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Theorem (Gidas, Ni, Nirenberg ’79)

Let u be a bounded positive solution of

−∆u = f (u) in B

u = 0 on ∂B ,

where f is locally Lipschitz continuous, then u is radially symmetric
and strictly decreasing in its radial direction.

Question: Is it possible to assume u ≥ 0 in B instead of u > 0 in B?
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Answer: No.

u : [−π,π]→ R, u(x) = 1− cos(x)

is a bounded nonnegative function which satisfies

− d2

dx2
u = u−1 in (−π,π), u(±π) = 0,

but u(0) = 0. In particular, u is not monotone in (−π,π).
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The fractional Laplacian

For s = α

2 ∈ (0,1) and u ∈ C 2
c (RN) the fractional Laplacian is

defined as
(−∆)su := F−1(| · |2sF (u)).

Moreover, we have for x ∈ RN the following integral-representation

(−∆)su(x) = cN,s lim
ε→0

∫
{y∈RN : |x−y |>ε}

u(x)−u(y)

|x−y |N+2s dy ,

with cN,s := s(1− s)
4sΓ(N

2 +s)

πN/2Γ(2−s)
.
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Weak solutions

Denote

H s
0 (B) ={u : RN → R : u = 0 on RN \B

and
∫
RN

∫
RN

(u(x)−u(y))2

|x−y |N+2s dxdy < ∞}.

In the following, for g ∈ L2(B) we will call u a solution of

(−∆)su = g in B

u = 0 on RN \B ,

if u ∈H s
0 (B) satisfies for all ϕ ∈H s

0 (B)

cN,s

2

∫
RN

∫
RN

(u(x)−u(y))(ϕ(x)−ϕ(y))

|x−y |N+2s dxdy =
∫
B
g(x)ϕ(x) dx .
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Theorem (Birkner, López-Mimbela and Wakolbinger ’05)

Let u be a bounded nonnegative solution of

(−∆)su = f (u) in B

u = 0 on RN \B ,

where f : [0,∞)→ [0,∞) be nondecreasing and not constant, then u
is radially symmetric.
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Theorem (SJ and T. Weth ’14)

Let u be a bounded nonnegative solution of

(−∆)su = f (u) in B

u = 0 on RN \B ,

where f is locally Lipschitz continuous, then u is radially symmetric.
Moreover, either u ≡ 0 on RN or u is strictly decreasing in its radial
direction and hence u > 0 in B .

Corollary
Any nonnegative bounded solution u of(

− d2

dx2

)s

u = u−1 in (−π,π), u ≡ 0 on R\ (−π,π)

is even and strictly decreasing on (0,π). Hence u > 0 in (−π,π).
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General version

Theorem (SJ and T. Weth ’14)

Let Ω⊂ RN be an open bounded Lipschitz set, which is symmetric
and convex in x1 and let f : Ω×R→ R be locally Lipschitz in u
(uniformly in x) such that f is symmetric in x1 and

f (x1,x
′,u)≥ f (x2,x

′,u) for u ∈ R, (x1,x
′),(x2,x

′) ∈ Ω, |x1| ≤ |x2|.

Then every nonnegative bounded solution u of

(−∆)su = f (x ,u) in Ω

u = 0 on RN \Ω

is symmetric in x1. Moreover, either u ≡ 0 on RN or u is strictly
decreasing in |x1| and hence u > 0 in Ω.
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Foliated Schwarz symmetry

Let D ⊂ RN be a radial set.

A function u : D→ R is called
foliated Schwarz symmetric in D if
there is p ∈ SN−1 such that

u is axially symmetric w.r.t. R ·p
and
u is nonincreasing in the polar
angle θ = arccos

(
x
|x | ·p

)
.
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Lemma (F. Brock ’03)

Let D ⊂ RN be a radial set, u : D→ R continuous. Then u is
foliated Schwarz symmetric w.r.t. p if and only if for every half
space H ⊂ RN with 0 ∈ ∂H and p ∈ H we have

u ≥ u ◦QH in H.

Here QH : RN → RN denotes the reflection at ∂H.
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Theorem (SJ ’16)

Let D ⊂ RN be a radial bounded set and u a bounded solution of

(−∆)su = f (|x |,u) in D

u = 0 on RN \D,

where f is locally Lipschitz continuous.
If there is a half space H ⊂ RN with 0 ∈ ∂H and such that
u ≥ u ◦QH in H, u 6≡ u ◦QH , then u is foliated Schwarz symmetric.

Remark
Also holds for unbounded radial sets, if u satisfies lim

|x |→∞

u(x) = 0

and there is δ > 0 such that f (r ,u)
u ≤ 0 for u ∈ [−δ ,δ ]
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The previous results hold if r 7→ r−N−2s , r > 0 is replaced with a
function J : (0,∞)→ [0,∞) which satisfies

1 J is (strictly) decreasing.

2
∫
B1(0) |z |2J(|z |) dz +

∫
RN\B1(0) J(|z |) dz < ∞;

3
∫
RN J(|z |) dz = ∞.

Example

Possible choice r 7→ r−N1(0,1)(r) or r 7→ −r−N ln(r)1(0,1)(r)
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Corollary (SJ ’16)

Let D ⊂ RN be a radial set and q ∈ [2, 2N
N−2s ]. Then every

continuous bounded minimizer of K : H s
0 (D)→ R,

K [u] =
cN,s

4

∫
RN

∫
RN

(u(x)−u(y))2

|x−y |N+2s dxdy −
∫
D
F (|x |,u(x)) dx

which satisfies ‖u‖Lq(D) = 1 is foliated Schwarz symmetric.

Here F (r ,u) =
∫ u
0 f (r ,τ) dτ, where f : [0,∞)×D→ R is locally

Lipschitz and such that there are constants a,b > 0 with

|f (r ,u)| ≤ a|u|+b|u|q−1 for all r ≥ 0, u ∈ R.
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Thank you for your attention.
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