Long-time behavior in a doubly nonlocal Fisher-KPP equation

Pasha Tkachov

Basic equation

Aim: study of a long-time behavior of the following evolution equation

 $\frac{\partial u}{\partial t} = \varkappa^+ (a^+ \ast u) - mu - \varkappa^- u (a^- \ast u).$

Classical solution: $u \in C(\mathbb{R}_+ \to E) \cap C^1((0, \infty) \to E)$. Space: $E = BUC(\mathbb{R}^d)$ or $E = L^{\infty}(\mathbb{R}^d)$. Dispersion and competition kernels: $0 \leq a^{\pm} \in L^1(\mathbb{R}^d)$, with constant rates $\varkappa^{\pm} > 0$. Mortality rate (constant): m > 0.

$$\int a^{+}(y)dy = \int a^{-}(y)dy = 1, \ (a^{\pm}*u)(x,t) := \int a^{\pm}(x-y)u(y,t)dy.$$

Constant speed of propagation 4

For details see:

Finkelshtein/Kondratiev/T.'15 (ArXiv:1508.02215)

Let $\xi \in S^{d-1}$ be fixed and there exist $\lambda > 0$ such that

$$\int_{\mathbb{R}^d} a^+(x) e^{\lambda x \cdot \xi} dx < \infty.$$

(A3,a)

The assumption states that a^+ decays fast in a direction ξ (light-tailed). **Definition 4.** A solution u to the equation (1) is said to be a traveling wave solution with a speed $c \in \mathbb{R}$ and in a direction ξ if and

Acceleration 5

(Paper in preparation)

In the previous section both a^+ and u_0 were fast-decaying, which provides a finite speed of propagation of the solution. On the other hand if one of the functions is slowly decaying an acceleration appears. Let the following assumption holds, for any $\lambda > 0$,

$$\int_{\mathbb{R}^d} (a^+ * u_0)(x) e^{\lambda |x|} dx = \infty.$$
 (A3,b)

In order to get asymptotic results, it is necessary to introduce functions with a regular decay.

We say that a bounded integrable function $b : \mathbb{R} \to \mathbb{R}_+$ is long-tailed if

Theorem 1 (Existence and uniqueness). Let $u_0 \in E$ and $u_0 \geq 0$. Then, for any T > 0, there exists a unique solution $u \ge 0$ to the equation (1) in E, such that $u \in C([0,T], E) \cap C^{1}((0,T], E)$.

Theorem 2 (Global boundedness). Let a^- be separated from zero at the origin and a^+ has a regular behavior at ∞ , for example,

$$a^+(x) \le \frac{A}{1+|x|^{d+\varepsilon}}, \quad A, \varepsilon > 0.$$

Then $0 \le u_0 \in BUC(\mathbb{R}^d)$ implies

$$\sup_{t \ge 0} \sup_{x \in \mathbb{R}^d} u(x,t) < \infty.$$

Note that if $a^- = \frac{\delta_{-1} + \delta_1}{2}$, then there exist bounded u_0 and compactly supported a^+ such that $||u(\cdot,t)||_{L^{\infty}(\mathbb{R}^d)} \to \infty$, as $t \to \infty$.

From now, we will suppose that

 $\varkappa^+ > m,$ (A1) $\varkappa^{+}a^{+}(x) \ge (\varkappa^{+} - m)a^{-}(x).$ (A2)

If (A1) fails, then the solution tends uniformly to zero. In particular the constant solution θ is positive if and only if (A1) holds. The assumption (A2) yields a stability of θ and provides a comparison principle:

only if there exists a profile $\phi \in \mathcal{M}_{\theta}(\mathbb{R})$ (the set of all decreasing and right-continuous functions $f : \mathbb{R} \to [0, \theta]$, such that

> $\phi(-\infty) = \theta, \qquad \phi(+\infty) = 0,$ $u(x,t) = \phi(x \cdot \xi - ct), \quad t \ge 0, \text{ a.a. } x \in \mathbb{R}.$

Theorem 5. For any $c \geq c_*(\xi)$, there exists a unique traveling wave solution to (1) with a profile $\phi \in \mathcal{M}_{\theta}(\mathbb{R})$ and the speed c. For any $c < c_*(\xi)$, such a traveling wave solution does not exist.

• Since a^+ is not supposed to be symmetric, there exists a^+ such that $c_*(\xi) < 0.$ • If $c \neq 0$, the profile $\phi \in C_b^{\infty}(\mathbb{R})$, and $\phi \in C(\mathbb{R})$ otherwise. • Let λ_0 be such that $c = G(\lambda_0)$. For some D > 0, $\phi(t) \sim Dt^{j-1} e^{-\lambda_0 t}, t \to \infty,$ where j = 1, for $c > c_*$. Both cases j = 1 and j = 2 are possible if $c = c_{*}.$

 $b(s+r) \sim b(s), \ s \to \infty, \ r > 0.$

A bounded integrable function $c : \mathbb{R} \to \mathbb{R}_+$ is sub-exponential on \mathbb{R} if it is long-tailed and

 $(c * c)(s) \sim 2c(s), s \to \infty.$

For a deeper discussion of the definitions we refer on the books by Borovkov/Borovkov'08 Foss/Korshunov/Zachary'11

Theorem 7 (Inside the front). Let $0 \le u_0 \le \theta$ be separated form zero at the origin and b(s) be long-tailed, such that, for large s, b(s) is decreasing and $\log b(s)$ is convex. Suppose that

```
(a^+ * u_0)(x) \ge b(|x|), x \in \mathbb{R}^d.
```

Then, for any small $\varepsilon > 0$,

 $\lim_{t \to \infty} \operatorname{essinf}_{|x| \le \eta((1-\varepsilon)t,b)} u(x,t) = \theta,$

(4)

0.

where $\eta(s, b) = b^{-1}(e^{(m - \varkappa^+)s}).$

Theorem 8 (Outside the front). Suppose that c is sub-exponential on \mathbb{R} such that, for large s, c(s) is decreasing and $\log c(s)$ is convex. Let $0 \le u_0 \le \theta$ and a^+ be such that,

$$\operatorname{esssup}_{x \in \mathbb{R}^d} \frac{u_0(x)}{c(|x|)} < \infty, \qquad \lim_{|x| \to \infty} \frac{a^+(x)|x|^{d-1}}{c(|x|)} =$$

Then for any small $\varepsilon > 0$,

Theorem 3 (Comparison principle).

• $0 \le u_0 \le \theta = \frac{\varkappa^+ - m}{\varkappa^-}$ implies $0 \le u(x, t) \le \theta, t \ge 0, x \in \mathbb{R}^d$,

• $0 \le u_0 \le v_0 \le \theta$ implies $u(x,t) \le v(x,t), t \ge 0, x \in \mathbb{R}^d$.

History of derivation

• 'Crabgrass model' on \mathbb{Z}^d , for $\varkappa^+ = \varkappa^-$, $a^+ = a^-$ Durrett'88 (Bull. AMS) • (Heuristic) A Spatial Ecology model on \mathbb{R}^d Bolker/Pacala'97 (Amer. Naturalist) • Stochastic approach, finite systems in \mathbb{R}^d , $E = L^1(\mathbb{R}^d)$ Fournier/Méléard'04 (Ann. Appl. Prob.) • Semigroup approach for the derivation of kinetic equations, infinite systems in \mathbb{R}^d , $E = L^{\infty}(\mathbb{R}^d)$ + some conditions Finkelshtein/Kondratiev/Kutoviy'12 (J.Funct.Anal.) • Evolution in a scale of L^{∞} -spaces, weaker conditions Finkelshtein/Kondratiev/Kozitsky/Kutoviy'15 (Math. Models & Meth. Appl. Sci.)

3 Similar equations

 $\frac{\partial u}{\partial t}(x,t) = \alpha \Delta u(x,t) + f(u(x,t)),$ (F-KPP) Let, for some $\lambda > 0$, (A3,a) holds for all $\xi \in S^{d-1}$. We define $\Gamma := \{ x \in \mathbb{R}^d \mid x \cdot \xi \le c_*(\xi), \text{ for all } \xi \in S^{d-1} \}.$ (3)

Theorem 6. Let u_0 be such that, for all $\lambda > 0$,

 $\operatorname{esssup}_{x \in \mathbb{R}^d} u_0(x) e^{\lambda |x|} < \infty,$

and let u be the corresponding solution to (1). Then, for any $\varepsilon > 0$,

 $\lim_{t \to \infty} \operatorname{esssup}_{x \not\in (1+\varepsilon)t\Gamma} u(x,t) = 0.$

Let $u_0 \not\equiv 0$. Then, for any $\varepsilon \in (0, 1)$,

 $\lim_{t \to \infty} \operatorname{essinf}_{x \in (1-\varepsilon)t\Gamma} u(x,t) = \theta.$

 $\lim \text{esssup} u(x,t) = 0,$ (5) $t \! \to \! \infty |x| \! \ge \! \eta((1 \! + \! \varepsilon)t, c)$

where $\eta(s,c) = c^{-1}(e^{(m-\varkappa^+)s})$

In the following examples $\eta(t) := \eta(t, b) \sim \eta(t, c)$, so that both (4) and (5) hold, for the same $\eta(t)$. Moreover $\eta(t) \sim \eta(t, a^+ * u_0)$. In particular if $u(\rho(t), t) = \lambda \in (0, \theta)$, then

$\rho(t) \in \left(\eta\left((1-\varepsilon)t\right), \eta\left((1+\varepsilon)t\right)\right).$

Example 1. $u_0(x) = o(a^+(x)) \implies (a^+ * u_0)(x) \sim a^+(x) =: b(x)$ Then for $|x| \ge R > 0$ and t sufficiently large,

Example 2. $a^+(x) = o(u_0(x)) \implies (a^+ * u_0)(x) \sim u_0(x) =: b(x)$ If u_0 satisfies one of the cases 1-3 instead of a^+ , then $\eta(t)$ remains the

where f(u) = ku(1 - u), k > 0, is a particular case. Fisher'37, Kolmogorov/Petrovsky/Piskunov'37, Aronson/Weinberger'78

$$\frac{\partial u}{\partial t}(x,t) = \varkappa^+((a^+ * u)(x,t) - u(x,t)) + f(u(x,t)).$$

Schumacher'80, Coville/Dupaigne'05,'07, Coville/Dávila/Martínez'08, Yagisita'09, Li/Sun/Wang'10, Garnier'11, Sun/Li/Wang'11, Aguerrea/Gomez/Trofimchuk'12, Bonnefon/Coville/Garnier/Roques'14

 $\frac{\partial u}{\partial t}(x,t) = \Delta u(x,t) + F(u(x,t), (a^- * u)(x,t)),$

where F(u, v) = ku(1 - v), k > 0, is a particular case. Gourley'00, Genieys/Volpert/Auger'06, Berestycki/Nadin/Perthame/Ryzhik'09, Apreutesei/Bessonov/Volpert/Vougalter'10, Nadin/Perthame/Tang'11, Fang/Zhao'11, Alfaro/Coville'12, Hamel/Ryzhik'14, Achleitner/Kuehn'15, Faye/Holzer'15