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Summary

We establish existence, uniqueness and continuous dependence esti-
mates for bounded (nonintegrable) entropy solutions of degenerate
parabolic equations with local and nonlocal diffusion. To do this, a
sort of L1loc-contraction estimate is obtained. Many of the results are
new in both the local and nonlocal case.

Main results

We consider bounded nonintegrable entropy solutions of the following
degenerate parabolic equation:

(DPE)

{
∂tu + divf (u) = Lφ(u) in QT
u(x, 0) = u0(x) on Rd,

where QT := Rd × (0, T ), u = u(x, t) is the unknown function, and
div the x-divergence. The operator L will be either the x-Laplacian △
or the nonlocal anomalous diffusion operator Lµ defined on C∞

c (Rd)
as

Lµ[ϕ](x) =
∫
|z|>0

ϕ(x + z)− ϕ(x)− z ·Dϕ(x)1|z|≤1 dµ(z).

We assume that
f ∈ W

1,∞
loc (R,Rd),

φ ∈ W
1,∞
loc (R) is nondecreasing,

and

µ is a nonnegative Radon measure on Rd \ {0} such that∫
|z|≤1

|z|2 dµ(z) +
∫
|z|>1

dµ(z) <∞.

Remark. In our most general local case, (DPE) has the right-
hand side div (a(u)Du) where a is a symmetric, positive-definite and
bounded matrix. To simplify the exposition, we have chosen, for
1 ≤ i, j ≤ d, {

aij(u) = φ′(u) if i = j

aij(u) = 0 if i ̸= j.

Theorem 1. Let u, v be entropy solutions of (DPE)
with respective initial data u0, v0 ∈ L∞(Rd). Then
there exists ψ ∈ C([0, T ];L1(Rd)) such that for any
t ∈ [0, T ]

∫
|x−x0|≤R

(u− v)+(x, t) dx

≤
∫
Rd
(u0 − v0)

+(x)ψ(x, t) dx.

(MR)

The function ψ is roughly speaking the solution of the second order
Hamilton-Jacobi-Bellman equation (HJB) which is a “dual equation”
of (DPE). Our proof thus relies on a nonstandard L1-estimate for
that kind of equation. The above result is a sort of an L1loc-contraction
result, and further consequences are
• L1loc-and BVloc-bounds, and
• a comparison principle and L∞-bounds.

We also obtain:

Theorem 2. There exists a unique entropy solu-
tion u of (DPE) when u0 ∈ L∞(Rd). Moreover,
u ∈ L∞(QT ) ∩ C([0, T ];L1loc(R

d)).

When L = Lµ, we improve Theorems 1 and 2 in [2] compared to [5]
since we in the former consider general Lévy measures µ and a more
“optimal” ψ (see Approaches 1 and 2). In the local isotropic case, [1]
only provides an improvement of Theorem 1.

To our knowledge, Theorem 1, the L1loc-and BVloc-bounds, and The-
orem 2 are new in the local anisotropic case [1].

Entropy solutions

As usual, we use the Kružkov entropy-entropy flux pairs (u−k)± and
sign±(u− k)(f (u)− f (k)) for all k ∈ R. The treatment of entropy
solutions for ∂tu+divf (u) = 0 is rather classical, so, we only discuss
the treatment of the diffusion operators.

In the local isotropic case, we have

∂t(u− k)± + div
(

sign±(u− k)(f (u)− f (k)
)
−△(φ(u)− φ(k))± ≤ 0

in D′(QT ) for all k ∈ R, and φ(u) ∈ L2(0, T ;H1
loc(R

d)). A definition
for the anisotropic case is more delicate, and we need a weak chain rule
in addition to “energy”.

In the nonlocal case, we argue by splitting Lµ at some level r > 0, that
is,

Lµ[ϕ](x) = Lµr [ϕ](x) + Lµ,r[ϕ](x) + div(bµ,rϕ)

where bµ,r := −
∫
|z|>r z1|z|≤1 dµ(z). This results in different treatments

of the singular and nonsingular parts of the operator. We obtain

∂t(u− k)± + div
(

sign±(u− k)(f (u)− f (k))− bµ,r(φ(u)− φ(k))±
)

− Lµr [(φ(u)− φ(k))±]− sign±(u− k)Lµ,r[φ(u)] ≤ 0

in D′(QT ) for all k ∈ R. Note that we do not need any notion of “energy”
here.

Kato Inequality

To show the L1-contraction for (u − v)+, and hence, the uniqueness of
entropy solutions, we will use the following inequality.

Let u and v be entropy solutions of (DPE) with respective initial data
u0, v0 ∈ L∞(Rd). Then for all 0 ≤ ϕ ∈ C∞

c (QT ),

0 ≤
∫∫

QT

(
(u− v)+∂tϕ

+ sign+(u− v) (f (u)− f (v)) ·Dϕ
+ (φ(u)− φ(v))+L∗ϕ

)
dx dt.

(Kato)

In the general anisotropic local setting, this result has been proved in
[3] for u, v ∈ L∞(0, T ;L1(Rd)) ∩ L∞(QT ) (see also [4] for a “kinetic”
argument). The same proof holds in our case [1], that is, when we only
assume u, v ∈ L∞(QT ), and the proof itself is based on the Kružkov’s
doubling of variables technique [6]. In the isotropic nonlocal setting, the
result is also based on Kružkov’s technique and can be found in [5].

Now, choose ϕ(x, t) := Θ(t)Γ(x, t) where 0 ≤ Θ ∈ C∞
c (0, T ) and

0 ≤ Γ ∈ C∞
c (QT ), that is, (Kato) becomes

0 ≤
∫∫

QT

(u− v)+ΓΘ′ dx dt

+

∫∫
QT

Θ(u− v)+
[
∂tΓ + Lf |DΓ| + Lφ

(
L∗Γ

)+]
dx dt

If Γ is a classical solution of

(HJB) ∂tΓ + Lf |DΓ| + Lφ (L
∗Γ)+ ≤ 0,

where Lf , Lφ are the respective Lipschitz constants of f, φ, and

Θ(t) = Θε(t) :=

∫ t

−∞
ωε(s− t1)− ωε(s− t2) ds

for 0 < t1 < t2 < T with t1 → 0+ and t2 → T−, then we obtain

∫
Rd
(u− v)+(x, T )Γ(x, T ) dx

≤
∫
Rd
(u0 − v0)

+(x)Γ(x, 0) dx.
(PreMR)

There are now (at least) two possible approaches:

Approach 1: We solve (HJB) indirectly by viscosity solutions and
regularization procedures. This is done in [5].

Approach 2: We solve (HJB) directly by viscosity solutions and reg-
ularization procedures. This is done in [1, 2].

Approach 1 (cf. [5])

In this approach, we find solutions of (HJB) by considering (su-
per)solutions of two related problems.

Consider the respective nonnegative classical solutions Ψ,Φ of

(Conv) ∂tΨ + Lf |DΨ| ≤ 0 in QT ,

(Diff) ∂tΦ + Lφ(L
∗Φ)+ ≤ 0 in QT ,

and define

Γ(x, t) := Ψ(·, t) ∗x Φ(·, t)(x),

then 0 ≤ Γ is a classical solution of (HJB).

Equation (Conv) has the C∞
c -solution

Ψ
δ̃
(x, t) :=

[
1(−∞,M ] ∗ ωε

](√
δ̃2 + |x− x0|2 + Lf t

)
,

where Lf is the Lipschitz constant of f , M > LfT + 1, δ̃ > 0,
x0 ∈ Rd, and ωε is a mollifier.

To find a classical solution of (Diff), we mollify (in space and time) the
viscosity solution of the same equation. Denote this solution by Φδ. It
is not trivial to demonstrate that Φδ is L1 in space for all t ∈ [0, T ].
Our approach is to find a classical L1-supersolution of (Diff), and
then conclude by the comparison principle that Φ(·, t) ∈ L1(Rd).

Now, we insert Γ
δ,δ̃
(x, t) := Ψδ(·, t) ∗xΦδ̃(·, t)(x) into (PreMR), and

after several limit procedures we obtain (MR) with

ψ(x, t) = Φ(·, Lφt) ∗x 1|x−x0|≤R+1+Lft(x).

It seems a bit unnatural that the +1-factor is present in the above
function. This is due to the fact that the initial data for (Diff) is not
a Dirac’s delta. We have not been able to choose this initial data
for two reasons: i) There is no well-posedness theory for equations
like (Diff) with measure initial data, and ii) the L1-bound for Φ is
obtained by comparison with a particular L1-supersolution.

Approach 2 (cf. [1, 2])

In this approach, we work directly with (HJB). That is, we consider
the problem{

∂tΓ + Lf |DΓ| + Lφ (L
∗Γ)+ = 0 in QT

Γ(x, T ) = 1|x−x0|≤R(x) on Rd.

Recall that the standard (viscosity) theory for Hamilton-Jacobi-
Bellman equations usually assumes the terminal data to be continuous
and bounded, and there is no general L1-theory for these equations.
In our case, we thus, need to consider the following difficulties:

• the terminal data is merely bounded, and
• under which assumptions can the solution Γ be integrable.

In our works in progress, we build unique viscosity solutions of
Hamilton-Jacobi-Bellman equations for merely bounded terminal
data. Moreover, we give sufficient conditions on the terminal data
in order to make sure that the viscosity solution is integrable, that is,
we get (MR) with integrable ψ = Γ solving the above problem.
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