Kinetic equations and weighted inequalities

Nestor Guillen UMass Amherst

Bedlewo Conference on Nonlocal Operators and PDE

Kinetic equations and integro differential inequalities

Nestor Guillen UMass Amherst

Bedlewo Conference on Nonlocal Operators and PDE

Kinetic equations (5%) and integro differential inequalities (95%)

Nestor Guillen UMass Amherst

Bedlewo Conference on Nonlocal Operators and PDE

Partly based on joint works with:

- 1. Maria Gualdani
- 2. Nader Masmoudi
- 3. Russell Schwab

Overview

Two problems

A pointwise inequality

*The classical ABP estimate (and a linear estimate)

Problem #1: Sobolev for singular jump measures

An important problem is understanding the regularity of solutions to the equation given by an energy of the form

$$\mathcal{E}_{\nu}(u) := \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} (u(x) - u(y))^2 \nu(x, dy) dx$$

Precisely: determine which ν 's yield Hölder estimates, as well as Harnack inequality.

As we discussed earlier, the case $\nu \neq k(x,y)dy$ is very delicate.

Problem #1: Sobolev for singular jump measures

Problem 1.

Characterize those ν 's for which we have

$$||u||_{L^p(\mathbb{R}^N)}^2 \le C\mathcal{E}_{\nu}(u), \quad p > 2.$$

To emphasize: particularly we want to consider ν 's that may not have a density with respect to Lebesgue measure.

Problem #1: Sobolev for singular jump measures

The problem might become more tractable if one thinks about a harder one first: weighted Sobolev inequalities.

Problem 1'.

Characterize when does a weight v and measure ν are such that

$$\left(\int_{\mathbb{R}^N} v(x)|u(x)|^p dx\right)^{\frac{2}{p}} \le C\mathcal{E}_{\nu}(u).$$

Of course, the previous problem is the case $v \equiv 1$.

Weighted Sobolev inequalities

(Local) Weighted Sobolev inequalities $(v, w \ge 0)$

$$\left(\int v(x)|\phi(x)|^q dx\right)^{2/q} \le C \int w(x)|\nabla\phi(x)|^2 dx$$

A theorem of Sawyer–Wheeden (1992) says: Suppose 2 < q and that v and w satisfy a certain doubling condition, then the above holds if and only if

$$\sup_{B} |B|^{\frac{1}{n}-1} \left(\int_{B} v(x) \ dx \right)^{\frac{1}{q}} \left(\int_{B} w(x)^{-1} \ dx \right)^{\frac{1}{2}} < \infty$$

This is known as the $\mathbf{A}_{p,q}$ condition.

Weighted Sobolev inequalities

One idea is that by allowing A(x) to be quite degenerate, equations such as

$$\int w(x)|\nabla u|^2\ dx$$

may show a bigger variety of phenomena (estimates with different scalings). Then, second order theory gets a bit richer and closer (although still far) from the richness of

$$\int \int (u(x) - u(y))^2 \nu(x, dy) dx$$

It may be interesting to get a relation for ν and v similar to the $\mathbf{A}_{p,q}$ condition which determines the validity of a Sobolev ineq.

Weighted Sobolev inequalities

Such inequalities are particularly useful when understanding linear divergence equations with a potential ("Schrödinger")

$$-\operatorname{div}(A(x)\nabla\phi) + v(x)\phi = 0,$$

where $A(x) \ge w(x) I$, and w(x) may become zero somewhere.

Teaser for Problem 2.

Exercise: For a smooth, non-negative f(v) we have

$$\int_{\mathbb{R}^d} f(v)^2 \ dv \le 4 \int_{\mathbb{R}^d} a(v) |\nabla \sqrt{f(v)}|^2 \ dv$$

where $a = (-\Delta)^{-1} f$.

Teaser for Problem 2.

Exercise: For a smooth, non-negative f(v) we have

$$\int_{\mathbb{R}^d} f(v)^2 \ dv \le 4 \int_{\mathbb{R}^d} a(v) |\nabla \sqrt{f(v)}|^2 \ dv$$

where $a = (-\Delta)^{-1} f$.

Proof: The integral on the right has the form

$$C(d) \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |v - w|^{2-d} f(w) |\nabla \sqrt{f(v)}|^2 dw dv$$

Use the symmetry of the kernel + the arithmetic-geometric mean inequality, integrate by parts the resulting expression.

Teaser for Problem 2.

Exercise: For f(v) as before we have

$$\int_{\mathbb{R}^d} f(v)^2 \ dv \le 4 \int_{\mathbb{R}^d} (A \nabla \sqrt{f(v)}, \nabla \sqrt{f(v)}) \ dv$$

where A = A[f] is such that $\operatorname{div}(\operatorname{div} A) = -f$.

This inequality is equivalent to the monotonicity of the entropy in the homogeneous Landau equation.

(see Gressman–Krieger–Strain '12)

Problem #2: Best constants in a weighted inequality.

Problem 2.

Given a smooth, non-negative f(v), prove

$$\int_{\mathbb{R}^d} f\phi^2 \ dv \le C \int_{\mathbb{R}^d} a |\nabla \phi|^2 \ dv \ \forall \ \phi.$$

What can be said about the best constant C = C(f)?.

Note: This a very special kind of weighted Poincaré inequality!, since the weights are related by

$$-\Delta f = a.$$

An important and well studied instance is $f = |v|^{-m}$, where one gets Hardy inequalities.

The homogeneous Landau equation describes the evolution of a density f = f(v,t) via a quadratic evolution equation

$$\partial_t f = Q(f, f)$$

The homogeneous Landau equation describes the evolution of a density f = f(v,t) via a quadratic evolution equation

$$\partial_t f = Q(f, f)$$

Where Q(f, f) is given by

$$\operatorname{div}\left(\int_{\mathbb{R}^3} \Phi(w-v)\Pi(w-v)\left(f(w)\nabla f(v) - f(v)\nabla f(w)\right) dw\right)$$

Here
$$\Phi(z) = c_{\gamma}|z|^{2+\gamma}$$
 $(\gamma \in [-3, 0])$, $\Pi(z) = I - \hat{z} \otimes \hat{z}$.

Moving the divergence inside the integral, the equation becomes

$$\partial_t f = \operatorname{div}(A\nabla f - f\nabla a) = \operatorname{tr}(AD^2 f) + hf$$

where

$$A = f * (c_{\gamma}|v|^{3+\gamma}\Pi(z))$$

$$a = \operatorname{tr}(A) = (-\Delta)^{\frac{1+\gamma}{2}}f$$

$$h = -\Delta a = (-\Delta)^{\frac{3+\gamma}{2}}f$$

Consider the case $\gamma = -3$. Then, the equation takes the form

$$\partial_t f = \operatorname{div}(A\nabla f - f\nabla a)$$
$$= \operatorname{tr}(AD^2 f) + f^2.$$

The quadratic term could potentially lead f to blow up.

Scaling wise, $\operatorname{tr}(AD^2f) \approx a \, \Delta f$ –so, ideally, if f gets bad, the diffusion coefficient becomes strong.

Take $f(t=0)=f_{\rm in}$ smooth initial data. It is well known that

$$\partial_t f = \Delta f + f^2 \Rightarrow \text{ finite time blow up.}$$

Meanwhile

$$\partial_t f = f \Delta f + f^2 \Rightarrow \text{ global smooth solutions.}$$

Krieger and Strain proposed the equation

$$\partial_t f = a\Delta f + \varepsilon f^2, \ \varepsilon \in [0, 1],$$

and proved existence of a global smooth solution in the radial case, when $\varepsilon < 74/75$. The idea being that $\varepsilon = 1$ gives an isotropic analogue of the Landau equation.

Theorem (with Gualdani)

If $\varepsilon = 1$, the above equation has a global smooth solution if the initial data is symmetric and decreasing.

The Landau equation

The proof also gives a conditional result for the Landau equation: f stays bounded up to t = T as long as

$$\sup_{r} r^{2} \frac{\int_{B_{r}} f(v, t) \ dv}{\int_{B_{r}} a_{f(\cdot, t)}(v) \ dv} < \frac{1}{96}, \ \forall \ t < T.$$

Recall that $a = (-\Delta)^{-1} f$.

Exercise. For any non-negative $f \in L^1$ and any r we have

$$r^2 \frac{\int_{B_r} f(v) \, dv}{\int_{B_r} a(v) \, dv} \le 3.$$

Note: Such a condition *almost* implies a weighted inequality.

A pointwise inequality Setup

Consider a measure metric space M, distance d, measure μ .

• There are constants c_0, c_1 such that

$$c_0 r^N \le \mu(B_r(x)) \le c_1 r^N \ \forall \ r < \operatorname{diam}(M).$$

• We are given a kernel k(x, y) in M, and

$$k(x,y) \ge \lambda d(x,y)^{-N-\alpha},$$

for some $\lambda, N > 0$ and $\alpha \in (0, 2)$.

A pointwise inequality Setup

The theorem involves an integral analogue of $|\nabla u(x)|$...

Given $u \in Lip(M)$, we define the function

$$|D|_k^2 u(x) := \int_M (u(x) - u(y))^2 k(x, y) d\mu(y)$$

Evidently, the integral of this function is equal to

$$\mathcal{E}_k(u) := \int_M \int_M (u(x) - u(y))^2 \ k(x, y) d\mu(x) d\mu(y).$$

A pointwise inequality

The main result

Theorem (forthcoming)

There is a constant C given by α, N, λ , and the c_i such that

$$|u(x)|^{2+\frac{\alpha q}{N}} \le C||u||_{L^{q}(\mu)}^{\frac{\alpha q}{N}}|D|_{k}^{2}u(x).$$

A pointwise inequality

The main result

Theorem (forthcoming)

There is a constant C given by α, N, λ , and the c_i such that

$$|u(x)|^{2+\frac{\alpha q}{N}} \le C||u||_{L^{q}(\mu)}^{\frac{\alpha q}{N}}|D|_{k}^{2}u(x).$$

Corollary

There is a constant C (same dependence as before) such that

$$||u||_{L^{q}(\mu)}^{2} \le C\mathcal{E}_{\mu}(u), \quad q := \frac{2N}{N-\alpha}.$$

A key lemma

The proof is based on an a very interesting lemma which was used in one of the key steps for the ABP-type estimate obtained with Schwab (2012).

Lemma

Suppose that $u: \mathbb{R}^d \to \mathbb{R}$ satisfies

$$-(-\Delta)^{\frac{\alpha}{2}}u(x_0) \le f(x_0)$$

at a point x_0 where u achieves its minimum.

$$|u(x_0)| \le C|f(x_0)|^{\frac{2-\alpha}{2}}|(-\Delta)^{-1+\frac{\alpha}{2}}u(x_0)|^{\frac{\alpha}{2}}.$$

The key lemma, adapted (1/3)

For u and x, define the "good set"

$$G_x := \{ y \mid (u(y) - u(x))^2 \le |D|_k^2 u(x) d(x, y)^{\alpha} \}$$

Fix $\rho > 0$. Given $k \in \mathbb{N}$, we will say it is *bad* if

$$\mu\left(R_{2^{-k}\rho}\setminus G_x\right) \ge \frac{1}{2}\mu(R_{2^{-k}\rho})$$

Lemma

There is a universal constant C such that

$$\#\{\ bad\ k's\} \le C.$$

Important: note the constant is independent of ρ .

The key lemma, adapted (2/3)

Proof. Fix $\rho > 0$, then

$$|D|_{k}^{2}u(x) = \int_{M} (u(x) - u(y))^{2}k(x, y) d\mu(y)$$

$$\geq \int_{M \setminus G_{x}} (u(x) - u(y))^{2}k(x, y) d\mu(y)$$

$$\geq \sum_{bad \ k's} \int_{R_{2}-k_{\rho}(x) \setminus G_{x}} (u(x) - u(y))^{2}k(x, y) d\mu(y)$$

To finish, we are going to show there is a universal constant ε_0 such that

$$\int_{R_{2-k_{\rho}}(x)\backslash G_{x}} (u(x) - u(y))^{2} k(x,y) \ d\mu(y) \ge \varepsilon_{0} |D|_{k}^{2} u(x)$$

The key lemma, adapted (3/3)

It is here that we use most of our assumptions on k(x, y) (writing $r := 2^{-k}\rho$)

$$\int_{R_r(x)\backslash G_x} (u(x) - u(y))^2 k(x, y) d\mu(y)$$

$$\geq \lambda r^{-N-\alpha} \int_{R_r(x)\backslash G_x} |D|_k^2 u(x) d(x, y)^\alpha d\mu(y)$$

$$\geq C^{-1} \lambda r^{-N} |D|_k^2 u(x) \mu(R_{2^{-k}\rho}(x) \backslash G_x).$$

The assumptions on $\mu(\cdot)$ imply

$$\mu(R_r(x) \setminus G_x) \ge C^{-1}r^N$$

Combining the inequalities, we are done.

The lemma immediately implies there is a universal k_0 such that given u and x, then for some $k \leq k_0$ we have

$$\mu(R_{2^{-k}\rho}(x) \cap G_x) \ge \frac{1}{2}\mu(R_{2^{-k}\rho}(x)).$$

What choice of ρ yields useful information?

Let us choose ρ so u is not far from u(x) in $B_{\rho}(x)$.

Let us take

$$\rho = \left(\frac{|u(x)|^2}{2|D|_k^2 u(x)}\right)^{\frac{1}{\alpha}}$$

Then,

$$y \in B_{c\rho}(x) \cap G_x \Rightarrow (u(x) - u(y))^2 \le |D|_{\mu}^2 u(x) \rho^{\alpha}$$
$$\Rightarrow |u(x) - u(y)| \le \frac{1}{4} |u(x)|$$
$$\Rightarrow |u(x)| \le \frac{1}{4} |u(x)| + |u(y)|.$$

Conclusion: $|u(x)| \leq 2|u(y)|$ for y in good portion of $B_{c\rho}(x)$.

This information gives a relation between $||u||_{L^q}$ and u(x).

$$\int_{M} |u(y)|^{q} d\mu(y) \ge \int_{B_{c\rho}(x)} |u(y)|^{q} d\mu(y)$$

$$\ge C^{-1} \mu(B_{c\rho}) |u(x)|^{q}.$$

Using again the assumption on μ ,

$$||u||_q^q \ge C^{-1} \rho^N |u(x)|^q = C^{-1} \left(\frac{|u(x)|^2}{2|D|_k^2 u(x)} \right)^{\frac{N}{\alpha}} |u(x)|^q$$

Rearranging, we get the desired inequality:

$$|u(x)|^{2+\frac{\alpha q}{N}} \le C||u||_q^{\frac{\alpha q}{N}}|D|_k^2 u(x).$$

Let us see this inequality for $M = \mathbb{R}^N$ and $(-\Delta)^{\frac{\alpha}{2}}$,

$$|u(x)|^{2+\frac{\alpha q}{N}} \le C||u||_{L^q(\mathbb{R}^N)}^{\frac{\alpha q}{N}} \int_{\mathbb{R}^N} \frac{(u(x)-u(y))^2}{|x-y|^{N+\alpha}} dy$$

Proof of the Sobolev inequality

If $q = \frac{2N}{N-\alpha}$, the exponents simplify to

$$|u(x)|^q = |u(x)|^{\frac{2N}{N-\alpha}} \le C||u||_q^{\frac{\alpha q}{N}}|D|_k^2 u(x).$$

Integrating,

$$\int_{M} |f(x)|^{q} d\mu(x) \leq C \|f\|_{q}^{\frac{q\alpha}{N}} \int_{M} D_{k} f(x) d\mu(x)$$

$$\Rightarrow \|f\|_{q}^{q(1-\frac{\alpha}{N})} \leq C \mathcal{E}_{k}(u)$$

Since $q(1 - \frac{\alpha}{N}) = 2$, we obtain the inequality.

The ABP estimate

Let us now go to the non-divergence setting.

Consider the operator

$$Lu(x) = \int_{\mathbb{R}^d \setminus \{0\}} (u(x+y) - u(x))k(x,y)dy, \quad k(x,\cdot) \text{ even.}$$

We also consider the Dirichlet problem

$$Lu(x) = f(x) \text{ in } \Omega, \ u = 0 \text{ in } \mathbb{R}^d \setminus \Omega.$$

The ABP estimate

Dirichlet problem

$$Lu(x) = f(x)$$
 in Ω , $u = 0$ in $\mathbb{R}^d \setminus \Omega$.

Problem: Find out for which k and p we have

$$||u||_{L^{\infty}(\Omega)} \le C||f||_{L^{p}(\Omega)}$$

where C is independent of u, and in fact $C = C(k, \Omega, p)$. (the dependence in K being indifferent to its regularity)

The ABP estimate

Example:
$$L = -(-\Delta)^{\frac{\alpha}{2}}$$
, $\Omega = B_1$.

From the formula for the fundamental solution, one gets

$$||u||_{L^{\infty}(\Omega)} \le C||f||_{L^{p}(\Omega)}, \ p > \frac{2d}{\alpha}.$$

For some $C = C(d, p, \alpha)$.

The ABP estimate

More concretely, we ask: for L of the form

$$k(x,y) = \frac{a(x,y)}{|y|^{d+\alpha}}$$
 with $\lambda \le a \le \Lambda$.

Can one prove an estimate

$$||u||_{L^{\infty}(\Omega)} \le C||f||_{L^{p}(\Omega)}$$

for some $p < \infty$ and C depending only on α, d, λ , and Λ ?.

The classical ABP estimate

Consider the second order differential operator

$$L(u,x) = \operatorname{tr}(A(x)D^2u(x))$$

where A is smooth and $\lambda I \leq A \leq \Lambda I$, and the problem

$$Lu = f \text{ in } \Omega$$
$$u = 0 \text{ in } \partial \Omega$$

Theorem (Aleksandrov-Bakelman-Pucci)

There is a constant $C = C(\lambda, d, |\Omega|)$ such that

$$||u_-||_{L^{\infty}(\Omega)} \le C||f||_{L^d(K_u)}$$

Where
$$K_u = \{x \in \Omega \mid u = \Gamma_u\}.$$

ABP and second order equations

A very brief list of subsequent results using this estimate

- 1. Holder estimates for equations in non-divergence form
- 2. $C^{2,\alpha}$ regularity for convex fully nonlinear equations
- 3. Obstacle problem
- 4. Stochastic homogenization
- 5. $W^{2,p}$ theory for fully nonlinear equations
- 6. Integrability for the *L*-Green function
- 7. Strong maximum principles in small domains

ABP and integro-differential equations

 L^{∞} version is sufficient – L^{p} analogue is required

The available estimates for $\alpha < 2$ do not go as far.

- 1. Holder estimates for equations in non-divergence form
- 2. $C^{\alpha+\beta}$ regularity for convex fully nonlinear equations
- 3. Obstacle problem
- 4. Stochastic homogenization
- 5. $W^{\alpha,p}$ theory
- 6. Integrability for the *L*-Green function
- 7. Strong maximum principles

An ABP-type estimate for integro-diff. equations

Consider a very special type of kernel

$$k(x,y) = \frac{a(x,y)}{|y|^{d+\alpha}}$$
 where $a(x,y) = (2-\alpha)(A(x)\hat{y},\hat{y}).$

Where $A(x) \ge 0$ and $tr(A(x)) \ge \lambda$ for all x.

Theorem (with Schwab, 2012)

There is a constant $C = C(\alpha, \lambda, d, |\Omega|)$ such that

$$||u_-||_{L^{\infty}(\Omega)} \le C||f||_{L^{\infty}(K_{\alpha,u})}^{\frac{2-\alpha}{\alpha}} ||f||_{L^d(K_{\alpha,u})}^{\frac{\alpha}{2}}.$$

Where
$$K_{\alpha,u} = \{x \in \Omega \mid u = \Gamma_{\alpha,u}\}.$$

An improvement: removing the L^{∞} dependence

At least for the linear Dirichlet problem, an interpolation argument leads to a bound in terms of just L^p .

Theorem (with N. Masmoudi)

For any $p > \frac{2d}{\alpha}$ there is a $C = C(\lambda, d, |\Omega|, p)$ such that

$$||u_-||_{L^{\infty}(\Omega)} \le C||f||_{L^p(\Omega)}.$$

$$\exists \ p < rac{2d}{lpha} \ with \ p = p(\lambda, \Lambda, d) \ and \ C = C(\lambda, \Lambda, d) \ such \ that$$

$$||u_-||_{L^{\infty}(\Omega)} \le C||f||_{L^p(\Omega)}.$$

Let us explain the proof of the more recent result, taking the original one with Schwab as a starting point.

Idea: If $||f||_{L^{\infty}} \leq 1$, the modified ABP+Hölder yields

$$||u||_{\infty} \le C||f||_{L^d(\Omega)}^{\frac{\alpha}{2}} \Rightarrow ||u||_{\infty} \le C'||f||_{L^{\frac{2d}{\alpha}}(\Omega)}$$

To handle $||f||_{L^{\infty}}$ in general, express u as a sum, and interpolate with a L^p -norm of f with $p > 2d/\alpha$.

Fix $f \geq 0$. The layer decomposition of f says that

$$f(x) = \int_0^\infty \chi_{E_r}(x) dr, \quad E_r := \{f > r\}.$$

Then, define u_r (r > 0) as the solution* to the problem

$$Lu_r(x) = \chi_{E_r} \text{ in } \Omega, \ u_r = 0 \text{ in } \mathbb{R}^d \setminus \Omega.$$

The linearity of the equation, and the existence+uniqueness of the problem yields

$$u(x) = \int_0^\infty u_r(x) dr.$$

Fix R > 0 and break the previous integral in two

$$||u||_{\infty} \le \int_{0}^{R} ||u_{r}||_{\infty} dr + \int_{R}^{\infty} ||u_{r}||_{\infty} dr$$

Now, applying the modified ABP estimate

$$||u_r||_{\infty} \le C||\chi_{E_r}||_{L^{\infty}(\Omega)}^{\frac{2-\alpha}{2}}||\chi_{E_r}||_{L^{d}(\Omega)}^{\frac{\alpha}{2}}.$$

Which can be used in two extreme ways, either

$$||u_r||_{L^{\infty}(\Omega)} \le C, \quad ||u_r||_{L^{\infty}(\Omega)} \le C|E_r|^{\frac{\alpha}{2d}}$$

We conclude that

$$||u||_{\infty} \le CR + R^{\frac{\alpha p}{2d}} ||u||_{L^p(\Omega)}^{1 - \frac{\alpha p}{2d}}$$

Minimizing the right hand side in R we get the estimate.

