Symmetries of solutions to nonlocal problems

Sven Jarohs

Goethe University Frankfurt, Germany jarohs@math.uni-frankfurt.de

3rd Conference on Nonlocal Operators and Partial Differential Equations in Będlewo

30. June 2016

(D) (A) (A)

Theorem (Gidas, Ni, Nirenberg '79)

Let u be a bounded positive solution of

 $-\Delta u = f(u) \quad in B$ $u = 0 \qquad on \partial B,$

where f is locally Lipschitz continuous, then u is radially symmetric and strictly decreasing in its radial direction.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Gidas, Ni, Nirenberg '79)

Let u be a bounded positive solution of

 $-\Delta u = f(u) \quad in B$ $u = 0 \qquad on \partial B,$

where f is locally Lipschitz continuous, then u is radially symmetric and strictly decreasing in its radial direction.

Question: Is it possible to assume $u \ge 0$ in B instead of u > 0 in B?

・ 同 ト ・ ヨ ト ・ ヨ ト

Answer: No.

$$u: [-\pi,\pi] \to \mathbb{R}, \quad u(x) = 1 - \cos(x)$$

is a bounded nonnegative function which satisfies

$$-rac{d^2}{dx^2}u = u - 1$$
 in $(-\pi,\pi)$, $u(\pm\pi) = 0$,

but u(0) = 0. In particular, u is not monotone in $(-\pi, \pi)$.

The fractional Laplacian

For $s = \frac{\alpha}{2} \in (0,1)$ and $u \in C^2_c(\mathbb{R}^N)$ the fractional Laplacian is defined as

$$(-\Delta)^{s} u := \mathscr{F}^{-1}(|\cdot|^{2s}\mathscr{F}(u)).$$

Moreover, we have for $x \in \mathbb{R}^N$ the following integral-representation

$$(-\Delta)^{s}u(x) = c_{N,s}\lim_{\varepsilon\to 0}\int_{\{y\in\mathbb{R}^{N}: |x-y|>\varepsilon\}} \frac{u(x)-u(y)}{|x-y|^{N+2s}} dy,$$

with $c_{N,s} := s(1-s) \frac{4^{s} \Gamma(\frac{N}{2}+s)}{\pi^{N/2} \Gamma(2-s)}$.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Weak solutions

Denote

$$\mathcal{H}_0^s(B) = \{ u : \mathbb{R}^N \to \mathbb{R} : u = 0 \quad \text{on } \mathbb{R}^N \setminus B$$

and
$$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{(u(x) - u(y))^2}{|x - y|^{N + 2s}} \, dx dy < \infty \}.$$

In the following, for $g \in L^2(B)$ we will call u a solution of

$$(-\Delta)^{s} u = g$$
 in B
 $u = 0$ on $\mathbb{R}^{N} \setminus B$

if $u \in \mathscr{H}^s_0(B)$ satisfies for all $\varphi \in \mathscr{H}^s_0(B)$

$$\frac{c_{N,s}}{2}\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(u(x)-u(y))(\varphi(x)-\varphi(y))}{|x-y|^{N+2s}}\ dxdy=\int_Bg(x)\varphi(x)\ dx.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

æ

Theorem (Birkner, López-Mimbela and Wakolbinger '05)

Let u be a bounded nonnegative solution of

$$(-\Delta)^{s} u = f(u)$$
 in B
 $u = 0$ on $\mathbb{R}^{N} \setminus B$,

where $f : [0,\infty) \rightarrow [0,\infty)$ be nondecreasing and not constant, then u is radially symmetric.

문 문 문

Theorem (SJ and T. Weth '14)

Let u be a bounded nonnegative solution of

$$(-\Delta)^{s} u = f(u)$$
 in B
 $u = 0$ on $\mathbb{R}^{N} \setminus B$

where f is locally Lipschitz continuous, then u is radially symmetric. Moreover, <u>either</u> $u \equiv 0$ on \mathbb{R}^N <u>or</u> u is strictly decreasing in its radial direction and hence u > 0 in B.

Theorem (SJ and T. Weth '14)

Let u be a bounded nonnegative solution of

$$(-\Delta)^{s} u = f(u)$$
 in B
 $u = 0$ on $\mathbb{R}^{N} \setminus B$

where f is locally Lipschitz continuous, then u is radially symmetric. Moreover, <u>either</u> $u \equiv 0$ on \mathbb{R}^N <u>or</u> u is strictly decreasing in its radial direction and hence u > 0 in B.

Corollary

Any nonnegative bounded solution u of

$$\left(-rac{d^2}{dx^2}
ight)^s u = u-1 \quad \text{ in } (-\pi,\pi), \qquad u \equiv 0 \text{ on } \mathbb{R} \setminus (-\pi,\pi)$$

is even and strictly decreasing on $(0,\pi)$. Hence u > 0 in $(-\pi,\pi)$.

General version

Theorem (SJ and T. Weth '14)

Let $\Omega \subset \mathbb{R}^N$ be an open bounded Lipschitz set, which is symmetric and convex in x_1 and let $f : \Omega \times \mathbb{R} \to \mathbb{R}$ be locally Lipschitz in u (uniformly in x) such that f is symmetric in x_1 and

 $f(x_1, x', u) \ge f(x_2, x', u)$ for $u \in \mathbb{R}$, $(x_1, x'), (x_2, x') \in \Omega$, $|x_1| \le |x_2|$.

Then every nonnegative bounded solution u of

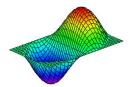
$$(-\Delta)^{s} u = f(x, u)$$
 in Ω
 $u = 0$ on $\mathbb{R}^{N} \setminus \Omega$

is symmetric in x_1 . Moreover, either $u \equiv 0$ on \mathbb{R}^N or u is strictly decreasing in $|x_1|$ and hence u > 0 in Ω .

・ロン ・四と ・ヨン

э

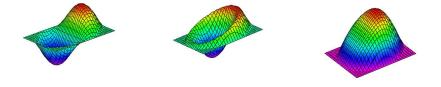
Foliated Schwarz symmetry



Let $D \subset \mathbb{R}^N$ be a radial set.

A function $u: D \to \mathbb{R}$ is called foliated Schwarz symmetric in D if there is $p \in S^{N-1}$ such that

- *u* is axially symmetric *w*.*r*.*t*. ℝ · *p* and
- *u* is nonincreasing in the polar angle $\theta = \arccos\left(\frac{x}{|x|} \cdot p\right)$.



Lemma (F. Brock '03)

Let $D \subset \mathbb{R}^N$ be a radial set, $u : D \to \mathbb{R}$ continuous. Then u is foliated Schwarz symmetric w.r.t. p if and only if for every half space $H \subset \mathbb{R}^N$ with $0 \in \partial H$ and $p \in H$ we have

 $u \ge u \circ Q_H$ in H.

Here $Q_H : \mathbb{R}^N \to \mathbb{R}^N$ denotes the reflection at ∂H .

(ロ) (同) (三) (三)

э

Theorem (SJ '16)

Let $D \subset \mathbb{R}^N$ be a radial bounded set and u a bounded solution of

$$(-\Delta)^{s} u = f(|x|, u)$$
 in D
 $u = 0$ on $\mathbb{R}^{N} \setminus D$,

where f is locally Lipschitz continuous. If there is a half space $H \subset \mathbb{R}^N$ with $0 \in \partial H$ and such that $u \ge u \circ Q_H$ in H, $u \not\equiv u \circ Q_H$, then u is foliated Schwarz symmetric.

Theorem (SJ '16)

Let $D \subset \mathbb{R}^N$ be a radial bounded set and u a bounded solution of

$$(-\Delta)^{s} u = f(|x|, u)$$
 in D
 $u = 0$ on $\mathbb{R}^{N} \setminus D$,

where f is locally Lipschitz continuous. If there is a half space $H \subset \mathbb{R}^N$ with $0 \in \partial H$ and such that $u \ge u \circ Q_H$ in H, $u \not\equiv u \circ Q_H$, then u is foliated Schwarz symmetric.

Remark

Also holds for unbounded radial sets, if u satisfies $\lim_{|x|\to\infty} u(x) = 0$ and there is $\delta > 0$ such that $\frac{f(r,u)}{u} \le 0$ for $u \in [-\delta, \delta]$

The previous results hold if $r \mapsto r^{-N-2s}$, r > 0 is replaced with a function $J: (0,\infty) \to [0,\infty)$ which satisfies

J is (strictly) decreasing.

2
$$\int_{B_1(0)} |z|^2 J(|z|) dz + \int_{\mathbb{R}^N \setminus B_1(0)} J(|z|) dz < \infty;$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

The previous results hold if $r \mapsto r^{-N-2s}$, r > 0 is replaced with a function $J: (0,\infty) \to [0,\infty)$ which satisfies

J is (strictly) decreasing.

2
$$\int_{B_1(0)} |z|^2 J(|z|) dz + \int_{\mathbb{R}^N \setminus B_1(0)} J(|z|) dz < \infty;$$

Example

Possible choice
$$r\mapsto r^{-N}1_{(0,1)}(r)$$
 or $r\mapsto -r^{-N}\ln(r)1_{(0,1)}(r)$

・ロン ・四マ ・ビリン ・ロン

Corollary (SJ '16)

Let $D \subset \mathbb{R}^N$ be a radial set and $q \in [2, \frac{2N}{N-2s}]$. Then every continuous bounded minimizer of $K : \mathscr{H}_0^s(D) \to \mathbb{R}$,

$$\mathcal{K}[u] = \frac{c_{N,s}}{4} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{(u(x) - u(y))^2}{|x - y|^{N + 2s}} \, dx dy - \int_D \mathcal{F}(|x|, u(x)) \, dx$$

which satisfies $||u||_{L^q(D)} = 1$ is foliated Schwarz symmetric.

Here $F(r, u) = \int_0^u f(r, \tau) d\tau$, where $f : [0, \infty) \times D \to \mathbb{R}$ is locally Lipschitz and such that there are constants a, b > 0 with

$$|f(r,u)| \le a|u| + b|u|^{q-1}$$
 for all $r \ge 0$, $u \in \mathbb{R}$.

(ロ) (同) (三) (三)

Thank you for your attention.

References:

- T. Weth and S. J. (2014), Asymptotic Symmetry for Parabolic Equations involving the Fractional Laplacian Discrete Contin. Dvn. Svst. 34.6. 2581–2615.
- T. Weth and S. J. (2016), Symmetry via antisymmetric maximum principles in nonlocal problems of variable order

Ann. Mat. Pura Appl. (4), 195.1, 273-291.

- S. J. (2015), Symmetry via maximum principles for nonlocal nonlinear boundary value problems, thesis.
- S. J. (2016), Symmetry of solutions to nonlocal nonlinear boundary value problems in radial sets, NoDEA 23.3, 1–22.

(日) (四) (日) (日) (日)