in $Q_{1/4}$

4. By Krylov-Safonov

$$u_{\tau,\alpha} \in C^{\alpha}(Q_{1/8})$$
 \Rightarrow $u_{\tau,2\alpha} \in L^{\infty}(Q_{1/16})$

uniformly in $\tau \in (0, 1/16)$

5. Iterate (k+1) times until $k\alpha < 1 < (k+1)\alpha$. By one final interpolation at the last step we conclude that

$$\partial_t u \in C^{\alpha}(Q_{1/4^{k+1}})$$

What fails in the nonlocal setting?

Short answer: The C^{α} estimate depends on the size of the tail.

What fails in the nonlocal setting?

Short answer: The C^{α} estimate depends on the size of the tail.

Theorem (ChL - Dávila, Calc. of Var. and PDE, 2014)

For
$$K(y; x, t) \in [\lambda, \Lambda]$$
 even in y

$$\partial_t u - Lu = f(x,t)$$
 in Q_1

implies

$$[u]_{C^{\alpha}(Q_{1/2})} \le C \left(\|u\|_{L^{\infty}(\mathbb{R}^{n} \times (-1,0])} + \|f\|_{L^{\infty}(Q_{1})} \right)$$

What fails in the nonlocal setting?

Short answer: The C^{α} estimate depends on the size of the tail.

Theorem (ChL - Dávila, Calc. of Var. and PDE, 2014)

For $K(y; x, t) \in [\lambda, \Lambda]$ even in y

$$\partial_t u - Lu = f(x,t)$$
 in Q_1

implies

$$[u]_{C^{\alpha}(Q_{1/2})} \le C(\|u\|_{L^{\infty}(\mathbb{R}^{n}\times(-1,0])} + \|f\|_{L^{\infty}(Q_{1})})$$

In particular,

$$u \in L^{\infty}(\mathbb{R}^n \times (-1,0]) \Rightarrow u_{\tau,\alpha} \in L^{\infty}(Q_{1/4})$$

but not in $L^{\infty}(\mathbb{R}^n \times (-1/4,0])$ as required in the subsequent step.

Boundary data \rightarrow Right-hand side

Standard trick: Multiply u (or $u_{\tau,i\alpha}$) by $\eta \in C_0^{\infty}(B_r)$ such that $\eta = 1$ in $B_{r/2}$.

▶ ηu (or $\eta u_{\tau,i\alpha}$) satisfies a simmilar equation in $Q_{r/2}$ with a different forcing term renewed from the truncation. We will still denoted it by f and the hypothesis on g still implies $f \in C^{\gamma}$.

Boundary data \rightarrow Right-hand side

Standard trick: Multiply u (or $u_{\tau,i\alpha}$) by $\eta \in C_0^{\infty}(B_r)$ such that $\eta = 1$ in $B_{r/2}$.

- ▶ ηu (or $\eta u_{\tau,i\alpha}$) satisfies a simmilar equation in $Q_{r/2}$ with a different forcing term renewed from the truncation. We will still denoted it by f and the hypothesis on g still implies $f \in C^{\gamma}$.
- ▶ This truncation is applied at every step to go from $u_{\tau,i\alpha} \in L^{\infty}(Q_r)$ to $u_{\tau,(i+1)\alpha} \in L^{\infty}(Q_{r/4})$.

Hölder Bootstrap

Starting from

$$\partial_t u_{ au,\beta} - L u_{ au,\beta} = rac{\delta_{ au} f}{ au^{eta}}$$
 in Q_1 and for all au

Ideally

$$\|u_{\tau,\beta}\|_{L^{\infty}} \le 1 \qquad \Rightarrow \qquad [u_{\tau,\beta}]_{C^{\alpha}} \le C$$

$$\Rightarrow \qquad \|u_{\tau,\beta+\alpha}\|_{L^{\infty}} \le C$$

But...

Hölder Bootstrap

Starting from

$$\partial_t u_{\tau,\beta} - L u_{\tau,\beta} = \frac{\delta_{\tau} f}{\tau^{\beta}}$$
 in Q_1 and for all τ

Ideally

$$||u_{\tau,\beta}||_{L^{\infty}} \le 1$$
 \Rightarrow $[u_{\tau,\beta}]_{C^{\alpha}} \le C(\tau)$
 \Rightarrow $||u_{\tau,\beta+\alpha}||_{L^{\infty}} \le C(\tau)$

But... as $\tau \to 0$ the right-hand side degenerates because f is only in C^{γ} , and γ/σ could be less than β .

Hölder Bootstrap with stroger hypotheis

Starting from

$$\partial_t u_{\tau,\beta} - L u_{\tau,\beta} = \frac{\delta_{\tau} f}{\tau^{\beta}}$$
 in Q_1 and for all τ

What we managed to do:

$$\begin{split} \sup_{\tau} [u_{\tau,\beta}]_{C^{\varepsilon}} & \leq 1 & \Rightarrow & \sup_{\tau} [u_{\tau,\beta}]_{C^{\alpha+\varepsilon'}} \leq C \\ & \Rightarrow & \sup_{\tau} [u_{\tau,\beta+\alpha}]_{C^{\varepsilon''}} \leq C \end{split}$$

Heuristically, we are borrowing a bit of the regulaity gained in the previous step to have compactness and therefore have control of the case when τ is small.

For

$$\partial_t u - Iu = f(x, t)$$
 in $Q_1 = B_1 \times (-1, 0]$
 $u = g$ on $(\mathbb{R}^n \setminus B_1) \times (-1, 0]$

For

$$\partial_t u - Iu = f(x, t)$$
 in $Q_1 = B_1 \times (-1, 0]$
 $u = g$ on $(\mathbb{R}^n \setminus B_1) \times (-1, 0]$

 \triangleright g discontinuous in time might imply that u is not better than Lipschitz in time.

For

$$\partial_t u - Iu = f(x, t)$$
 in $Q_1 = B_1 \times (-1, 0]$
 $u = g$ on $(\mathbb{R}^n \setminus B_1) \times (-1, 0]$

- \triangleright g discontinuous in time might imply that u is not better than Lipschitz in time.
- ▶ q and f Hölder continuous imply $\partial_t u$ Hölder continuous.

For

$$\partial_t u - Iu = f(x, t)$$
 in $Q_1 = B_1 \times (-1, 0]$
 $u = g$ on $(\mathbb{R}^n \setminus B_1) \times (-1, 0]$

- \triangleright g discontinuous in time might imply that u is not better than Lipschitz in time.
- ▶ g and f Hölder continuous imply $\partial_t u$ Hölder continuous.
- ▶ For $f \in L^{\infty}(Q_1)$ and

$$\sup_{t \in (-1,0]} \int_{\mathbb{R}^n \setminus B_1} |g(y,t)| \frac{dy}{|y|^{n+\sigma}} < \infty$$

we get that $u(x, \cdot) \in C^{\beta}(-1/2, 0]$ for all $\beta \in (0, 1)$, uniformly in $x \in B_{1/2}$

For

$$\partial_t u - Iu = f(x, t)$$
 in $Q_1 = B_1 \times (-1, 0]$
 $u = g$ on $(\mathbb{R}^n \setminus B_1) \times (-1, 0]$

- \triangleright q discontinuous in time might imply that u is not better than Lipschitz in time.
- \triangleright q and f Hölder continuous imply $\partial_t u$ Hölder continuous.
- ▶ For $f \in L^{\infty}(Q_1)$ and

$$\sup_{t \in (-1,0]} \int_{\mathbb{R}^n \backslash B_1} |g(y,t)| \frac{dy}{|y|^{n+\sigma}} < \infty$$

we get that $u(x,\cdot) \in C^{\beta}(-1/2,0]$ for all $\beta \in (0,1)$, uniformly in $x \in B_{1/2}$

Do the previous hypothesis imply $\partial_t u \in L^{\infty}(Q_{1/2})$?

Applications

▶ Evans-Krylov type estimate: For I translation invariant and concave, and g Hölder continuous we have $\Delta^{\sigma/2}u \in C^{\alpha}(Q_{1/2})$.

Applications

- ▶ Evans-Krylov type estimate: For I translation invariant and concave, and g Hölder continuous we have $\Delta^{\sigma/2}u \in C^{\alpha}(Q_{1/2})$.
- ▶ **Hele-Shaw:** (Joint work with Guillén) Let $u \ge 0$ satisfy

$$\Delta u = 0 \text{ in } \{u > 0\}$$

$$\frac{\partial_t u}{|Du|} = |Du| \text{ over } \Gamma = \partial \{u > 0\}$$

Then if u is sufficiently close to a planar profile we get that for every time Γ is given by the graph of a $C^{1,\alpha}$ function.

Applications

- ▶ Evans-Krylov type estimate: For I translation invariant and concave, and g Hölder continuous we have $\Delta^{\sigma/2}u \in C^{\alpha}(Q_{1/2})$.
- ▶ **Hele-Shaw:** (Joint work with Guillén) Let $u \ge 0$ satisfy

$$\Delta u = 0$$
 in $\{u > 0\}$
 $\frac{\partial_t u}{|Du|} = |Du|$ over $\Gamma = \partial \{u > 0\}$

Then if u is sufficiently close to a planar profile we get that for every time Γ is given by the graph of a $C^{1,\alpha}$ function.

Dzięki!