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1 Basic equation

Aim: study of a long-time behavior of the following evolution equation

∂u

∂t
= κ

+(a+ ∗ u)−mu− κ
−u(a− ∗ u). (1)

Classical solution: u ∈ C(R+ → E) ∩ C1((0,∞) → E).
Space: E = BUC(Rd) or E = L∞(Rd).
Dispersion and competition kernels: 0 ≤ a± ∈ L1(Rd), with constant
rates κ± > 0.
Mortality rate (constant): m > 0.

ˆ

Rd
a+(y)dy=

ˆ

Rd
a−(y)dy = 1, (a±∗u)(x, t) :=

ˆ

Rd
a±(x−y)u(y, t)dy.

Initial condition: u(x, 0) = u0(x), x ∈ R
d.

Constant solutions: u ≡ 0, u ≡ θ :=
κ
+ −m

κ− .

Theorem 1 (Existence and uniqueness). Let u0 ∈ E and u0 ≥ 0.
Then, for any T > 0, there exists a unique solution u ≥ 0 to the
equation (1) in E, such that u ∈ C([0, T ], E) ∩ C1((0, T ], E).

Theorem 2 (Global boundedness). Let a− be separated from zero
at the origin and a+ has a regular behavior at ∞, for example,

a+(x) ≤ A

1 + |x|d+ε
, A, ε > 0.

Then 0 ≤ u0 ∈ BUC(Rd) implies

sup
t≥0

sup
x∈Rd

u(x, t) < ∞.

Note that if a− = δ−1+δ1
2 , then there exist bounded u0 and compactly

supported a+ such that ‖u(·, t)‖L∞(Rd) → ∞, as t → ∞.

From now, we will suppose that

κ
+ > m, (A1)

κ
+a+(x) ≥ (κ+ −m)a−(x). (A2)

If (A1) fails, then the solution tends uniformly to zero. In particular the
constant solution θ is positive if and only if (A1) holds.
The assumption (A2) yields a stability of θ and provides a comparison
principle:

Theorem 3 (Comparison principle).

• 0 ≤ u0 ≤ θ = κ
+−m
κ− implies 0 ≤ u(x, t) ≤ θ, t ≥ 0, x ∈ R

d,

• 0 ≤ u0 ≤ v0 ≤ θ implies u(x, t) ≤ v(x, t), t ≥ 0, x ∈ R
d.

2 History of derivation

• ‘Crabgrass model’ on Z
d, for κ+ = κ

−, a+ = a−

Durrett’88 (Bull. AMS)

• (Heuristic) A Spatial Ecology model on R
d

Bolker/Pacala’97 (Amer. Naturalist)

• Stochastic approach, finite systems in R
d, E = L1(Rd)

Fournier/Méléard’04 (Ann. Appl. Prob.)

• Semigroup approach for the derivation of kinetic equations, infinite
systems in R

d, E = L∞(Rd) + some conditions
Finkelshtein/Kondratiev/Kutoviy’12 (J. Funct. Anal.)

• Evolution in a scale of L∞-spaces, weaker conditions
Finkelshtein/Kondratiev/Kozitsky/Kutoviy’15

(Math. Models & Meth. Appl. Sci.)

3 Similar equations

∂u

∂t
(x, t) = α∆u(x, t) + f (u(x, t)), (F-KPP)

where f (u) = ku(1− u), k > 0, is a particular case.
Fisher’37, Kolmogorov/Petrovsky/Piskunov’37, Aronson/Weinberger’78

∂u

∂t
(x, t) = κ

+((a+ ∗ u)(x, t)− u(x, t)) + f (u(x, t)).

Schumacher’80, Coville/Dupaigne’05,’07, Coville/Dávila/Martı́nez’08,

Yagisita’09, Li/Sun/Wang’10, Garnier’11, Sun/Li/Wang’11,

Aguerrea/Gomez/Trofimchuk’12, Bonnefon/Coville/Garnier/Roques’14

∂u

∂t
(x, t) = ∆u(x, t) + F (u(x, t), (a− ∗ u)(x, t)),

where F (u, v) = ku(1− v), k > 0, is a particular case.
Gourley’00, Genieys/Volpert/Auger’06,

Berestycki/Nadin/Perthame/Ryzhik’09,

Apreutesei/Bessonov/Volpert/Vougalter’10, Nadin/Perthame/Tang’11,

Fang/Zhao’11, Alfaro/Coville’12, Hamel/Ryzhik’14,

Achleitner/Kuehn’15, Faye/Holzer’15

4 Constant speed of propagation

For details see:
Finkelshtein/Kondratiev/T.’15 (ArXiv:1508.02215)

Let ξ ∈ Sd−1 be fixed and there exist λ > 0 such that

ˆ

Rd

a+(x)eλx·ξdx < ∞. (A3,a)

The assumption states that a+ decays fast in a direction ξ (light-tailed).

Definition 4.A solution u to the equation (1) is said to be a trav-
eling wave solution with a speed c ∈ R and in a direction ξ if and
only if there exists a profile φ ∈ Mθ(R) (the set of all decreasing
and right-continuous functions f : R → [0, θ]), such that

φ(−∞) = θ, φ(+∞) = 0,

u(x, t) = φ(x · ξ − ct), t ≥ 0, a.a. x ∈ R.

c∗(ξ) = inf
λ>0

G(λ) := inf
λ>0

1

λ

(

κ
+
ˆ

Rd

a+(x)eλx·ξdx−m
)

. (2)

Theorem 5. For any c ≥ c∗(ξ), there exists a unique traveling
wave solution to (1) with a profile φ ∈ Mθ(R) and the speed c.
For any c < c∗(ξ), such a traveling wave solution does not exist.

• Since a+ is not supposed to be symmetric, there exists a+ such that

c∗(ξ) < 0.

• If c 6= 0, the profile φ ∈ C∞
b (R), and φ ∈ C(R) otherwise.

• Let λ0 be such that c = G(λ0). For some D > 0,

φ(t) ∼ Dtj−1e−λ0t, t → ∞,

where j = 1, for c > c∗. Both cases j = 1 and j = 2 are possible if
c = c∗.

Let, for some λ > 0, (A3,a) holds for all ξ ∈ Sd−1.

We define Γ := {x ∈ R
d | x · ξ ≤ c∗(ξ), for all ξ ∈ Sd−1}. (3)

Theorem 6. Let u0 be such that, for all λ > 0,

esssup
x∈Rd

u0(x)e
λ|x| < ∞,

and let u be the corresponding solution to (1). Then, for any ε > 0,

lim
t→∞

esssup
x 6∈(1+ε)tΓ

u(x, t) = 0.

Let u0 6≡ 0. Then, for any ε ∈ (0, 1),

lim
t→∞

essinf
x∈(1−ε)tΓ

u(x, t) = θ.

x

u

θ

tc∗(1)−tc∗(−1)

εt−εt

εt−εt

−(1+ε)c∗(−1)τ

−(1−ε)c∗(−1)τ

(1−ε)c∗(1)τ

(1+ε)c∗(1)τ

x

tτ

x=−c∗(−1)t

x = c∗(1)t
u(x, t) → 0

u(x, t) → 0

u(x, t) → θ

5 Acceleration

(Paper in preparation)

In the previous section both a+ and u0 were fast-decaying, which provides
a finite speed of propagation of the solution. On the other hand if one
of the functions is slowly decaying an acceleration appears. Let the
following assumption holds, for any λ > 0,

ˆ

Rd

(a+ ∗ u0)(x)eλ|x|dx = ∞. (A3,b)

In order to get asymptotic results, it is necessary to introduce functions
with a regular decay.
We say that a bounded integrable function b : R → R+ is long-tailed if

b(s + r) ∼ b(s), s → ∞, r > 0.

A bounded integrable function c : R → R+ is sub-exponential on R if it
is long-tailed and

(c ∗ c)(s) ∼ 2c(s), s → ∞.

For a deeper discussion of the definitions we refer on the books by
Borovkov/Borovkov’08

Foss/Korshunov/Zachary’11

Theorem 7 (Inside the front). Let 0 ≤ u0 ≤ θ be separated form
zero at the origin and b(s) be long-tailed, such that, for large s,
b(s) is decreasing and log b(s) is convex. Suppose that

(a+ ∗ u0)(x) ≥ b(|x|), x ∈ R
d.

Then, for any small ε > 0,

lim
t→∞

essinf
|x|≤η((1−ε)t,b)

u(x, t) = θ, (4)

where η(s, b) = b−1(e(m−κ
+)s).

Theorem 8 (Outside the front). Suppose that c is sub-exponential
on R such that, for large s, c(s) is decreasing and log c(s) is convex.
Let 0 ≤ u0 ≤ θ and a+ be such that,

esssup
x∈Rd

u0(x)

c(|x|) < ∞, lim
|x|→∞

a+(x)|x|d−1

c(|x|) = 0.

Then for any small ε > 0,

lim
t→∞

esssup
|x|≥η((1+ε)t,c)

u(x, t) = 0, (5)

where η(s, c) = c−1(e(m−κ
+)s)

In the following examples η(t) := η(t, b) ∼ η(t, c), so that both (4) and
(5) hold, for the same η(t). Moreover η(t) ∼ η(t, a+ ∗ u0).
In particular if u(ρ(t), t) = λ ∈ (0, θ), then

ρ(t) ∈
(

η
(

(1−ε)t
)

, η
(

(1+ε)t
))

.

Example 1. u0(x) = o(a+(x)) ⇒ (a+ ∗ u0)(x) ∼ a+(x) =: b(x)

Then for |x| ≥ R > 0 and t sufficiently large,

1. a+(x) = e−|x|γ; η(t) ∼
(

(κ+−m)t
)
1

γ ,

2. a+(x) =
1

(1 + |x|2)p; η(t) ∼ exp
(κ

+−m

2p
t
)

,

3. a+(x) = exp(−(log |x|)2
2σ2

); η(t) ∼ exp
(

σ
√
2t).

Example 2. a+(x) = o(u0(x)) ⇒ (a+ ∗ u0)(x) ∼ u0(x) =: b(x)

If u0 satisfies one of the cases 1-3 instead of a+, then η(t) remains the
same.

x

u

θ

η(t)−η(t)

−η((1+ε)τ )

−η((1−ε)τ )

η((1−ε)τ )

η((1+ε)τ )

x

tτ

x = −η(t)

x = η(t)u(x, t) → 0

u(x, t) → 0

u(x, t) → θ
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