Long-time behavior in a doubly

nonlocal Fisher— KPP equation

1 Basic equation

Aim: study of a long-time behavior of the following evolution equation

% =2 (a" *u) —mu — 2 ula” *u). (1)
Classical solution: v € C(Ry — E)NCY(0,00) = E).

Space: E = BUC(RY) or E = L®°(RY).

Dispersion and competition kernels: 0 < at € Ll(Rd), with constant
rates s~ > 0.

Mortality rate (constant): m > 0.

/Rd a“y)dy:/w a”(y)dy =1, (axu)(z,t) = /R a*(z—y)uly,)dy.

Initial condition: wu(z,0) = ug(z), = € RY.
9. xt —m

Constant solutions: © = 0, u

4

Theorem 1 (Existence and uniqueness). Let ug € E and ug > 0.

Then, for any T > 0, there exists a unique solution u > 0 to the
equation (1) in E, such that u € C([0,T], E)n CY(0,T], E).

Theorem 2 (Global boundedness). Let a™ be separated from zero
at the origin and a™ has a reqular behavior at oo, for example,

A
_|_
a (r) < :
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Then 0 < ug € BUC(RY) implies

sup sup u(x,t) < oo.
t>0 xeR4

A, e > 0.

Note that if a= = 5‘1; 51, then there exist bounded ug and compactly
supported a™ such that ||u(-, t)|| foo(mey — 00, as t — oo.

From now, we will suppose that

x> m, (A1)
wtat(x) > (7 —m)a (2). (A2)

[f (A1) fails, then the solution tends uniformly to zero. In particular the
constant solution 6 is positive if and only if (A1) holds.

The assumption (A2) yields a stability of # and provides a comparison
principle:

Theorem 3 (Comparison principle).

+

00 <ug < O==—="1implies 0 < u(x,t) <0,t>0, e R

o (0 <uy < vy <8O implies u(x,t) <wv(x,t),t >0, x € R4,

2 History of derivation

a”=a"
Durrett’88 (Bull. AMS)

o (Heuristic) A Spatial Ecology model on R?
Bolker/Pacala’97 (Amer. Naturalist)

e Stochastic approach, finite systems in R, E = Ll(Rd)
Fournier/Méléard’04 (Ann. Appl. Prob.)

e ‘Crabgrass model’” on 78 for st = 3

)

e Semigroup approach for the derivation of kinetic equations, infinite
systems in RY, F = LOO(Rd) + some conditions
Finkelshtein/Kondratiev/Kutoviy’12 (J. Funct. Anal.)
e Evolution in a scale of L°°-spaces, weaker conditions

Finkelshtein/Kondratiev/Kozitsky/Kutoviy’15
(Math. Models & Meth. Appl. Sci.)

3 Similar equations

du
ot

where f(u) = ku(l —u), k > 0, is a particular case.

(x,t) = aAu(x,t) + f(u(z,t)), (F-KPP)

Fisher’37, Kolmogorov/Petrovsky/Piskunov’37, Aronson/Weinberger’78

ou
o) =" (0" xu)(w,t) — u(z, 1)) + flulx, 1)

Schumacher’80, Coville/Dupaigne’05,’07, Coville/Davila/Martinez’08,
Yagisita’09, Li/Sun/Wang’10, Garnier’11, Sun/Li/Wang’11,

Aguerrea/Gomez/Trofimchuk’12, Bonnefon/Coville/Garnier/Roques’14

du

5 (x,t) = Au(z,t) + F(u(z,t), (a” *xu)(x,t)),

where F'(u,v) = ku(l —v), k > 0, is a particular case.

Gourley’00, Genieys/Volpert/Auger’06,
Berestycki/Nadin/Perthame/Ryzhik’09,
Apreutesei/Bessonov/Volpert/Vougalter’10, Nadin/Perthame/Tang’11,
Fang/Zhao’11, Alfaro/Coville’12, Hamel/Ryzhik’14,
Achleitner/Kuehn’15, Faye/Holzer’15
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4 Constant speed of propagation

For details see:
Finkelshtein/Kondratiev/T.’15 (ArXiv:1508.02215)

Let & € S9! be fixed and there exist A > 0 such that
+ AT-E
/a (x)e™ Sdr < 0. (A3,a)

Rd

The assumption states that a™ decays fast in a direction & (light-tailed).

Definition 4. A solution u to the equation (0l) is said to be a trav-

eling wave solution with a speed ¢ € R and in a direction & if and

only if there exists a profile ¢ € My(R) (the set of all decreasing
and right-continuous functions f : R — [0,6]), such that

¢(+00) = 0,
u(x,t) =¢(x-&—ct), t>0, aa. xR

— U t)=g(x—ct)
u(x,2t)=gx-2ct)=uix-ct )
— U, 3t)=d(x-3ct)=u{x-2ct )
— U{x4t)=@x—dct)=u{x-3ct 1)
T ) 0 20 30
c«(&) = inf G(A) := inf l(JzﬁL/a+(:z,")fz)‘”’"fclszz —m) (2)
A>0 A>0 A

Rd

Theorem 5. For any ¢ > c«(£), there exists a unique traveling
wave solution to (Il) with a profile ¢ € Mpy(R) and the speed c.
For any ¢ < c«(§), such a traveling wave solution does not exist.

_|_

e Since a™ is not supposed to be symmetric, there exists a™ such that

c«(&) < 0.
o If ¢ # 0, the profile ¢ € CP°(R), and ¢ € C(R) otherwise.
e Let \g be such that ¢ = G()\). For some D > 0,
o(t) ~ DtV e Mt ¢ 5 0

where 7 = 1, for ¢ > c«. Both cases y = 1 and 7 = 2 are possible if
C = Cx.

Let, for some A > 0, (|A3,a)) holds for all £ € gd—1
We define T :={z € R | z- & < ¢4(€), for all € € ST71}. (3)

Theorem 6. Let ug be such that, for all A > 0,

esssup ug(z)e M < oo,
reR?

and let u be the corresponding solution to (1l). Then, for anye > 0,

lim esssup wu(x,t)=0.
b=00 et (14e)tT

Let ug £ 0. Then, for any e € (0,1),

lim  essinf w(z,t)=4.
t—00 xe(1—e)tl

(I4+e)e1)T o : r = c,(1)t
u(x,t) — 0 ;
(1= ) Cu(1)T frommmmmmmmmmmmmm e
u(x,t) — 0 é
T 1 e é
tee-Drbhi s BB e s r=—c,(—1)t

5 Acceleration

(Paper in preparation)
In the previous section both a™ and ug were fast-decaying, which provides
a finite speed of propagation of the solution. On the other hand if one

of the functions is slowly decaying an acceleration appears. Let the
following assumption holds, for any A > 0,
/ (a % up)(z)eM*dr = co. (A3,b)

Rd

In order to get asymptotic results, it is necessary to introduce functions
with a regular decay:.
We say that a bounded integrable function b : R — R is long-tailed if

b(s+71)~b(s), s— o0, r>0.

A bounded integrable function ¢ : R — R is sub-exponential on R if it
is long-tailed and
(c*c)(s) ~ 2¢(s), s — o0.

For a deeper discussion of the definitions we refer on the books by
Borovkov/Borovkov’08
Foss/Korshunov/Zachary’11

Theorem 7 (Inside the front). Let 0 < ug < 0 be separated form
zero at the origin and b(s) be long-tailed, such that, for large s,
b(s) is decreasing and logb(s) is convex. Suppose that

(at % ug)(x) > b(|z|), z € RY.

Then, for any small € > 0,

u(x,t) =0, (4)

lim essinf
t—00 [z|<n((1—¢)t,b)

where n(s,b) = b~ 1(elm=")s),

Theorem 8 (Outside the front). Suppose that ¢ is sub-exponential
on R such that, for large s, c(s) is decreasing and log c(s) is convex.
Let 0 < ug < 0 and a™* be such that,

+ d—1
eSSSUp up(2) < 00, lim @ (z)le] = 0.
rerd Cl|z]) w00 cl|z])
Then for any small € > 0,
lim esssup  u(x,t) =0, (5)

=00 |2 ((14e)t )

where n(s, ¢) = ¢ H{elmM=7")s)

In the following examples n(t) := n(t,b) ~ n(t, c), so that both (d) and
(B) hold, for the same n(t). Moreover n(t) ~ n(t,a™ * ug).
In particular if u(p(t),t) = A € (0,8), then

p(t) € (n((l—e)t) , 77((1+5)t)) .

Example 1. wuy(z) =o(a™(z)) = (at *xup)(z) ~a™t(x) = b(z)
Then for |x| > R > 0 and t sufficiently large,

L at(e) =k a(t) ~ (" —m)t)

50 o) — 1 | st —m

- a Cx)-_'<]_%_‘1ﬂ2)p’ /U(t)’\’eXI>( 2 t)a
() — _(log\xl)Q . Vot

3. a (x)=exp( oy ); n(t) ~exp (oV2t).

Example 2. o™t (z) = o(up(z)) = (a *up)(x) ~ up(z) =: b(x)

If ug satisfies one of the cases 1-3 instead of a™, then n(¢) remains the
same.
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— (1 H4E)T) frmrmmmmmmmee D :
x = —n(t)
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