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Overview

Two problems

A pointwise inequality

*The classical ABP estimate (and a linear estimate)



Two problems
Problem #1: Sobolev for singular jump measures

An important problem is understanding the regularity of
solutions to the equation given by an energy of the form

Eν(u) :=

∫
RN

∫
RN

(u(x)− u(y))2ν(x, dy)dx

Precisely: determine which ν’s yield Hölder estimates, as well as
Harnack inequality.

As we discussed earlier, the case ν 6= k(x, y)dy is very delicate.



Two problems
Problem #1: Sobolev for singular jump measures

Problem 1.
Characterize those ν’s for which we have

‖u‖2Lp(RN ) ≤ CEν(u), p > 2.

To emphasize: particularly we want to consider ν’s that may
not have a density with respect to Lebesgue meausure.



Two problems
Problem #1: Sobolev for singular jump measures

The problem might become more tractable if one thinks about
a harder one first: weighted Sobolev inequalities.

Problem 1’.
Characterize when does a weight v and measure ν are such that(∫

RN
v(x)|u(x)|p dx

) 2
p

≤ CEν(u).

Of course, the previous problem is the case v ≡ 1.



Two problems
Weighted Sobolev inequalities

(Local) Weighted Sobolev inequalities (v, w ≥ 0)(∫
v(x)|φ(x)|q dx

)2/q

≤ C
∫
w(x)|∇φ(x)|2 dx

A theorem of Sawyer–Wheeden (1992) says: Suppose 2 < q and
that v and w satisfy a certain doubling condition, then the
above holds if and only if

sup
B
|B|

1
n
−1

(∫
B
v(x) dx

) 1
q
(∫

B
w(x)−1 dx

) 1
2

<∞

This is known as the Ap,q condition.



Two problems
Weighted Sobolev inequalities

One idea is that by allowing A(x) to be quite degenerate,
equations such as ∫

w(x)|∇u|2 dx

may show a bigger variety of phenomena (estimates with
different scalings). Then, second order theory gets a bit richer
and closer (although still far) from the richness of∫ ∫

(u(x)− u(y))2ν(x, dy)dx

It may be interesting to get a relation for ν and v similar to the
Ap,q condition which determines the validity of a Sobolev ineq.



Two problems
Weighted Sobolev inequalities

Such inequalities are particularly useful when understanding
linear divergence equations with a potential (“Schrödinger”)

−div(A(x)∇φ) + v(x)φ = 0,

where A(x) ≥ w(x)I, and w(x) may become zero somewhere.



Two problems
Teaser for Problem 2.

Exercise: For a smooth, non-negative f(v) we have∫
Rd
f(v)2 dv ≤ 4

∫
Rd
a(v)|∇

√
f(v)|2 dv

where a = (−∆)−1f .



Two problems
Teaser for Problem 2.

Exercise: For a smooth, non-negative f(v) we have∫
Rd
f(v)2 dv ≤ 4

∫
Rd
a(v)|∇

√
f(v)|2 dv

where a = (−∆)−1f .

Proof: The integral on the right has the form

C(d)

∫
Rd

∫
Rd
|v − w|2−df(w)|∇

√
f(v)|2 dwdv

Use the symmetry of the kernel + the arithmetic-geometric
mean inequality, integrate by parts the resulting expression.



Two problems
Teaser for Problem 2.

Exercise: For f(v) as before we have∫
Rd
f(v)2 dv ≤ 4

∫
Rd

(A∇
√
f(v),∇

√
f(v)) dv

where A = A[f ] is such that div(divA) = −f .

This inequality is equivalent to the monotonicity of the entropy
in the homogeneous Landau equation.

(see Gressman–Krieger–Strain ’12)



Two problems
Problem #2: Best constants in a weighted inequality.

Problem 2.
Given a smooth, non-negative f(v), prove∫

Rd
fφ2 dv ≤ C

∫
Rd
a|∇φ|2 dv ∀ φ.

What can be said about the best constant C = C(f)?.

Note: This a very special kind of weighted Poincaré
inequality!, since the weights are related by

−∆f = a.

An important and well studied instance is f = |v|−m, where one
gets Hardy inequalities.



Two problems
The Landau equation

The homogeneous Landau equation describes the evolution of a
density f = f(v, t) via a quadratic evolution equation

∂tf = Q(f, f)

Where Q(f, f) is given by

div

(∫
R3

Φ(w − v)Π(w − v) (f(w)∇f(v)− f(v)∇f(w)) dw

)
Here Φ(z) = cγ |z|2+γ (γ ∈ [−3, 0]), Π(z) = I− ẑ ⊗ ẑ.
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Two problems
The Landau equation

Moving the divergence inside the integral, the equation becomes

∂tf = div(A∇f − f∇a) = tr(AD2f) + hf

where

A = f ∗
(
cγ |v|3+γΠ(z)

)
a = tr(A) = (−∆)

1+γ
2 f

h = −∆a = (−∆)
3+γ
2 f



Two problems
The Landau equation

Consider the case γ = −3. Then, the equation takes the form

∂tf = div(A∇f − f∇a)

= tr(AD2f) + f2.

The quadratic term could potentially lead f to blow up.

Scaling wise, tr(AD2f) ≈ a ∆f –so, ideally, if f gets bad, the
diffusion coefficient becomes strong.



Two problems
The Landau equation

Take f(t = 0) = fin smooth initial data. It is well known that

∂tf = ∆f + f2 ⇒ finite time blow up.

Meanwhile

∂tf = f∆f + f2 ⇒ global smooth solutions.



Two problems
The Landau equation

Krieger and Strain proposed the equation

∂tf = a∆f + εf2, ε ∈ [0, 1],

and proved existence of a global smooth solution in the radial
case, when ε < 74/75. The idea being that ε = 1 gives an
isotropic analogue of the Landau equation.

Theorem (with Gualdani)

If ε = 1, the above equation has a global smooth solution if the
initial data is symmetric and decreasing.



Two problems
The Landau equation

The proof also gives a conditional result for the Landau
equation: f stays bounded up to t = T as long as

sup
r
r2

∫
Br
f(v, t) dv∫

Br
af(·,t)(v) dv

<
1

96
, ∀ t < T.

Recall that a = (−∆)−1f .

Exercise. For any non-negative f ∈ L1 and any r we have

r2

∫
Br
f(v) dv∫

Br
a(v) dv

≤ 3.

Note: Such a condition almost implies a weighted inequality.



A pointwise inequality
Setup

Consider a measure metric space M , distance d, measure µ.

• There are constants c0, c1 such that

c0r
N ≤ µ(Br(x)) ≤ c1r

N ∀ r < diam(M).

• We are given a kernel k(x, y) in M , and

k(x, y) ≥ λd(x, y)−N−α,

for some λ,N > 0 and α ∈ (0, 2).



A pointwise inequality
Setup

The theorem involves an integral analogue of |∇u(x)| . . .

Given u ∈ Lip(M), we define the function

|D|2ku(x) :=

∫
M

(u(x)− u(y))2 k(x, y)dµ(y)

Evidently, the integral of this function is equal to

Ek(u) :=

∫
M

∫
M

(u(x)− u(y))2 k(x, y)dµ(x)dµ(y).



A pointwise inequality
The main result

Theorem (forthcoming)

There is a constant C given by α,N, λ, and the ci such that

|u(x)|2+αq
N ≤ C‖u‖

αq
N

Lq(µ)|D|
2
ku(x).

Corollary

There is a constant C (same dependence as before) such that

‖u‖2Lq(µ) ≤ CEµ(u), q :=
2N

N − α
.
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αq
N

Lq(µ)|D|
2
ku(x).

Corollary

There is a constant C (same dependence as before) such that

‖u‖2Lq(µ) ≤ CEµ(u), q :=
2N

N − α
.



A key lemma

The proof is based on an a very interesting lemma which was
used in one of the key steps for the ABP-type estimate obtained
with Schwab (2012).

Lemma

Suppose that u : Rd → R satisfies

−(−∆)
α
2 u(x0) ≤ f(x0)

at a point x0 where u achieves its minimum.

|u(x0)| ≤ C|f(x0)|
2−α
2 |(−∆)−1+α

2 u(x0)|
α
2 .



The key lemma, adapted (1/3)

For u and x, define the “good set”

Gx := {y | (u(y)− u(x))2 ≤ |D|2ku(x)d(x, y)α}

Fix ρ > 0. Given k ∈ N, we will say it is bad if

µ
(
R2−kρ \Gx

)
≥ 1

2µ(R2−kρ)

Lemma

There is a universal constant C such that

#{ bad k′s} ≤ C.

Important: note the constant is independent of ρ.



The key lemma, adapted (2/3)

Proof. Fix ρ > 0, then

|D|2ku(x) =

∫
M

(u(x)− u(y))2k(x, y) dµ(y)

≥
∫
M\Gx

(u(x)− u(y))2k(x, y) dµ(y)

≥
∑

bad k′s

∫
R

2−kρ(x)\Gx
(u(x)− u(y))2k(x, y) dµ(y)

To finish, we are going to show there is a universal constant ε0

such that∫
R

2−kρ(x)\Gx
(u(x)− u(y))2k(x, y) dµ(y) ≥ ε0|D|2ku(x)



The key lemma, adapted (3/3)

It is here that we use most of our assumptions on k(x, y)
(writing r := 2−kρ)∫

Rr(x)\Gx
(u(x)− u(y))2k(x, y) dµ(y)

≥ λr−N−α
∫
Rr(x)\Gx

|D|2ku(x)d(x, y)α dµ(y)

≥ C−1λr−N |D|2ku(x)µ(R2−kρ(x) \Gx).

The assumptions on µ(·) imply

µ(Rr(x) \Gx) ≥ C−1rN

Combining the inequalities, we are done.



Proof of the pointwise inequality

The lemma immediately implies there is a universal k0 such
that given u and x, then for some k ≤ k0 we have

µ(R2−kρ(x) ∩Gx) ≥ 1
2µ(R2−kρ(x)).

What choice of ρ yields useful information?

Let us choose ρ so u is not far from u(x) in Bρ(x).



Proof of the pointwise inequality

Let us take

ρ =

(
|u(x)|2

2|D|2ku(x)

) 1
α

Then,

y ∈ Bcρ(x) ∩Gx ⇒ (u(x)− u(y))2 ≤ |D|2µu(x)ρα

⇒ |u(x)− u(y)| ≤ 1
4 |u(x)|

⇒ |u(x)| ≤ 1
4 |u(x)|+ |u(y)|.



Proof of the pointwise inequality

Conclusion: |u(x)| ≤ 2|u(y)| for y in good portion of Bcρ(x).

This information gives a relation between ‖u‖Lq and u(x).∫
M
|u(y)|q dµ(y) ≥

∫
Bcρ(x)

|u(y)|q dµ(y)

≥ C−1µ(Bcρ)|u(x)|q.

Using again the assumption on µ,

‖u‖qq ≥ C−1ρN |u(x)|q = C−1

(
|u(x)|2

2|D|2ku(x)

)N
α

|u(x)|q



Proof of the pointwise inequality

Rearranging, we get the desired inequality:

|u(x)|2+αq
N ≤ C‖u‖

αq
N
q |D|2ku(x).

Let us see this inequality for M = RN and (−∆)
α
2 ,

|u(x)|2+αq
N ≤ C‖u‖

αq
N

Lq(RN )

∫
RN

(u(x)− u(y))2

|x− y|N+α
dy



Proof of the Sobolev inequality

If q = 2N
N−α , the exponents simplify to

|u(x)|q = |u(x)|
2N
N−α ≤ C‖u‖

αq
N
q |D|2ku(x).

Integrating,∫
M
|f(x)|q dµ(x) ≤ C‖f‖

qα
N
q

∫
M
Dkf(x) dµ(x)

⇒ ‖f‖q(1− α
N )

q ≤ CEk(u)

Since q(1− α
N ) = 2, we obtain the inequality.



The ABP estimate

Let us now go to the non-divergence setting.

Consider the operator

Lu(x) =

∫
Rd\{0}

(u(x+ y)− u(x))k(x, y)dy, k(x, ·) even.

We also consider the Dirichlet problem

Lu(x) = f(x) in Ω, u = 0 in Rd \ Ω.



The ABP estimate

Dirichlet problem

Lu(x) = f(x) in Ω, u = 0 in Rd \ Ω.

Problem: Find out for which k and p we have

‖u‖L∞(Ω) ≤ C‖f‖Lp(Ω)

where C is independent of u, and in fact C = C(k,Ω, p).

(the dependence in K being indifferent to its regularity)



The ABP estimate

Example: L = −(−∆)
α
2 , Ω = B1.

From the formula for the fundamental solution, one gets

‖u‖L∞(Ω) ≤ C‖f‖Lp(Ω), p >
2d

α
.

For some C = C(d, p, α).



The ABP estimate

More concretely, we ask: for L of the form

k(x, y) =
a(x, y)

|y|d+α
with λ ≤ a ≤ Λ.

Can one prove an estimate

‖u‖L∞(Ω) ≤ C‖f‖Lp(Ω)

for some p <∞ and C depending only on α, d, λ, and Λ?.



The classical ABP estimate

Consider the second order differential operator

L(u, x) = tr(A(x)D2u(x))

where A is smooth and λI ≤ A ≤ ΛI, and the problem

Lu = f in Ω

u = 0 in ∂Ω

Theorem (Aleksandrov–Bakelman–Pucci)

There is a constant C = C(λ, d, |Ω|) such that

‖u−‖L∞(Ω) ≤ C‖f‖Ld(Ku)

Where Ku = {x ∈ Ω | u = Γu}.



ABP and second order equations

A very brief list of subsequent results using this estimate

1. Holder estimates for equations in non-divergence form

2. C2,α regularity for convex fully nonlinear equations

3. Obstacle problem

4. Stochastic homogenization

5. W 2,p theory for fully nonlinear equations

6. Integrability for the L-Green function

7. Strong maximum principles in small domains



ABP and integro-differential equations
L∞ version is sufficient – Lp analogue is required

The available estimates for α < 2 do not go as far.

1. Holder estimates for equations in non-divergence form

2. Cα+β regularity for convex fully nonlinear equations

3. Obstacle problem

4. Stochastic homogenization

5. Wα,p theory

6. Integrability for the L-Green function

7. Strong maximum principles



An ABP-type estimate for integro-diff. equations

Consider a very special type of kernel

k(x, y) =
a(x, y)

|y|d+α
where

a(x, y) = (2− α)(A(x)ŷ, ŷ).

Where A(x) ≥ 0 and tr(A(x)) ≥ λ for all x.

Theorem (with Schwab, 2012)

There is a constant C = C(α, λ, d, |Ω|) such that

‖u−‖L∞(Ω) ≤ C‖f‖
2−α
α

L∞(Kα,u)‖f‖
α
2

Ld(Kα,u)
.

Where Kα,u = {x ∈ Ω | u = Γα,u}.



An improvement: removing the L∞ dependence

At least for the linear Dirichlet problem, an interpolation
argument leads to a bound in terms of just Lp.

Theorem (with N. Masmoudi)

For any p > 2d
α there is a C = C(λ, d, |Ω|, p) such that

‖u−‖L∞(Ω) ≤ C‖f‖Lp(Ω).

∃ p < 2d
α with p = p(λ,Λ, d) and C = C(λ,Λ, d) such that

‖u−‖L∞(Ω) ≤ C‖f‖Lp(Ω).



Proof in an ideal, simple world

Let us explain the proof of the more recent result, taking the
original one with Schwab as a starting point.

Idea: If ‖f‖L∞ ≤ 1, the modified ABP+Hölder yields

‖u‖∞ ≤ C‖f‖
α
2

Ld(Ω)
⇒ ‖u‖∞ ≤ C ′‖f‖

L
2d
α (Ω)

To handle ‖f‖L∞ in general, express u as a sum, and
interpolate with a Lp-norm of f with p > 2d/α.



Proof in an ideal, simple world

Fix f ≥ 0. The layer decomposition of f says that

f(x) =

∫ ∞
0

χEr(x) dr, Er := {f > r}.

Then, define ur (r > 0) as the solution* to the problem

Lur(x) = χEr in Ω, ur = 0 in Rd \ Ω.

The linearity of the equation, and the existence+uniqueness of
the problem yields

u(x) =

∫ ∞
0

ur(x) dr.



Proof in an ideal, simple world

Fix R > 0 and break the previous integral in two

‖u‖∞ ≤
∫ R

0
‖ur‖∞ dr +

∫ ∞
R
‖ur‖∞ dr

Now, applying the modified ABP estimate

‖ur‖∞ ≤ C‖χEr‖
2−α
2

L∞(Ω)‖χEr‖
α
2

Ld(Ω)
.

Which can be used in two extreme ways, either

‖ur‖L∞(Ω) ≤ C, ‖ur‖L∞(Ω) ≤ C|Er|
α
2d



Proof in an ideal, simple world

We conclude that

‖u‖∞ ≤ CR+R
αp
2d ‖u‖1−

αp
2d

Lp(Ω)

Minimizing the right hand side in R we get the estimate.



Thank you!
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