Supersolutions in Fractional Nonlinear Problems

Tuomo Kuusi
Aalto University

Based on joint works with J. Korvenpää & E. Lindgren & G. Palatucci

3rd Conference on Nonlocal Operators and Partial Differential Equations
Będlewo, June 27, 2016

1A video of an extended version of the talk available at the Fields institute webpage (http://www.fields.utoronto.ca/video-archive/event/2022)
2sites.google.com/site/tuomokuusimath/
Scope

The topic of the talk concerns nonlocal and nonlinear equations modelled by the fractional p-Laplacian in \mathbb{R}^n given by

\[(-\Delta)_p^s u(x) := \text{p.v.} \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))}{|x - y|^{n+sp}} \, dy, \]

where $s \in (0,1)$ and $p \in (1, \infty)$.

• When $p = 2$, it is the fractional Laplacian (up to a normalizing constant).
• For $p \geq 2$ the operator $(-\Delta)^s_p$ is usually called fractional p-Laplacian.
• Arises naturally from minimization of the $W_{s,p}^s$-seminorm. Some aspects of the talk are relevant already in the case $p = 2$.
Scope

The topic of the talk concerns nonlocal and nonlinear equations modelled by the fractional p-Laplacian in \mathbb{R}^n given by

$$(-\Delta)^s_p u(x) := \text{p.v.} \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))}{|x - y|^{n+sp}} \, dy,$$

where $s \in (0, 1)$ and $p \in (1, \infty)$.

- When $p = 2$, it is the fractional Laplacian (up to a normalizing constant).
- For $p \geq 2$ the operator $(-\Delta)^s_p$ is usually called fractional p-Laplacian.
- Arises naturally from minimization of the $W^{s,p}$-seminorm. Some aspects of the talk are relevant already in the case $p = 2$.
Our goal is to understand Dirichlet boundary value problems in a bounded open set Ω of the type

$$\begin{aligned}
\left\{ (-\Delta)_p^s u &= 0 \quad \text{in } \Omega \subseteq \mathbb{R}^n \\
u &= g \quad \text{a.e. on } \mathbb{R}^n \setminus \Omega,
\right.
\end{aligned}$$

where boundary values g can be “rough” and the domain Ω “irregular”.
Scope: Perron method

For given boundary datum g, the goal is to find some classes of functions, say \mathcal{U}_g (or \mathcal{L}_g), with correct boundary values, and which are lower (or upper) directed. This means that if $u, v \in \mathcal{U}_g$ (or \mathcal{L}_g), then $\min(u, v) \in \mathcal{U}_g$ (or $\max(u, v) \in \mathcal{L}_g$). Then one can define upper (or lower) Perron solutions by setting $H_g(x) := \inf_{u \in \mathcal{U}_g} u(x)$ or $H_g(x) := \sup_{u \in \mathcal{L}_g} u(x)$. The natural task is of course to find suitable classes of boundary datum and related upper and lower classes providing us

- **Solvability**: Both H_g and H_g are solutions in Ω
- **Resolutivity**: $H_g = H_g$
- **Wiener criterion**: Give a necessary and sufficient condition for the geometry of the boundary at a point $z \in \partial \Omega$ such that if g is "continuous at z", then so are H_g and H_g.
Scope: Perron method

For given boundary datum g, the goal is to find some classes of functions, say \mathcal{U}_g (or \mathcal{L}_g), with correct boundary values, and which are lower (or upper) directed. This means that if $u, v \in \mathcal{U}_g$ (or \mathcal{L}_g), then $\min(u, v) \in \mathcal{U}_g$ (or $\max(u, v) \in \mathcal{L}_g$). Then one can define upper (or lower) Perron solutions by setting

$$H_g(x) := \inf_{u \in \mathcal{U}_g} u(x) \quad \left(\text{or } H_g(x) := \sup_{u \in \mathcal{L}_g} u(x)\right)$$
Scope: Perron method

For given boundary datum g, the goal is to find some classes of functions, say \mathcal{U}_g (or \mathcal{L}_g), with correct boundary values, and which are lower (or upper) directed. This means that if $u, v \in \mathcal{U}_g$ (or \mathcal{L}_g), then $\min(u, v) \in \mathcal{U}_g$ (or $\max(u, v) \in \mathcal{L}_g$). Then one can define upper (or lower) Perron solutions by setting

$$
\overline{H}_g(x) := \inf_{u \in \mathcal{U}_g} u(x) \quad \left(\text{or} \quad \underline{H}_g(x) := \sup_{u \in \mathcal{L}_g} u(x)\right)
$$

The natural task is of course to find suitable classes of boundary datum and related upper and lower classes providing us

- **Solvability**: Both \overline{H}_g and \underline{H}_g are solutions in Ω
Scope: Perron method

For given boundary datum \(g \), the goal is to find some classes of functions, say \(U_g \) (or \(L_g \)), with correct boundary values, and which are lower (or upper) directed. This means that if \(u, v \in U_g \) (or \(L_g \)), then \(\min(u, v) \in U_g \) (or \(\max(u, v) \in L_g \)). Then one can define upper (or lower) Perron solutions by setting

\[
\bar{H}_g(x) := \inf_{u \in U_g} u(x) \quad \left(\text{or} \quad \underline{H}_g(x) := \sup_{u \in L_g} u(x) \right)
\]

The natural task is of course to find suitable classes of boundary datum and related upper and lower classes providing us

- **Solvability:** Both \(\bar{H}_g \) and \(\underline{H}_g \) are solutions in \(\Omega \)
- **Resolutivity:** \(\bar{H}_g = \underline{H}_g \)
Scope: Perron method

For given boundary datum \(g \), the goal is to find some classes of functions, say \(\mathcal{U}_g \) (or \(\mathcal{L}_g \)), with correct boundary values, and which are lower (or upper) directed. This means that if \(u, v \in \mathcal{U}_g \) (or \(\mathcal{L}_g \)), then \(\min(u, v) \in \mathcal{U}_g \) (or \(\max(u, v) \in \mathcal{L}_g \)). Then one can define upper (or lower) Perron solutions by setting

\[
\overline{H}_g(x) := \inf_{u \in \mathcal{U}_g} u(x) \quad \left(\text{or} \quad \underline{H}_g(x) := \sup_{u \in \mathcal{L}_g} u(x)\right)
\]

The natural task is of course to find suitable classes of boundary datum and related upper and lower classes providing us

- **Solvability**: Both \(\overline{H}_g \) and \(\underline{H}_g \) are solutions in \(\Omega \)
- **Resolutivity**: \(\overline{H}_g = \underline{H}_g \)
- **Wiener criterion**: Give a necessary and sufficient condition for the geometry of the boundary at a point \(z \in \partial \Omega \) such that if \(g \) is “continuous at \(z \)”, then so are \(\overline{H}_g \) and \(\underline{H}_g \).
In the local situation, i.e., in the case of the Laplacian, the natural candidates are given by super- and subharmonic functions, and there are many equivalent definitions for them.
In the local situation, i.e., in the case of the Laplacian, the natural candidates are given by super- and subharmonic functions, and there are many equivalent definitions for them.

It turns out that this is still doable in many nonlinear situations via comparison principles.
In the local situation, i.e., in the case of the Laplacian, the natural candidates are given by super- and subharmonic functions, and there are many equivalent definitions for them.

It turns out that this is still doable in many nonlinear situations via comparison principles.

Question: Can one do this in the case of the operator \((-\Delta)^{s}_p\)?
Different notions of supersolutions

1. *Weak supersolutions*. Satisfy the weak formulation against smooth test functions together with fractional integrability.
Different notions of supersolutions

1. Weak supersolutions. Satisfy the weak formulation against smooth test functions together with fractional integrability.

2. \((s, p)\)-superharmonic functions. These are defined via comparison against weak solutions.
Different notions of supersolutions

1. Weak supersolutions. Satisfy the weak formulation against smooth test functions together with fractional integrability.

2. \((s, p)\)-superharmonic functions. These are defined via comparison against weak solutions.

3. \((s, p)\)-viscosity supersolutions. The notion of viscosity solutions is based on the pointwise evaluation of the principal value appearing in the definition of \((-\Delta)_{p}^{s}\):

\[
(-\Delta)_{p}^{s}u(x) := \text{p.v.} \int_{\mathbb{R}^{n}} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))}{|x - y|^{n+sp}} \, dy.
\]
Fractional Sobolev space

We first define the natural energy spaces for the problem. The fractional Sobolev space $W^{s,p}$ is defined via Gagliardo-seminorm

$$
[u]_{W^{s,p}(\Omega)} := \left(\int_\Omega \int_\Omega \frac{|u(x) - u(y)|^p}{|x - y|^{n+sp}} \, dx \, dy \right)^{1/p}
$$

as

$$W^{s,p}(\Omega) := \{ u \in L^p(\Omega) : [u]_{W^{s,p}(\Omega)} < \infty \}$$

The local version $W^{s,p}_{\text{loc}}(\Omega)$ is defined in an obvious way.
Tail space

The second space controls the behavior of tails:

\[L_{sp}^{p-1}(\mathbb{R}^n) := \left\{ u \in L_{loc}^{p-1}(\mathbb{R}^n) : \int_{\mathbb{R}^n} \frac{|u(x)|^{p-1}}{(1 + |x|)^{n+sp}} \, dx < \infty \right\}. \]
Tail space

The second space controls the behavior of tails:

\[
L^{p-1}_{sp}(\mathbb{R}^n) := \left\{ u \in L^{p-1}_{loc}(\mathbb{R}^n) : \int_{\mathbb{R}^n} \frac{|u(x)|^{p-1}}{(1 + |x|)^{n+sp}} \, dx < \infty \right\}.
\]

In particular, \(u \in L^{p-1}_{sp}(\mathbb{R}^n) \) implies that in the definition of \((-\Delta)^s u\) the nonlocal contributions are finite:

If \(|u(x)| < \infty\) and \(u \in L^{p-1}_{sp}(\mathbb{R}^n) \), then

\[
\left| \int_{\mathbb{R}^n \setminus B_r(x)} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))}{|x - y|^{n+sp}} \, dy \right| < \infty.
\]
Tail space

The second space controls the behavior of tails:

\[L_{sp}^{p-1}(\mathbb{R}^n) := \left\{ u \in L_{loc}^{p-1}(\mathbb{R}^n) : \int_{\mathbb{R}^n} \frac{|u(x)|^{p-1}}{(1 + |x|)^{n+sp}} \, dx < \infty \right\} . \]

In particular, \(u \in L_{sp}^{p-1}(\mathbb{R}^n) \) implies that in the definition of \((-\Delta)_s^p u\) the nonlocal contributions are finite:

If \(|u(x)| < \infty\) and \(u \in L_{sp}^{p-1}(\mathbb{R}^n) \), then

\[\left| \int_{\mathbb{R}^n \setminus B_r(x)} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))}{|x - y|^{n+sp}} \, dy \right| < \infty \]

Moreover, a very natural quantity

\[\text{Tail}(u; z, r) := \left(r^{sp} \int_{\mathbb{R}^n \setminus B_r(z)} \frac{|u(x)|^{p-1}}{|x - z|^{n+sp}} \, dx \right)^{\frac{1}{p-1}} \]

appearing in the theory frequently is finite for all \(z \in \mathbb{R}^n \) and \(r > 0 \) provided that \(u \in L_{sp}^{p-1}(\mathbb{R}^n) \).
Weak solutions: Definition

Let us begin with the definition

Definition

We say that u is a weak supersolution to $(-\Delta)^s_p u = 0$ in Ω if $u \in W_{loc}^{s,p}(\Omega) \cap L^{p-1}_{sp}(\mathbb{R}^n)$ satisfies

\[
\langle (-\Delta)^s_p u, \phi \rangle := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))(\phi(x) - \phi(y))}{|x - y|^{n+sp}} \, dx \, dy \geq 0
\]

whenever ϕ belongs to $C_0^\infty(\Omega)$ and is nonnegative. Similarly, u is a weak subsolution if $-u$ is a weak supersolution, and u is a weak solution if it is both sub- and supersolution.
Weak solutions: Definition

Let us begin with the definition

Definition

We say that \(u \) is a weak supersolution to \((-\Delta)^s_p u = 0 \) in \(\Omega \) if \(u \in W^{s,p}_{loc}(\Omega) \cap L^{p-1}_{sp}(\mathbb{R}^n) \) satisfies

\[
\langle (-\Delta)^s_p u, \phi \rangle := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))(\phi(x) - \phi(y))}{|x - y|^{n+sp}} \, dx \, dy \geq 0
\]

whenever \(\phi \) belongs to \(C_0^\infty(\Omega) \) and is nonnegative. Similarly, \(u \) is a weak subsolution if \(-u \) is a weak supersolution, and \(u \) is a weak solution if it is both sub- and supersolution.

The definition still makes sense with measurable coefficients, i.e., if the kernel \(|x - y|^{-n-sp} \) is replaced with \(K(x, y) = a(x, y)|x - y|^{-n-sp} \), where \(a \) is symmetric, measurable and satisfies for example \(\Lambda^{-1} \leq a(x, y) \leq \Lambda \) for a.e. \(x, y \) with a constant \(\Lambda \geq 1 \).
Initial motivation for the problem: Minimization

Weak solutions naturally appear in minimization problems. Defining, for $g \in W^{s,p}(\mathbb{R}^n)$,

$$
\mathcal{K}_g(\Omega) := \{ u \in W^{s,p}(\mathbb{R}^n) : u = g \text{ a.e. on } \mathbb{R}^n \setminus \Omega \},
$$

then the minimizer of

$$
\min_{u \in \mathcal{K}_g(\Omega)} [u]_{W^{s,p}(\mathbb{R}^n)}
$$

is a weak solution in Ω, with boundary values g, by the first variation.
Initial motivation for the problem: Minimization

Weak solutions naturally appear in minimization problems. Defining, for $g \in W^{s,p}(\mathbb{R}^n)$,

$$K_g(\Omega) := \{ u \in W^{s,p}(\mathbb{R}^n) : u = g \text{ a.e. on } \mathbb{R}^n \setminus \Omega \},$$

then the minimizer of

$$\min_{u \in K_g(\Omega)} [u]_{W^{s,p}(\mathbb{R}^n)}$$

is a weak solution in Ω, with boundary values g, by the first variation.

There are various ways to generalize this. For instance, letting Ω' be such that $\Omega \subset \Omega'$ and defining, for $g \in W^{s,p}(\Omega') \cap L^{p-1}_{sp}(\mathbb{R}^n)$,

$$K_g(\Omega, \Omega') := \{ u \in W^{s,p}(\Omega') \cap L^{p-1}_{sp}(\mathbb{R}^n) : u = g \text{ a.e. on } \mathbb{R}^n \setminus \Omega \},$$

it is possible to obtain existence and uniqueness of minimizers, which, in turn, are weak solutions in Ω.
Initial motivation for the problem: Minimization

Weak solutions naturally appear in minimization problems. Defining, for $g \in W^{s,p}(\mathbb{R}^n)$,

$$K_g(\Omega) := \{ u \in W^{s,p}(\mathbb{R}^n) : u = g \text{ a.e. on } \mathbb{R}^n \setminus \Omega \},$$

then the minimizer of

$$\min_{u \in K_g(\Omega)} [u]_{W^{s,p}(\mathbb{R}^n)}$$

is a weak solution in Ω, with boundary values g, by the first variation.

There are various ways to generalize this. For instance, letting Ω' be such that $\Omega \subset \Omega'$ and defining, for $g \in W^{s,p}(\Omega') \cap L^{p-1}_{sp}(\mathbb{R}^n)$,

$$K_g(\Omega, \Omega') := \{ u \in W^{s,p}(\Omega') \cap L^{p-1}_{sp}(\mathbb{R}^n) : u = g \text{ a.e. on } \mathbb{R}^n \setminus \Omega \},$$

it is possible to obtain existence and uniqueness of minimizers, which, in turn, are weak solutions in Ω.

Problem: What can be said if g does not belong to $W^{s,p}(\Omega')$ for any $\Omega' \subset \Omega$?
Weak solutions: Some properties

As the kernel is singular, there are regularization effects:

- Solutions are Hölder-continuous with measurable coefficients (Di Castro-K-Palatucci, Poincaré ’16)
- Nonlocal Harnack estimates with measurable coefficients (Di Castro-K-Palatucci, JFA ’14)
- Continuity up to the boundary in obstacle problems with measurable coefficients (Korvenpää-K-Palatucci, Calc. Var. ’16)
- If $s > p - 1$, then the gradient of solution belongs to $W^{s, p}$ for $s > 0$. (Brasco-Lindgren, AIM ’16)
- Many other recent results
- Higher regularity still open
Weak solutions: Some properties

As the kernel is singular, there are regularization effects:

- Solutions are Hölder-continuous with measurable coefficients (Di Castro-K-Palatucci, Poincaré ’16)
- Nonlocal Harnack estimates with measurable coefficients (Di Castro-K-Palatucci, JFA ’14)
- Continuity up to the boundary in obstacle problems with measurable coefficients (Korvenpää-K-Palatucci, Calc. Var. ’16)
- If $\text{sp} > p - 1$, then the gradient of solution belongs to $W^{\sigma,p}$ for $\sigma > 0$. (Brasco-Lindgren, AIM ’16)
- Many other recent results
- Higher regularity still open
Weak solutions: Some properties

As the kernel is singular, there are regularization effects:

- Solutions are Hölder-continuous with measurable coefficients (Di Castro-K-Palatucci, Poincaré ’16)
- Nonlocal Harnack estimates with measurable coefficients (Di Castro-K-Palatucci, JFA ’14)
- Continuity up to the boundary in obstacle problems with measurable coefficients (Korvenpää-K-Palatucci, Calc. Var. ’16)

If $\sigma > p - 1$, then the gradient of solution belongs to $W^{\sigma, p}$ for $\sigma > 0$. (Brasco-Lindgren, AIM ’16)

- Many other recent results
- Higher regularity still open
Weak solutions: Some properties

As the kernel is singular, there are regularization effects:

- Solutions are Hölder-continuous with measurable coefficients (Di Castro-K-Palatucci, Poincaré ’16)
- Nonlocal Harnack estimates with measurable coefficients (Di Castro-K-Palatucci, JFA ’14)
- Continuity up to the boundary in obstacle problems with measurable coefficients (Korvenpää-K-Palatucci, Calc. Var. ’16)
- If \(sp > p - 1 \), then the gradient of solution belongs to \(W^{\sigma,p} \) for \(\sigma > 0 \). (Brasco-Lindgren, AIM ’16)
Weak solutions: Some properties

As the kernel is singular, there are regularization effects:

- Solutions are Hölder-continuous with measurable coefficients (Di Castro-K-Palatucci, Poincaré ’16)
- Nonlocal Harnack estimates with measurable coefficients (Di Castro-K-Palatucci, JFA ’14)
- Continuity up to the boundary in obstacle problems with measurable coefficients (Korvenpää-K-Palatucci, Calc. Var. ’16)
- If $sp > p - 1$, then the gradient of solution belongs to $W^{\sigma,p}$ for $\sigma > 0$. (Brasco-Lindgren, AIM ’16)
- Many other recent results
Weak solutions: Some properties

As the kernel is singular, there are regularization effects:

- Solutions are Hölder-continuous with measurable coefficients (Di Castro-K-Palatucci, Poincaré ’16)
- Nonlocal Harnack estimates with measurable coefficients (Di Castro-K-Palatucci, JFA ’14)
- Continuity up to the boundary in obstacle problems with measurable coefficients (Korvenpää-K-Palatucci, Calc. Var. ’16)
- If \(sp > p - 1 \), then the gradient of solution belongs to \(W^{\sigma,p} \) for \(\sigma > 0 \). (Brasco-Lindgren, AIM ’16)
- Many other recent results
- Higher regularity still open
Weak supersolutions

Weak supersolutions play an important role in the theory.

Some basic properties of supersolutions are the following (Korvenpää-K-Palatucci, preprint):

• A weak supersolution has a lower semicontinuous (l. s. c.) representative
• Class of uniformly globally bounded weak supersolutions is closed w.r.t. pointwise convergence
• Minimum of two weak supersolutions is a weak supersolution as well
• A nonnegative supersolution \(u \) in \(B_R(z) \) satisfies

\[
\left(\int_{B_r} u^q(x) \, dx \right)^{1/q} \lesssim \text{ess inf}_{B_r} u + \left(\frac{r}{R} \right)^{sp/p-1} \text{Tail}(\max(-u, 0); z, R)
\]

whenever \(r \in (0, R/2) \). Here \(q \in \left(0, \frac{n(p-1)}{n-ps} \right) \) for \(n > ps \) and \(q \in (0, \infty) \) for \(n \leq ps \).

Recall: \(\text{Tail}(f; z, r) := \left(r^{sp} \int_{\mathbb{R}^n \setminus B_r(z)} \frac{|f(x)|^{p-1}}{|x-z|^{n+sp}} \, dx \right)^{1/p-1} \)
(s, p)-superharmonic functions

Definition
We say that a function \(u : \mathbb{R}^n \rightarrow [−\infty, \infty] \) is an \((s, p)\)-superharmonic function in an open set \(\Omega \) if it satisfies the following four assumptions:

(i) \(u < +\infty \) almost everywhere and \(u > −\infty \) everywhere in \(\Omega \),

(ii) \(u \) is lower semicontinuous (l. s. c.) in \(\Omega \),

(iii) \(u \) satisfies the comparison in \(\Omega \) against solutions bounded from above; that is, if \(D \subset \Omega \) is an open set and \(v \in C(\overline{D}) \) is a weak solution in \(D \) such that \(\max\{v, 0\} \in L^\infty(\mathbb{R}^n) \) and \(u \geq v \) on \(\partial D \) and almost everywhere on \(\mathbb{R}^n \setminus D \), then \(u \geq v \) in \(D \),

(iv) \(u_− \) belongs to \(L^{p−1}_{sp}(\mathbb{R}^n) \).

A function \(u \) is \((s, p)\)-subharmonic in \(\Omega \) if \(−u \) is \((s, p)\)-superharmonic in \(\Omega \), and if both \(u \) and \(−u \) are \((s, p)\)-superharmonic, we say that \(u \) is \((s, p)\)-harmonic.
Properties of \((s, p)\)-superharmonic functions

Theorem (Korvenpää-K-Palatucci, preprint)

Suppose that \(u\) is \((s, p)\)-superharmonic in an open set \(\Omega\). Then it has the following properties:

(i) **Pointwise behavior.**

\[
\liminf_{y \to x} u(y) = \mathrm{ess} \liminf_{y \to x} u(y) \quad \text{for every } x \in \Omega.
\]

(ii) **Summability.** For

\[
\bar{t} := \begin{cases}
\frac{(p-1)n}{n-sp}, & 1 < p < \frac{n}{s}, \\
+\infty, & p \geq \frac{n}{s},
\end{cases} \quad \bar{q} := \min \left\{ \frac{n(p-1)}{n-s}, p \right\},
\]

and \(h \in (0, s), \ t \in (0, \bar{t})\) and \(q \in (0, \bar{q})\),

\[u \in W_{1,0}^{h,q}(\Omega) \cap L_{\operatorname{loc}}^{t}(\Omega) \cap L_{sp}^{p-1}(\mathbb{R}^n).\]

(iii) **Connection to weak supersolutions.** If \(u\) is locally bounded in \(\Omega\) or \(u \in W_{1,0}^{s,p}(\Omega)\), then it is a weak supersolution in \(\Omega\).
Perron solutions

We may now define the upper (and lower) classes for the Perron solution

Definition (Perron solutions)

Let Ω be an open set. Assume that $g \in L_{sp}^{p-1}(\mathbb{R}^n)$. The upper class \mathcal{U}_g of g consists of all functions u such that

(i) u is (s, p)-superharmonic in Ω,

(ii) u is bounded from below in Ω,

(iii) $\liminf_{\Omega \ni y \to x} u(y) \geq \text{ess lim sup}_{\mathbb{R}^n \setminus \Omega \ni y \to x} g(y)$ for all $x \in \partial \Omega$,

(iv) $u = g$ almost everywhere in $\mathbb{R}^n \setminus \Omega$.

The lower class is $\mathcal{L}_g := \{ u : -u \in \mathcal{U}_g \}$. Define

$$\overline{H}_g := \inf \{ u : u \in \mathcal{U}_g \} \quad \text{and} \quad \underline{H}_g := \sup \{ u : u \in \mathcal{L}_g \}.$$

The definition (and some work) guarantees that $\overline{H}_g \geq \underline{H}_g$.

Theorem (Korvenpää-K-Palatucci, preprint)

The Perron solution H_g can be either identically $+\infty$ in Ω, identically $-\infty$ in Ω, or (s, p)-harmonic in Ω.

Perron solutions

We may now define the upper (and lower) classes for the Perron solution

Definition (Perron solutions)

Let Ω be an open set. Assume that $g \in L^{p^{-1}}(\mathbb{R}^n)$. The upper class \mathcal{U}_g of g consists of all functions u such that

(i) u is (s, p)-superharmonic in Ω,

(ii) u is bounded from below in Ω,

(iii) $\liminf_{\Omega \ni y \to x} u(y) \geq \text{ess lim sup}_{\mathbb{R}^n \setminus \Omega \ni y \to x} g(y)$ for all $x \in \partial \Omega$,

(iv) $u = g$ almost everywhere in $\mathbb{R}^n \setminus \Omega$.

The lower class is $\mathcal{L}_g := \{u : -u \in \mathcal{U}_{-g}\}$. Define

$$\bar{H}_g := \inf \{u : u \in \mathcal{U}_g\} \quad \text{and} \quad \underline{H}_g := \sup \{u : u \in \mathcal{L}_g\}.$$

The definition (and some work) guarantees that $\bar{H}_g \geq \underline{H}_g$.

Theorem (Korvenpää-K-Palatucci, preprint)

The Perron solution \bar{H}_g (\underline{H}_g) can be either identically $+\infty$ in Ω, identically $-\infty$ in Ω, or (s, p)-harmonic in Ω.

A few examples

The function

\[u(x) = c_{n,s} \left(1 - |x|^2 \right)^s \int_{\mathbb{R}^n \setminus B_1(0)} g(y) (|y|^2 - 1)^{-s} |x - y|^{-n} \, dy, \quad x \in B_1(0), \]

solves \((-\Delta)^s u = 0\) in \(B_1(0)\) with \(u = g\) on \(\mathbb{R}^n \setminus B_1(0)\).
A few examples

The function

$$u(x) = c_{n,s} \left(1 - |x|^2\right)^s \int_{\mathbb{R}^n \setminus B_1(0)} g(y) \left(|y|^2 - 1\right)^{-s} |x - y|^{-n} \, dy, \quad x \in B_1(0),$$

solves $$(-\Delta)^s u = 0$$ in $$B_1(0)$$ with $$u = g$$ on $$\mathbb{R}^n \setminus B_1(0).$$

Example

Taking the function $$g(x) = |x|^2 - 1|^{s-1}, \; g \in L^1_{2s}(\mathbb{R}^n),$$ as boundary values in the Poisson formula above, the integral does not converge. This example suggests that in this case $$\overline{H}g \equiv \underline{H}g \equiv +\infty$$ in $$B_1(0).$$ The example also tells that one can not expect bounded solutions for all $$g \in L^1_{2s}(\mathbb{R}^n).$$
A few examples

The function

$$u(x) = c_{n,s} \left(1 - |x|^2\right)^s \int_{\mathbb{R}^n \setminus B_1(0)} g(y) \left(|y|^2 - 1\right)^{-s} |x - y|^{-n} dy, \quad x \in B_1(0),$$

solves $$(-\Delta)^s u = 0$$ in $$B_1(0)$$ with $$u = g$$ on $$\mathbb{R}^n \setminus B_1(0)$$.

Example

Taking the function $$g(x) = \left| |x|^2 - 1\right|^{s-1}, g \in L^1_{2s}(\mathbb{R}^n)$$, as boundary values in the Poisson formula above, the integral does not converge. This example suggests that in this case $$\overline{H}_g \equiv H_g \equiv +\infty$$ in $$B_1(0)$$. The example also tells that one can not expect bounded solutions for all $$g \in L^1_{2s}(\mathbb{R}^n)$$.

Example

Let us consider the previous example with $$g$$ reflected to the negative side in the half space, i. e., $$g(x) = \text{sign}(x_n)\left| |x|^2 - 1\right|^{s-1}$$. Then the “solution” via Poisson formula, for $$x \in B_1$$, is $$u(x) = \text{sign}(x_n) \cdot \infty$$, which is suggesting that we should now have $$\overline{H}_g \equiv +\infty$$ and $$\underline{H}_g \equiv -\infty$$ in $$B_1(0)$$: failure of resolutivity in $$L^1_{2s}(\mathbb{R}^n)$$?
“Viscosity” solutions

Let us finally comment another possible class for upper solutions, namely viscosity supersolutions.

Definition

We say that a function $u : \mathbb{R}^n \to [-\infty, \infty]$ is an (s, p)-viscosity supersolution in Ω if it satisfies the following four assumptions.

(i) $u < +\infty$ almost everywhere in \mathbb{R}^n, and $u > -\infty$ everywhere in Ω.

(ii) u is lower semicontinuous in Ω.

(iii) If $\phi \in C^2(B_r(x_0))^3$ for some $B_r(x_0) \subseteq \Omega$ is such that $\phi(x_0) = u(x_0)$ and $\phi \leq u$ in $B_r(x_0)$, then $(-\Delta)^s_p \phi_r(x_0) \geq 0$, where

$$
\phi_r(x) = \begin{cases}
\phi(x), & x \in B_r(x_0), \\
u(x), & x \in \mathbb{R}^n \setminus B_r(x_0).
\end{cases}
$$

(iv) u_- belongs to $L^{p-1}_{sp}(\mathbb{R}^n)$.

3Replacing C^2 with Dini-C^{sp-1}_p for $p > \frac{2}{2-s}$ leads to the same class. The case $1 < p \leq \frac{2}{2-s}$ needs an extra assumption on the critical set of ϕ.
Equivalence

It turns out that the classes of \((s, p)\)-superharmonic functions and \((s, p)\)-viscosity solutions are the same.

Theorem (Korvenpää-K-Lindgren)

A function \(u\) is \((s, p)\)-superharmonic in \(\Omega\) if and only if it is an \((s, p)\)-viscosity supersolution in \(\Omega\).
Equivalence

It turns out that the classes of \((s, p)\)-superharmonic functions and \((s, p)\)-viscosity solutions are the same.

Theorem (Korvenpää-K-Lindgren)

A function \(u\) is \((s, p)\)-superharmonic in \(\Omega\) if and only if it is an \((s, p)\)-viscosity supersolution in \(\Omega\).

As an immediate corollary we get:

Theorem (Korvenpää-K-Lindgren)

A function \(u\) is a continuous weak solution to \((-\Delta)^s_p u = 0\) in \(\Omega\) if and only if it is an \((s, p)\)-viscosity solution in \(\Omega\).
The proof

\[u \text{ is } (s, p)\text{-superharmonic} \implies u \text{ is } (s, p)\text{-viscosity supersolution} \]
The proof

\(u \) is \((s, p)\)-superharmonic \(\implies\) \(u \) is \((s, p)\)-viscosity supersolution

- Let \(\phi \) be s.t. \(u \geq \phi \) in \(B_r(z) \) and \(u(z) = \phi(z) \). Assume on contrary that \((\Delta)_p^s \phi_r(z) < 0\).
The proof

\(u \) is \((s, p)\)-superharmonic \(\implies\) \(u \) is \((s, p)\)-viscosity supersolution

- Let \(\phi \) be s.t. \(u \geq \phi \) in \(B_r(z) \) and \(u(z) = \phi(z) \). Assume on contrary that \((-\Delta)^s p \phi_r(z) < 0 \).
- \((-\Delta)^s p (\phi_r + \delta \eta)(\cdot) < 0 \) for small enough \(\delta > 0 \) and \(\eta \) a cut-off function in the neighborhood of \(z \) by the counter assumption (this is where the most of the computations happen)
The proof

\(u\) is \((s,p)\)-superharmonic \(\iff\) \(u\) is \((s,p)\)-viscosity supersolution

- Let \(\phi\) be s.t. \(u \geq \phi\) in \(B_r(z)\) and \(u(z) = \phi(z)\). Assume on contrary that \((-\Delta)^s_p \phi_r(z) < 0\).

- \((-\Delta)^s_p (\phi_r + \delta \eta)(\cdot) < 0\) for small enough \(\delta > 0\) and \(\eta\) a cut-off function in the neighborhood of \(z\) by the counter assumption (this is where the most of the computations happen)

- Show that

\[
\left| \int_{B_r(x) \setminus B_{\varepsilon}(x)} \frac{|\phi(x) - \phi(y)|^{p-2}(\phi(x) - \phi(y))}{|x - y|^{n+sp}} \, dy \right| = O(r)
\]
The proof

u is (s, p)-superharmonic $\implies u$ is (s, p)-viscosity supersolution

- Let ϕ be s.t. $u \geq \phi$ in $B_r(z)$ and $u(z) = \phi(z)$. Assume on contrary that $(-\Delta)^s_p \phi_r(z) < 0$.

- $(-\Delta)^s_p (\phi_r + \delta \eta)(\cdot) < 0$ for small enough $\delta > 0$ and η a cut-off function in the neighborhood of z by the counter assumption (this is where the most of the computations happen)

- Show that

\[
\left| \int_{B_r(x) \setminus B_{\varepsilon}(x)} \frac{|\phi(x) - \phi(y)|^{p-2}(\phi(x) - \phi(y))}{|x - y|^{n+sp}} \, dy \right| = O(r)
\]

- “Integrate by parts” to show that $\phi_r + \delta \eta$ is a weak subsolution
The proof

u is (s, p)-superharmonic $\implies u$ is (s, p)-viscosity supersolution

- Let ϕ be s.t. $u \geq \phi$ in $B_r(z)$ and $u(z) = \phi(z)$. Assume on contrary that $(-\Delta)_p^s \phi_r(z) < 0$.

- $(-\Delta)_p^s (\phi_r + \delta \eta)(\cdot) < 0$ for small enough $\delta > 0$ and η a cut-off function in the neighborhood of z by the counter assumption (this is where the most of the computations happen)

- Show that
 \[
 \left| \int_{B_r(x) \setminus B_\varepsilon(x)} \frac{|\phi(x) - \phi(y)|^{p-2}(\phi(x) - \phi(y))}{|x - y|^{n+sp}} \, dy \right| = O(r)
 \]

- "Integrate by parts" to show that $\phi_r + \delta \eta$ is a weak subsolution

- Use the comparison principle for weak super- and subsolutions to reach a contradiction
The proof

\[u \text{ is } (s,p)\text{-viscosity supersolution} \implies u \text{ is } (s,p)\text{-superharmonic} \]
The proof

\[u \text{ is } (s, p)\text{-viscosity supersolution} \implies u \text{ is } (s, p)\text{-superharmonic} \]

- Take a domain \(D \subseteq \Omega \) and a continuous weak solution \(v \) s.t. \(u \geq v \)
on \(\partial D \) and a.e. on \(\mathbb{R}^n \setminus D \).
The proof

\[u \text{ is } (s, p)\text{-viscosity supersolution} \implies u \text{ is } (s, p)\text{-superharmonic} \]

- Take a domain \(D \subseteq \Omega \) and a continuous weak solution \(v \) s.t. \(u \geq v \) on \(\partial D \) and a.e. on \(\mathbb{R}^n \setminus D \).

- As in the first part, one can show that \(v \) is an \((s, p)\)-viscosity subsolution.
The proof

\(u \) is \((s, p)\)-viscosity supersolution \(\iff\) \(u \) is \((s, p)\)-superharmonic

- Take a domain \(D \subset \Omega \) and a continuous weak solution \(v \) s.t. \(u \geq v \) on \(\partial D \) and a.e. on \(\mathbb{R}^n \setminus D \).
- As in the first part, one can show that \(v \) is an \((s, p)\)-viscosity subsolution
- Conclude the proof by proving a comparison principle for viscosity solutions (MUCH easier than in the case of local viscosity solutions)
Thank you for your attention!