Long-time behavior in a doubly nonlocal Fisher-KPP equation

Pasha Tkachov

1 Basic equation

Aim: study of a long-time behavior of the following evolution equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\varkappa^{+}\left(a^{+} * u\right)-m u-\varkappa^{-} u\left(a^{-} * u\right) . \tag{1}
\end{equation*}
$$

Classical solution: $u \in C\left(\mathbb{R}_{+} \rightarrow E\right) \cap C^{1}((0, \infty) \rightarrow E)$.
Space: $E=B U C\left(\mathbb{R}^{d}\right)$ or $E=L^{\infty}\left(\mathbb{R}^{d}\right)$.
Dispersion and competition kernels: $0 \leq a^{ \pm} \in L^{1}\left(\mathbb{R}^{d}\right)$, with constant
rates $\varkappa^{ \pm}>0$.
Mortality rate (constant): $m>0$.
$\int_{\mathbb{R}^{d}} a^{+}(y) d y=\int_{\mathbb{R}^{d}} a^{-}(y) d y=1, \quad\left(a^{ \pm} * u\right)(x, t):=\int_{\mathbb{R}^{d}} a^{ \pm}(x-y) u(y, t) d y$.
Initial condition: $u(x, 0)=u_{0}(x), x \in \mathbb{R}^{d}$.
Constant solutions: $u \equiv 0, u \equiv \theta:=\frac{\varkappa^{+}-m}{\varkappa^{-}}$.

Theorem 1 (Existence and uniqueness). Let $u_{0} \in E$ and $u_{0} \geq 0$. Then, for any $T>0$, there exists a unique solution $u \geq 0$ to the equation (I) in E, such that $u \in C([0, T], E) \cap C^{1}((0, T], E)$.

Theorem 2 (Global boundedness). Let a^{-}be separated from zero at the origin and a^{+}has a regular behavior at ∞, for example,

$$
a^{+}(x) \leq \frac{A}{1+|x|^{d+\varepsilon}}, \quad A, \varepsilon>0
$$

Then $0 \leq u_{0} \in B U C\left(\mathbb{R}^{d}\right)$ implies

$$
\sup _{t \geq 0} \sup _{x \in \mathbb{R}^{d}} u(x, t)<\infty
$$

Note that if $a^{-}=\frac{\delta_{-1}+\delta_{1}}{2}$, then there exist bounded u_{0} and compactly supported a^{+}such that $\|u(\cdot, t)\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \rightarrow \infty$, as $t \rightarrow \infty$.

From now, we will suppose that
$\begin{aligned} \varkappa^{\star} & >m, \\ \varkappa^{+} a^{+}(x) & \geq\left(\varkappa^{+}-m\right) a^{-}(x) .\end{aligned}$
If (A1) fails, then the solution tends uniformly to zero. In particular the constant solution θ is positive if and only if (A1) holds.
The assumption (A2) yields a stability of θ and provides a comparison principle:

Theorem 3 (Comparison principle).
$\bullet 0 \leq u_{0} \leq \theta=\frac{\varkappa^{+}-m}{\varkappa^{-}}$implies $0 \leq u(x, t) \leq \theta, t \geq 0, x \in \mathbb{R}^{d}$,
$\bullet 0 \leq u_{0} \leq v_{0} \leq \theta$ implies $u(x, t) \leq v(x, t), t \geq 0, x \in \mathbb{R}^{d}$.

2 History of derivation

- 'Crabgrass model' on \mathbb{Z}^{d}, for $\varkappa^{+}=\varkappa^{-}, a^{+}=a^{-}$

Durrett'88 (Bull. AMS)

- (Heuristic) A Spatial Ecology model on \mathbb{R}^{d}

Bolker/Pacala'97 (Amer. Naturalist)

- Stochastic approach, finite systems in $\mathbb{R}^{d}, E=L^{1}\left(\mathbb{R}^{d}\right)$

Fournier/Méléard'04 (Ann. Appl. Prob.)

- Semigroup approach for the derivation of kinetic equations, infinite systems in $\mathbb{R}^{d}, E=L^{\infty}\left(\mathbb{R}^{d}\right)+$ some conditions

Finkelshtein/Kondratiev/Kutoviy'12 (J. Funct. Anal.)
\bullet Evolution in a scale of L^{∞}-spaces, weaker conditions
Finkelshtein/Kondratiev/Kozitsky/Kutoviy'15
(Math. Models \& Meth. Appl. Sci.)

3 Similar equations

$$
\frac{\partial u}{\partial t}(x, t)=\alpha \Delta u(x, t)+f(u(x, t)),
$$

(F-KPP)
where $f(u)=k u(1-u), k>0$, is a particular case.
Fisher'37, Kolmogorov/Petrovsky/Piskunov'37, Aronson/Weinberger'78
$\frac{\partial u}{\partial t}(x, t)=\varkappa^{+}\left(\left(a^{+} * u\right)(x, t)-u(x, t)\right)+f(u(x, t))$.
Schumacher'80, Coville/Dupaigne' 05 , '07, Coville/Dávila/Martínez'08, Yagisita'09, Li/Sun/Wang' ${ }^{\prime}$, Garnier' 11 , Sun/Li/Wang' ${ }^{\prime}$, Aguerrea/Gomez/Trof imchuk' 12 , Bonnef on/Coville/Garnier/Roques' 14
$\frac{\partial u}{\partial t}(x, t)=\Delta u(x, t)+F\left(u(x, t),\left(a^{-} * u\right)(x, t)\right)$,
where $F(u, v)=k u(1-v), k>0$, is a particular case. Gourley' 00 , Genieys/Volpert/Auger' 06 ,
Berestycki/Nadin/Perthame/Ryzhik' 09 ,
Apreutesei/Bessonov/Volpert/Vougalter'10, Nadin/Perthame/Tang' 11, Fang/Zhao' 11 , Alfaro/Coville'12, Hamel/Ryzhik' 14 , Achleitner/Kuehn'15, Faye/Holzer'15

4 Constant speed of propagation

For details see:
Finkelshtein/Kondratiev/T.'15 (ArXiv:1508.02215) Let $\xi \in S^{d-1}$ be fixed and there exist $\lambda>0$ such that

The assumption states that a^{+}decays fast in a direction ξ (light-tailed). Definition 4. A solution u to the equation (I) is said to be a traveling wave solution with a speed $c \in \mathbb{R}$ and in a direction ξ if and only if there exists a profile $\phi \in \mathcal{M}_{\theta}(\mathbb{R})$ (the set of all decreasing and right-continuous functions $f: \mathbb{R} \rightarrow[0, \theta]$, such that

$$
\phi(-\infty)=\theta, \quad \phi(+\infty)=0
$$

$$
u(x, t)=\phi(x \cdot \xi-c t), \quad t \geq 0, \text { a.a. } x \in \mathbb{R}
$$

$-u(x)=\phi(x-t)$
$-u(x, 2 t)=\phi(x-2 d)$
$-u(x, 2)=\phi(x-2 t)=u(x-t, t)$
$-u(x, 2)=\phi(x-2 t)=u(x-t, t)$
$-u(x, 3 t)=\phi(x-3 t)=u(x-2 t, t)$
$u(x, 4 t)=\phi(x-4 t)=u(x-3 c t, t)$

$$
c_{*}(\xi)=\inf _{\lambda>0} G(\lambda):=\inf _{\lambda>0} \frac{1}{\lambda}\left(\varkappa^{+} \int_{\mathbb{R}^{d}} a^{+}(x) e^{\lambda x \cdot \xi} d x-m\right)
$$

Theorem 5. For any $c \geq c_{*}(\xi)$, there exists a unique traveling wave solution to (1) with a profile $\phi \in \mathcal{M}_{\theta}(\mathbb{R})$ and the speed c. For any $c<c_{*}(\xi)$, such a traveling wave solution does not exist.

- Since a^{+}is not supposed to be symmetric, there exists a^{+}such that $c_{*}(\xi)<0$.
- If $c \neq 0$, the profile $\phi \in C_{b}^{\infty}(\mathbb{R})$, and $\phi \in C(\mathbb{R})$ otherwise.
- Let λ_{0} be such that $c=G\left(\lambda_{0}\right)$. For some $D>0$,
$\phi(t) \sim D t^{j-1} e^{-\lambda_{0} t}, t \rightarrow \infty$,
where $j=1$, for $c>c_{*}$. Both cases $j=1$ and $j=2$ are possible if

Let, for some $\lambda>0$, (A3,a) holds for all $\xi \in S^{d-1}$.
We define $\Gamma:=\left\{x \in \mathbb{R}^{d} \mid x \cdot \xi \leq c_{*}(\xi)\right.$, for all $\left.\xi \in S^{d-1}\right\}$.
. (3)
Theorem 6. Let u_{0} be such that, for all $\lambda>0$,
$\underset{x \in \mathbb{R}^{d}}{\operatorname{esssup}} u_{0}(x) e^{\lambda|x|}$
and let u be the corresponding solution to (1). Then, for any $\varepsilon>0$,

$$
\lim _{t \rightarrow \infty} \underset{x \notin(1+\varepsilon) t \Gamma}{\operatorname{esssup}} u(x, t)=0 .
$$

Let $u_{0} \not \equiv 0$. Then, for any $\varepsilon \in(0,1)$,

$$
\lim _{t \rightarrow \infty} \operatorname{essinf}_{x \in(1-\varepsilon) t \Gamma} u(x, t)=\theta .
$$

5 Acceleration

In the previous section both a^{+}and u_{0} were (Past-decar in preparation) a finite speed of propagation of the solution facaying, which provides of the functions is slowly decaying an acceleration appears. Let the following assumption holds, for any $\lambda>0$,

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}\left(a^{+} * u_{0}\right)(x) e^{\lambda|x|} d x=\infty . \tag{A3,~b}
\end{equation*}
$$

In order to get asymptotic results, it is necessary to introduce functions with a regular decay
We say that a bounded integrable function $b: \mathbb{R} \rightarrow \mathbb{R}_{+}$is long-tailed if

$$
b(s+r) \sim b(s), s \rightarrow \infty, r>0
$$

A bounded integrable function $c: \mathbb{R} \rightarrow \mathbb{R}_{+}$is sub-exponential on \mathbb{R} if it is long-tailed and

For a deeper discussion of the definitions we refer on the books by

Theorem 7 (Inside the front). Let $0 \leq u_{0} \leq \theta$ be separated form zero at the origin and $b(s)$ be long-tailed, such that, for large s, $b(s)$ is decreasing and $\log b(s)$ is convex. Suppose that

$$
\left(a^{+} * u_{0}\right)(x) \geq b(|x|), x \in \mathbb{R}^{d} .
$$

Then, for any small $\varepsilon>0$,

$$
\lim _{t \rightarrow \infty} \underset{|x| \leq \eta((1-\varepsilon) t, b)}{\text { essinf }} u(x, t)=\theta
$$

where $\eta(s, b)=b^{-1}\left(e^{\left(m-\varkappa^{+}\right) s}\right)$.
Theorem 8 (Outside the front). Suppose that c is sub-exponential on \mathbb{R} such that, for large $s, c(s)$ is decreasing and $\log c(s)$ is convex. Let $0 \leq u_{0} \leq \theta$ and a^{+}be such that,

$$
\underset{x \in \mathbb{R}^{d}}{\operatorname{esssup}} \frac{u_{0}(x)}{c(|x|)}<\infty, \quad \lim _{|x| \rightarrow \infty} \frac{a^{+}(x)|x|^{d-1}}{c(|x|)}=0 .
$$

Then for any small $\varepsilon>0$,

$$
\lim _{t \rightarrow \infty} \underset{|x| \geq \eta((1+\varepsilon) t, c)}{\operatorname{esssup}} u(x, t)=0
$$

where $\eta(s, c)=c^{-1}\left(e^{\left(m-\varkappa^{+}\right) s}\right)$
In the following examples $\eta(t):=\eta(t, b) \sim \eta(t, c)$, so that both (4) and (5) hold, for the same $\eta(t)$. Moreover $\eta(t) \sim \eta\left(t, a^{+} * u_{0}\right)$ In particular if $u(\rho(t), t)=\lambda \in(0, \theta)$, then

$$
\rho(t) \in(\eta((1-\varepsilon) t), \eta((1+\varepsilon) t))
$$

Example 1. $u_{0}(x)=o\left(a^{+}(x)\right) \Rightarrow\left(a^{+} * u_{0}\right)(x) \sim a^{+}(x)=: b(x)$ Then for $|x| \geq R>0$ and t sufficiently large,

1. $a^{+}(x)=e^{-|x| \mid}$;
$\eta(t) \sim\left(\left(x^{+}-m\right) t\right)^{\frac{1}{7}}$,
2. $a^{+}(x)=\frac{1}{\left(1+\left.|x|\right|^{2}\right)^{i}}$
$\eta(t) \sim \exp \left(\frac{x^{+}-m}{2 p} t\right)$,
3. $\left.a^{+}(x)=\exp \left(-\frac{\log |x|}{2 \sigma^{2}}\right)^{2}\right) ;$
$\eta(t) \sim \exp (\sigma \sqrt{2 t})$.

Example 2. $\quad a^{+}(x)=o\left(u_{0}(x)\right) \Rightarrow\left(a^{+} * u_{0}\right)(x) \sim u_{0}(x)=: b(x)$ If u_{0} satisfies one of the cases 1-3 instead of a^{+}, then $\eta(t)$ remains the same.

