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Abstract. These are notes of lectures on the Atiyah-Singer index theorem given
during a masterclass in Bedlewo. The general aim is to survey K-theoretic and local
proofs of the index theorem.
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1. 05 September 2016, Nigel Higson

In this lecture we shall discuss Fredholm Operators, Differential Operators, and the

(top order) Symbol of an Elliptic Operator.

1.1. Fredholm Operators.

Definition 1.1. Fix vector spaces V,W typically infinite-dimensional. Let T : V −→W

be a linear operator. We say T is Fredholm if dim(kerT ) < ∞ and dim(coker T ) < ∞,
where coker is the co-kernel. If T is Fredholm, then the index of T is the integer

Index(T ) = dim(kerT )− dim(cokerT ).

Date: September 20, 2016.
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Example 1.2. The shift operator 
0 0 0

1 0 0
. . .

0 1 0
. . .

0 0 1
. . .


on just about any sequence space is Fredholm, and its index is −1.

Lemma 1.3. If F : V −→ W has finite rank, then T is Fredholm ⇐⇒ T + F is

Fredholm. That is, Index(T ) = Index(T + F ). �

In the Banach space context, there is an interesting variation on the above lemma:

Lemma 1.4. Given a bounded linear operator T : V → V that is also Fredholm (in the

above purely algebraic sense), if S : V →W is a bounded linear operator with sufficiently

small norm (depending on T ) then T + S is also Frehdolm and moreover Index(T ) =

Index(T + S). �

Thus the set of Fredholm bounded linear operators from one Banach space to another

is an open subset (in the norm topology) of the space of all bounded linear operators,

and the Fredholm index is a locally constant integer-valued function on it.

So, (typically) the index assumes all values.

Definition 1.5. Fix an infinite-dimesional Hilbert space H. We shall denote by Fred

the space of all Fredholm operators on H (with the norm topology), and by Fred0 the

subspace of all Fredholm operators of Index 0.

Both Fred and Fred0 are reasonable topological spaces (for example they have the

homotopy type of CW-complexes). The homotopy-theoretic structure of Fred0 can be

illuminated by considering the map

{ compact operators } × { invertible operators } onto−−−→ Fred0

defined by

(K,A) 7−→ K +A,

or, better, the map

{ operators of the form identity plus compact } × { invertible operators } onto−−−→ Fred0

defined by the formula

((I +K) , A) 7−→ (I +K)A

The group

GL∞ = { invertible operators of the form I + compact }

acts freely on the left-hand side via the formula

B · (I +K,A) = ((I +K)B−1, BA)
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and the boxed map is a principal GL∞ fibration (roughly speaking the right-hand side

is the quotient by the group action, which is has no pathologies). Now the space on the

left-hand side of the boxed formula is a contractible topological space, so, from homotopy

theory we obtain isomorphisms of homotopy groups

πk (Fred0)
∼=−→ πk−1 (GL∞) .

for all k.

The group GL∞ is very interesting from a homotopy theory point of view. Its homo-

topy groups agree with those of the direct limit⋃
n

GLn(C)

in which GLn(C) is embedded into GLn+1(C) via

X 7−→
[
X 0
0 1

]
.

In fact each individual homotopy group πk−1(GL∞) identifies with the group πk−1(GLn(C))

for any sufficiently large k (and “sufficiently large” is not so large; just bigger than n/2).

Bott’s famous periodicity theorem says that

πk−1 (GL∞) =

{
Z k even
0 k odd.

Atiyah and Hirzebruch defined

K(X) = [X,Fred]

where the square bracket notation means homotopy classes of maps (actually they defined

K(X) a bit differently, and it’s a theorem that their definition is equivalent to the one

above). This is K-theory. We find from Bott’s theorem that

K(Sk) =

{
Z k odd
Z⊕Z k even.

So while individual Fredholm operators have an interesting integer invariant, families of

Fredholm operators parametrized by even-dimensional spheres have a second, even more

interesting, integer invariant.

Two footnotes about the definition of K-theory.

1) In the definition as stated, X should be compact (compact Hausdorff). If Z

is a locally compact Hausdorff space then experience shows it is better define

K(Z) to be the space of homotopy slasses of maps Z → Fred that are invertible

operator-valued outside a compact set.

2) In the definition we can allow the Hilbert space H to vary with x ∈ X or z ∈ Z.
That is we can define a K-theory group using continuous families {Tx : Hx −→
Hx} of Fredholm operators (that are invertible outside a compact set). The details

are best arranged using the concept of continuous field of Hilbert space, and first

arranged this way by Kasparov.
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1.2. Differential Operators. Examples on the plane are

• D = ∂
∂x + ∂

∂y (this is really just a directional derivative).

• D = ∂
∂x + i ∂∂y (this is the Cauchy-Riemann operator from complex analysis).

Despite their similar appearance, they behave very differently from an analytic point of

view. Let’s consider the equation

Du = v

in which v is given and the task is to study all solutions u.

Definition 1.6. A linear partial differential operator D is hypoelliptic if all the solutions

u of the above equation are smooth (that is, infinitely differentiable) in any open set

where v is smooth.

This condition is very close to the Fredholm condition, in the sense that the tech-

niques to prove it are usually very close to (some of) the techniques used to prove a

differential operator is Fredholm. Returning to the two exaxmples, the first is definitely

not hypoelliptic. The operator is differentiation in the direction x = y, and the derivative

in this direction tells us nothing about the derivative in the orthogonal direction. On

the other hand, it’s a famous fact that Cauchy-Riemann equation Du = 0 are smooth

(and a slightly less famous fact that more generally the Cauchy-Riemann operator is

hypoelliptic).

1.3. A First Look at the Symbol. Is there a way to tell at a glance whether or not

a linear partial differential operator D is hypoelliptic (and likely to lead to a Fredholm

operator, perhaps after imposing boundary conditions of a suitable sort)? Yes! We need

only examine the (principal) symbol of D which is a function (a simpler object than an

operator) and examine the values of this function one point at a time.

We’ll give here a down-to-earth treatment of the symbol here, and then a fancier

treatment, suitable for the discussion of operators and symbols on manifolds, in a while.

Start with an operator

D =
∑
|α|≤p

aα(x)
∂α

∂xα

of order p or less on an open set U in Rn. Here α is a multiindex (α1, . . . , αn) with

nonnegative integer entries,

|α| = α1 + · · ·+ αn,

and of course
∂α

∂xα
=

∂|α|

∂xα1
1 · · · ∂x

αn
n
.

Thank heavens for multiindex notation . . .

Definition 1.7. The order p symbol of D is the function

σp(D) : U ×Rn −→ C



INDEX THEORY 5

defined by the formula

σp(D) : (x, ξ) 7−→
∑
|α|=p

aα(x)ξα

Remark 1.8. It’s important to note that we’ve dropped all the terms in the expression for

D except the terms of degree exactly order p. The lower order terms do not contribute

to the symbol.

Example 1.9. The symbols of the two operators that we began with are

• (x, y, ξ, η) 7−→ ξ + η

• (x, y, ξ, η) 7−→ ξ + iη

The big definition:

Definition 1.10. An operator D of order less than or equal to p is elliptic of order p if

at every point (x, ξ) with ξ 6= 0 the symbol value σp(x, ξ) is invertible.

Remark 1.11. Saying that a scalar is “invertible,” as we did in the above definition, is

an awkard way of saying that it is nonzero. But soon we’ll be studying operators whose

coefficients aα(x) are not scalar-valued functions, but matrix -valued functions. In this

context, the definition of the symbol is the same, but now the symbol is a matrix-valued

function, and the criterion for ellipticity is exactly as in the definition above—that the

symbol take values in invertible matrices whenever ξ is nonzero.

Example 1.12. The Cauchy-Riemann operator ∂/∂x + i∂/∂y is elliptic; the directional

derivative operator ∂/∂x+ ∂/∂y is not.

Here’s a important and quite substantial result:

Theorem 1.13. If an operator D is elliptic, then it is hypoelliptic.

We shall discuss aspects of the proof of the big theorem in Lecture 3. We shall obtain

our Fredholm operators from the pool of elliptic partial differential operators, starting

with the examples to be discussed tomorrow.

1.4. Differential Operators on Manifolds. Now let M be a smooth manifold w/o

boundary. We want to define and study differential operators on M . We can simply say

that such operators have local coordinate expressions like the ones considered above. But

for variety (and because it is eventually more efficient to do so) we shall describe a fancier

approach.

We start with differential operators of order zero, which are dull:

Definition 1.14. A differential operator of order 0 is a complex-linear map

D : C∞(M) −→ C∞(M)

that commutes with all operators given by pointwise multiplication by smooth functions.

That is, an order 0 operator is a C∞(M)-module map on C∞(M).
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Order k+1 (or less) operators are defined in terms of order k (or less) operators:

Definition 1.15. A differential operator of order k+1 is a complex-linear map

D : C∞(M) −→ C∞(M)

with the property that for every smooth function f , viewed as a pointwise multiplication

operator on C∞(M), the commutator

[D, f ] : C∞(M) −→ C∞(M)

is a differential operator of order k.

Example 1.16. If M is an open subset of Rn, then the differential operators given by the

fancy definition are precisely the same as the differential operators given earlier by the

multiindex formula.

Example 1.17. Every differential operator of order 1 on any M has the form

D = X + h

where X is a vector field on M , that is, a derivation of the algebra C∞(M), and h is an

order zero operator, that is, a C∞(M)-module map. In fact h = D(1), so the assertion

(an exercise for you) is that if D is a differential operator of order 1, then D−D(1) is a

derivation.

Lemma 1.18. The composition of an order p operator with an order q operator is an

order p+q operator. �

Lemma 1.19. The commutator [D,E] of an order p operator with an order q operator

is an order p+q−1 operator. �

It will be important to consider linear partial differential operators in a slightly

broader context that corresponds in the local coordinate, multiindex picture to con-

sidering operators whose coefficient functions aα(x) are matrix-valued functions. The

essential point is that we want to consider operators

D : E −→ F

where E and F are modules over the ring C∞(M), rather than C∞(M) itself. The main

examples to keep in mind are spaces of differential forms over M .

Working in this generality, we can repeat the definitions above, with small modifica-

tions. An order zero operator is any C∞(M) module map from E to F . An order k+1

operator is, exactly as in the definition above, a complex-linear map D all of whose com-

mutators [D, f ] with functions (not arbitrary order zero operators) are order k operators.

The composition of an order p and an order q operator (when the composition makes

sense) will still be an operator of order p + q. So for example if E = F , then we obtain

an algebra of differential operators on E .
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But as it stands the setup is too general to be of value: it will be impossible to prove

theorems in this degree of generality. To remedy this we insist that E and F be the global

sections of locally free, finitely generated sheaves of modules over the sheaf of smooth

functions on M . In other words, for those who prefer vector bundles over sheaves, E
and F are the modules of sections of smooth vector bundles over M . We shall be able

to develop a reasonable theory in this generality, which encompasses many interesting

geometric examples.

1.5. The Symbol. To discuss the symbol of an operator of the general type considered

above, we shall need to consider “values” of elements in the modules E and F at points

x ∈M . This is done as follows:

Definition 1.20. The fiber of F at x ∈M is the vector space quotient

F|x = F/IxF ,

where Ix ⊆ C∞(M) is the ideal of all smooth functions on M vanishing at x.

For the modules we are considering, this is a finite-dimensional vector space. The

symbol of an order p differential operator

D : E −→ F

will be a family of polynomial functions

σp(D)x : T ∗xM −→ Hom(E|x,F|x),

one for each point x ∈ M . Here T ∗xM is the cotangent vector space at x ∈ M (more on

this in a moment), and the target of the map above is the space of linear transformations

between two finite-dimensional vector spaces. In effect, the target is the space of matrices

of some particular shape m× n.
The fancy definition of symbol will be in agreement with the concrete one we gave

before. The functions ξi that were used before will become coordinate functions on T ∗xM ,

and the agreement will be
σp(D)x = σp(D)(x, ξ)

=
∑
|α|=p

aα(x)ξα.

Now let us discuss the cotangent vector space T ∗xM . It can be defined in various ways,

but a convenient way for us is to set

T ∗xM = Ix/I
2
x.

That is, the cotangent vector space is the quotient of the vanishing ideal Ix by its square

(the ideal of functions vanishing to order two at x). If y1, . . . , yn are local coordinates

centered at x, then their images in the above quotient vector space, which are written

dy1, . . . , dyn, constitute a basis for the cotangent space.
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Definition 1.21. Let D be a differential operator of order p, as above. The order p

symbol of D, is the family of polynomial functions

σp(D)x : T ∗xM −→ Hom(E|x,F|x),

defined by

σp(D)x : df 7−→ 1

p!
[..[[D, f ], f ], · · · , f ]

in which there occur p commutators with the function f , viewed as an operator on E and

on F .

Example 1.22. By far the most important case for us will be the case of an operator of

order 1, in which case the formula is simpler:

σp(D)x : df 7−→ [D, f ]

The operator [D, f ] : E → F has order zero, which is to say that it is a C∞(M)-module

map, so that it induces a map

[D, f ] : E|x −→ F|x,

as the definition requires.

Example 1.23. Another simple case to check is the case where M = R (the case of Rn is

the same, but with more notation involved). Consider say

D = a(x)
d2

dx2
+ b(x)

d

dx
+ c(x).

Then

[D, f ] = 2a(x)f ′(x)
d

dx
+ b(x)f ′(x) + f ′′(x)

and

[[D, f ], f ] = 2a(x)f ′(x)2.

So the symbol is

σ2(D)x = a(x)ξ2,

where ξ is the coordinate function on T ∗xM that maps df to f ′(x) (so the right hand side

of the display is a function on T ∗xM with values in the scalars, or in other words with

values in the space of linear operators from a one-dimensional vector space to itself).

As a result, we find that we are in agreement with the concrete notion of symbol given

earlier.

Example 1.24. A more serious example is the de Rham differential

d : Ωk(M) −→ Ωk+1(M),

which is a differential operator of order one. The fiber at x ∈M of Ωk(M) identifies with

the exteriof power ∧kT ∗xM (this is a finite-dimensional vector space). The symbol can

therefore be studied as a map

σ(D)x : T ∗xM −→ Hom
(
∧kT∗xM,∧k+1T∗xM

)
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(we’re dropping the subscript 1 in our notation for the symbol). It is a polynomial map,

and in fact a linear map because d is a first order operator. One computes that

σ(d)x(ξ) : ω 7−→ ξ ∧ ω.

It is an excellent exercise, almost an essential exercise, to carefully make sense of all of

this: to make the identifications explicit, and verify the formula.

1.6. An Extended Example. Think of this section as an extended exercise, with plenty

of hints. We’re going to take a fairly close look at one operator on the 2-sphere (in fact

it is the Dirac operator, which will be discussed in a much more general context in the

next lecture).

The 2-sphere as a homogeneous space. It will be convenient to describe the 2-sphere not

in the usual coordinate way as

S2 = { (x, y, z) : x2 + y2 + z2 = 1 }

but as a homogeneous space for the group SU(2).

To do so, recall the following preliminaries. The Lie algebra su(2) of SU(2) is linearly

spanned over R by the three matrices

X =

[
i 0
0 −i

]
, Y =

[
0 i
i 0

]
and Z =

[
0 −1
1 0

]
.

The group SU(2) acts on su(2) in the usual way by conjugation (this is the adjoint action,

in the Lie-theory language). The action preserves the real inner product

〈W1,W2〉 =
1

2
Trace(W ∗1W2),

where the factor of 1/2 makes {X,Y, Z } an orthonormal basis, and so we get a homo-

morphism

SU(2) −→ SO(3)

if we use the {X,Y, Z } basis to identify su(2) with R3. This is the famous spin double

covering of SO(3).

The isotropy subgroup for X ∈ su(2) under the conjugation action is the diagonal

subgroup T ⊆ SU(2), and the action of SU(2) is transitive on the unit sphere in su(2),

so we obtain an identification of the homogeneous space SU(2)/T with the 2-sphere. In

particular, we obtain an identification of algebras

C∞(S2) =
{
f : SU(2)→ C : f(u exp(tX) = f(u) ∀u ∈ SU(2) ∀t ∈ R

}
(it is not written explicitly above, but from now on we’ll be dealing exclusively with

smooth functions on the 2-sphere).

Remark 1.25. While we’re on the subject of the su(2), let us make note of the commu-

tation relations

[X,Y ] = 2Z, [Y,Z] = 2X and [Z,X] = 2Y,
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which we shall use later on. We shall also use the really simple formula

exp(tX) =

[
exp(it) 0

0 exp(−it)

]
.

Modules. Our operator will act not on scalar functions, but between two modules over

the smooth functions on the two-sphere, as we discussed above. The modules will be as

follows:

S+ =
{
f : SU(2)→ C : f(u exp(tX)) = exp(it)f(u)

}
and

S− =
{
f : SU(2)→ C : f(u exp(tX)) = exp(−it)f(u)

}
.

They are indeed modules, since the action by pointwise multiplication of the ring of

functions on SU(2) for which f(u) = f(u exp(tX)) leaves invariant the spaces S±.

Differential Operator. Our operator will be a combination of the following elementary

operators:

Definition 1.26. If W is any matrix in the Lie algebra su(2), and if f is any smooth

function on SU(2), then let us define

(Wf)(u) =
d

ds

∣∣∣
s=0

f
(
u exp(sW )

)
,

which is of course another smooth function on SU(2).

A warning: these operators do not individually preserve the spaces S±, or map one

of them into the other. They are however very simply related to the Lie bracket on su(2):

Lemma 1.27. If [W1,W2] = W3 in su(2), and if f is any smooth function on SU(2),

then

W1(W2f)−W2(W1f) = W3f. �

Using the operators in the definition, we obtain a more computationall useful descrip-

tion of the spaces S±, as follows:

Lemma 1.28. S± = { f : SU(2)→ C : Xf = ±if }. �

We are now almost ready to define our operator. We need one more computation:

Lemma 1.29. If f ∈ S+, then Y f + iZf ∈ S−.

Proof. If f ∈ S+, then according to the previous lemmas
X(Y + iZ)f = (Y + iZ)Xf + ([X,Y ] + i[X,Z])f

= i(Y + iZ)f + (2Z − 2iY )f,

or in other words

X(Y + iZ)f = −i(Y + iZ)f,

as required. �
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Lemma 1.30. The formula

Df = (Y + iZ)f

defines a first-order differential operator

D : S+ −→ S−

on the 2-sphere.

Proof. According to the definition, we need to show that if f is a smooth function on the 2-

sphere, or in other words a right U(1)-invariant function on SU(2), then the commutator

[D, f ] : S+ −→ S−

commutes with pointwise multiplication by other functions on the 2-sphere. We compute

that

[D, f ] = Y f + iZf

where the function Y f+iZf on SU(2) is acting by by pointwise multiplication. Certainly

this commutes with all other pointwise multiplication operators. �

Symbol. The computation of the first order symbol of D is mostly easy, since it involves

only the operators [D, f ] that we have already computed. Namely, if x is a point on the

2-sphere, then the symbol

σ(D)x : T ∗xM 7−→ Hom(S+|x,S−|x)

is the map

σ(D)x : df 7−→
[
(Y f + iZf) : S+|x → S−|x

]
But we need to identify the fiber spaces S±|x in order to make the formula a bit more

useful.

Recall that

S±|x = S±/IxS±

where Ix is the ideal of smooth functions on the 2-sphere that vanish at x. The point

x corresponds to some left coset uT in SU(2), and Ix corresponds to the functions on

SU(2) that are invariant under the right T -action and that vanish on that coset. We find

that

IxS± = { f ∈ S± : f |uT = 0 }

So
S±|x = { f : uT → C : Xf = ±if }

= { f : uT → C : f(u exp(tX)) = exp(±it)f }
which is a one-dimensional vector space, isomorphic to C via evaluation at u ∈ uT . Of

course, the choice of u within the coset is not canonical, so our identification of the fibers

with C is a bit arbitrary, but let us make it anyway. Under the identification, the symbol

becomes

σ(D)x : df 7−→ (Y f)(u) + i(Zf)(u),
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where the object on the right is a complex number, to be viewed as a linear operator

from C to C by multiplication.

Now if (Y f)(u) = 0 and (Zf)(u) = 0, then Y f and Zf are zero on the whole coset

uT , because f is right T -invariant, and Xf is zero on uT too, so f vanishes to second

order on uT ⊆ SU(2), and therefore df = 0. We find that if σ(D)xdf fails to be invertible,

it is because df = 0. So D is elliptic.

A Family of Operators. If we define

S±n = { f : SU(2)→ C : Xf = (n± i)f },

then we can define an operator

Dn : S+
n −→ S−n

by exactly the same formula Y + iZ as before (we just need to check that Y + iZ does

indeed map S+
n into S−n , which is done in the same was as the n = 0 case).

Point by point in S2, the symbol of Dn is the same as the symbol of D, if we

identify S±n |x with C by picking the same element of SU(2) that maps to x as we did

for D. Therefore the operators Dn are all elliptic. But overall the symbol is different: for

instance the K-theory classes associated to the symbols σ(Dn) that we shall describe in

the next section are distinct from one another.

The Fredholm index of the operator Dn certainly does depend on n. In fact we shall

see that

Index(Dn) = −n.

1.7. A Final Remark. Suppose that M is now a closed manifold (for a reason that

we’ll point out below) and that D is an elliptic linear partial differential operator on D.

We don’t know it yet, but the assumptions imply that D is a Fredholm operator, say

in the algebraic sense as a complex linear map

D : E −→ F .

So D has a Fredholm index, which is an integer.

There is another discrete (that is, resembling an integer) invariant that one can attach

to D. It is made from the symbol of D, and it uses the K-theory ideas we described in

the first part of the lecture.

To begin, the various cotangent vector spaces T ∗xM assembled to form a single smooth

manifold T ∗M of twice the dimension on M . This is the (total space of the) cotangent

bundle, of course.

Now the symbol attaches to each point of each cotangent vector space T ∗xM a linear

operator from E|x to the vector space F|x. These are finite-dimensional vector spaces,

so it is automatic that the linear operators that constitute the symbol are Fredholm.

Moreover for all but a compact subset of T ∗M (namely the “zero section” consisting of

the zero vectors in all the spaces T ∗M , which is compact because M is compact) the
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operators that constitute the symmbol are invertible. This is so because of the definition

of ellipticity.

So in summary, the symbol can be viewed as a family of Frehdolm operators parametrized

by the locally compact space T ∗M that is invertible outside of a compact set. And as a

result there is an associated K-theory class

[σ(D)] ∈ K(T ∗M).

An observation made very early on, essentially by Gelfand, is that the Fredholm index

of D depends only on the symbol class [σ(D)]. So the index problem begins to assume a

definite form: understand K-theory and the properties of the symbol class well enough to

determine a formula for the index of D in terms of the symbol class.

2. 06 September 2016, Erik van Erp

2.1. Dirac Operators. Before we consider Dirac Operators on manifolds, we present

the “model” Dirac Operator on Rn. The Dirac operator on Rn is constructed inductively.

• n = 1 : the Dirac operator on R is D = −i ddx .
The symbol of D is σ = −iξ, which is invertible if ξ 6= 0, so D is an elliptic

operator. If u, v are two distributions on R such that Du = v, then u(x) =

c +
∫ x

0
v(t)dt. Thus, u is “more regular” than v. In particular, we see that D is

hypo-elliptic: If v is C∞ on some open set (a, b) ⊂ R, then u is also C∞ on (a, b).

• n = 2 : the Dirac operator onR2 is the Cauchy-Riemann operatorD = ∂
∂x+i ∂∂x =

∂
∂z̄ . The symbol of D is σ = ξ + iη. Since σ = 0 iff (ξ, η) = (0, 0), we see that D

is elliptic.

• n = 3 : . . . we will proceed inductively.

The Dirac operator on Rn is the map D : C∞
(
Rn,C2r) 7−→ C∞

(
Rn,C2r)

defined by

(2.1) D =

n∑
j=1

Ej
∂

∂xj

Here n = 2r or n = 2r + 1, and Ej are 2r × 2r complex-valued matrices that satsify:

• E2
j = −In for j ∈ {1, . . . , n}, where In is the n× n identity matrix.

• EjEk = −EkEj for j, k ∈ {1, . . . , n} and j 6= k.

The matrices Ej are defined inductively in the following way.

• n = 1 (r = 0) : E1 = (−i).

• n = 2 (r = 1) : E1 =

[
0 −i
i 0

]
, E2 =

[
0 −1
1 0

]
.

• n = 3 (r = 2): E1, E2 are the same as in the case n = 2, and E3 =

[
−i 0
0 i

]
.

• n = 4 (r = 2): For j = 1, 2, 3 we replace the 2× 2 matrix Ej from the case n = 3

by the 2r × 2r = 4× 4 matrix
[

0 Ej
Ej 0

]
, and add E4 =

[
0 −I2
I2 0

]
, where

I2 is the 2× 2 identity matrix.
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• n = 5 (r = 2): E1, E2, E3, E4 are as in the case n = 4. Add E5 =

[
−iI2 0

0 iI2

]
.

Etcetera.

Remark 2.1. D2 =
∑
−I2r ⊗ ∂2

∂x2
j

=


∆

∆
. . .

∆

 , where ∆ is the Laplacian.

Aim: We want to define a Dirac operator D on a manifold and not just on Rn.

Consider the “model” Laplacian ∆ =
∑n
j=1−

∂
∂x2

j
on Rn. What, fundamentally, is the

reason that a Laplacian ∆ exists on Riemannian manifolds? The reason is that the

structure group of a Riemannian manifold is O(n), the group of orthogonal matrices of

size n × n. This means that we can identity the tangent space TpM ≈ Rn with the

standard Euclidean space, up to an action of the group O(n) on Rn.

=⇒ therefore ∆ is well-defined as an operator on each fiber TpM

=⇒ which implies, in turn, that the highest order part of ∆ is well-defined on M ,

∆ =
∑
−gij ∂2

∂xi∂xj
+ lower order terms.

The difficulty is that the “model” Dirac operator D on Rn is not SO(n)-invariant, where

SO(n) is the group of special orthogonal matrices of size n× n. The first modification is

that we need the more sophisticated notion of equivariance to replace invariance.

Equivariant vector bundle. Let M be a manifold with a group action G×M → M .

A vector bundle E → M is an G equivariant vector bundle if the group G acts on E in

a way that lifts the action of G on M . This means that if g ∈ G, then there is a vector

bundle homomorphism g̃ : E → E that lifts the action g : M →M ,

E

��

G?
_oo

M G? _oo

E

��

g̃ // E

��
M

g
// M

We will assume that M,E,G and all the actions are C∞. If E is a G equivariant vector

bundle, then g ∈ G acts on sections s ∈ C∞(E) by

(g, s)(x) = g̃(s(g−1x))

An operator D : C∞(E)→ C∞(E) is called G equivariant if it commutes with the action

of g ∈ G on sections,

C∞(E)

D

��

g // C∞(E)

D

��
C∞(E)

g
// C∞(E)

Unfortunately, D is not SO(n)-equivariant. However D is equivariant for an action of

the spin group. Recall that for n ≥ 3 the fundamental group of SO(n) is the two element
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group Z/2Z. The spin group Spin(n) is the connected double cover of SO(n) (for n ≥ 2),

which is simply connected if n ≥ 3,

Spin(n)

2:1
����

SO(n)

The group Spin(n) acts on Rn (via its map to SO(n)), and we will see that it also acts

on C2r

(by an action that does not factor through SO(n)).

Theorem 2.2. The Dirac Operator D =
∑n
j=1Ej

∂
∂xj

on Rn is Spin(n)-equivariant.

Proof. The proof uses facts about Clifford algebras that will be discussed in the next

section. �

2.2. Clifford Algebras. The Clifford algebra Cn is the universal R-algebra with n

generators e1, . . . , en and relations

e2
j = −1 ejek = −ekej j 6= k

Note that these relations are satisfied by the matrices Ej used in the definition of the

Dirac operator on Rn in Equation (2.1).

The relations easily imply that Cn is spanned (as an R vector space) by the 2n

products ei1ei2 · · · eip with i1 < i2 < · · · < ip (including 1 for p = 0).

Exercise(tricky): dim(Cn) = 2n, i.e., the products ei1ei2 · · · eip are linearly independent.

Consider the subspace

g = span{eiej : i < j, } ⊂ Cn

The subspace g is closed under commutators in Cn, and is therefore a Lie algebra. This

can be easily checked by direct calculation. For example,

[eiej , ejek] = eiejejek − ejekeiej = −2eiek.

In fact, we have an isomorphism of Lie algebras g ∼= so(n), where so(n) is the Lie algebra

of skew n× n real-valued matrices. This isomorphism is given by

1

2
eiej 7−→


1

· · · −1
...


where the matrix on the right has −1 in the ith row and jth column, and 1 in jth

row and ith colum, 0 elsewhere. Furthermore, we can define the following Lie algebra

representation

dρ : g −→ End (Rn) dρ(α)v = αv − vα α ∈ g, v ∈ Rn

where we view Rn = span{e1, . . . , en} as a subset of Cn. The fact that αv − vα ∈ Rn is

established by direct calculation. For example, [eiej , ej ] = eiejei − ejeiej = −2ei.
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Note that SO(n) = exp so(n) ⊂ MnR, the space of n × n real-valued matrices.

Likewise, we can exponentiate the Lie algebra g in the Clifford algebra Cn and we obtain

a Lie group,

G = exp g =

{
g =

∞∑
k=0

1

k!
αk : α ∈ g

}
⊂ Cn

The group G is represented on Rn by conjugation

(2.2) ρ : G 7−→ End (Rn) ρ(g)v = gvg−1 ∈ Cn.

Then dρ is the Lie algebra representation induced by ρ, and so we have in fact

ρ : G 7−→ SO(n)

To establish that G is isomorphic to Spin(n) we only need to prove that ρ is not one-to-

one. The following caclulation does this.

Calculation: Consider te1e2 ∈ g, t ∈ R. Note that (e1e2)2 = e1e2e1e2 = −1. Therefore,

exp(te1e2) = cos(t) + sin(t)e1e2

For t = π, we have exp(πe1e2) = −1 ∈ Cn. Therefore −1 ∈ G. From Expression (2.2),

we see that ρ(−1) = In ∈ SO(n), which establishes that G ∼= Spin(n).

Back to the Dirac operator: Consider the map

(2.3) c : Rn 7−→ End
(
C2r
)

c(v) =

n∑
j=1

vjEj

where n = 2r or n = 2r + 1, and Ej are the 2r × 2r matrices as in Equation (2.1). Since

c(ej) = Ej , and the matrices Ej satisfy the defining relations of the Clifford algebra Cn,

by universality of Cn we see that c extends to a representation of the Clifford algebra

c : Cn −→ End
(
C2r
)

This representation, in turn, restricts to a (unitary) representation of the spin group,

c : Spin(n) −→ End
(
C2r
)

This is the spinor representation.

Now:

• G = Spin(n) acts on Rn (by conjugation g 7→ gvg−1 ∈ Cn).
• G acts on C2r

via c(g) and on End
(
C2r)

via T 7→ c(g)Tc(g)−1.

It is now immediately clear that the R linear map

c : Rn 7−→ End
(
C2r
)

c(v) =

n∑
j=1

vjEj

is Spin(n)-equivariant, by inspecting the commuting diagram

v_

g

��

� // c(v) =
∑n
j=1 vjEj_
g

��
gvg−1 � // c(gvg−1) = c(g)c(v)c(g)−1
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But the map c is just the symbol of the Dirac operator on Rn,

D =

n∑
j=1

Ej
∂

∂xj
: C∞

(
Rn,C2r

)
7−→ C∞

(
Rn,C2r

)
The symbol of D is σ =

∑
ξjEj = c(ξ), with ξ = (ξ1, . . . , ξn) ∈ Rn. In other words,

the map c is the symbol of D. Since the symbol of D is Spin(n)-equivariant, and D

is a constant coefficient operator on Rn, it follows that D is Spin(n)-equivariant. This

establishes Theorem (2.2).

�

Next, letM be a Riemannian Manifold oriented SO(n) structure group. The frame

bundle

F = {(p, v1, . . . , vn) : p ∈M, (v1, . . . , vn) = oriented orthonormal basis for TpM}.

with F/SO(n) = M fiber bundle over M and TM = F ×
SO(n)

Rn in which (f, v) ∼

(f.g, g−1v).

Spin structure on M :

P

~~
2:1

����

M

F

``

= double cover of F with connected fibers

3. 07 September 2016, Nigel Higson

Our goal today is to move from elliptic partial differential operators to Fredholm

operators. We’ll reach the goal in Theorem 3.17, but along the way there will be some

important milestones. Good news for the functional analysts: today there will be Hilbert

spaces . . .

So we’ll start with a linear partial differential operator (PDO)

D : E → F

on some manifold M , as in Lecture 1. For the most part you can think of E ,F as the

spaces of smooth functions on M , but as we mentioned earlier the additional generality

discussed in Lecture 1 is important.

We’re going to relocate D to the Hilbert space context, and the first step is to man-

ufacture Hilbert spaces out of E and F . We shall assume given

• a pointwise inner product

E ⊗
C∞(M)

E < , >−−−−→ C∞(M),

where E is denotes the complex conjugate space of E , and
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• a smooth measure on M .

We get from these things a Hilbert space, which we denote EL2 . And similarly we get

FL2 . We want to consider our operator D as an unbounded operator

D : EL2 −→ FL2

initially with doman Ecomp (the compactly supported elements of E). You can think of

Ecomp as the compactly supported functions on M .

Along the initial domain Ecomp we’ll also be concerned with two other domains, both

of which are more convenient than Ecomp for functional analysis. First, we denote by

D� : F −→ E

the formal adjoint of D, which is the PDO defined by

〈Dw1, w2〉FL2 = 〈w1, D
�w2〉EL2

for all w1 ∈ Ecomp, w2 ∈ Fcomp. It is a fact (which comes down to the integration by parts

formula) that:

Lemma 3.1. There is a unique formal adjoint D� as above. �

The first of our two domains us the minimal domain:{
u ∈ EL2 : u = lim

n→∞
un, (un)n∈N ⊂ Ecomp and v = lim

n→∞
Dun exists

}
.

This is larger than the initial domain, and D extends to it by setting v = Du. (For the

functional analysts, this is the so-called minimal closed domain, hence the name.) The

second is the maximal domain:{
u ∈ EL2 : ∃v ∈ FL2 , 〈u,D�w〉EL2 = 〈v, w〉FL2 , for all w ∈ Fcomp

}
.

This is is larger than the minimial domain, and again D extends by setting Du = v.

Our first helpful (and not trivial) result is this:

Theorem 3.2. If D has order 1 and is compactly supported, then the Maximal and

Minimal domains agree.

The theorem is not true for higher order (this is a challenging exercise).

3.1. Self-adjoint and essentially self-adjoint operators. Let H be a Hilbert space.

Suppose D : H −→ H is unbounded such that

〈Du, v〉 = 〈u,Dv〉

for all u, v ∈ dom(D), the domain ofD. In the abstract Hilbert space context one says that

D is symmetric. In the PDO context, where dom(D) will be the initial domain Ecomp, the

symmetry condition in the display is just the formal self-adjointness condition D = D�.
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Symmetric operators were studied by von Neumann, who worked out that the good

symmetric operators from the point of view of spectral theory are those which have the

additional property that the operators

(D ± iI) : dom(D) −→ H,

have dense range, in which case we have bounded operators (D ± iI)−1 since the opera-

tors in the display are always injective, and indeed bounded below. Starting with these

resolvent operators

(D ± iI)−1 : H −→ H

we get a von Neumann symbol

C0(R) −→ B(H),

a C∗-algebra homomorphism that maps (x± i)1 to the resolvent operators (this property

characterizes the symbol). The symbol extends (uniquely)to a C∗-algebra homomorphism

Cb(R) −→ B(H).

So as long as the symbol exists, we have operators

eitD, e−tD
2

(when t is nonnegative), D(I +D2)−1/2, etc.

The good operators have an official name: essentially self-adjoint.

If D is a PDO, then “essentially self-adjoint” means formally self-adjoint, plus Maxi-

mal domain = Minimal domain.

Remark 3.3. The use of the term “symbol” here is not standard, but it is justified (we

think) by the following comparision. Assume for simplicity that D is a formally self-

adjoint operator of order q acting on a closed manifold M , and assume further, also for

simplicity, that E = C∞(M). The (PDO) symbol is a smooth function

σ : T ∗M −→ iqR

it induces a C∗-algebra homomorphism

σ∗ : C0(iq R) −→ Cb(T
∗M).

Incidentally ellipticity implies that the symbol is a proper function in the topological

sense, and therefore it corresponds to a C*-homomorphism

σ∗ : C0(iq R) −→ C0(T ∗M).

There is therefore an interesting formal analogy between the von Neumann symbol and

the PDO symbol . . .

Remark 3.4. There is a helpful 2× 2 matrix trick that can be used to reduce the study

of operators for which D 6= D� to the formally self-adjoint case. Consider

D+ : E+ −→ E−



20 ERIK VAN ERP AND NIGEL HIGSON (NOTES BY KONRAD AGUILAR)

where perhaps D+ 6= D�+ . Define D− := D�+, and form

D =

[
0 D−
D+ 0

]
: E+ ⊕ E− −→ E+ ⊕ E−.

This operator is formally self-adjoint.

3.2. Elliptic operators. From now on we shall be studying elliptic PDO’s

D : E −→ F

of some order q, mostly but not exclusively on closed manifolds. The first of two funda-

mental theorems about these operators is as follows:

Theorem 3.5. If M is compact and D elliptic, then the Maximal and Minimal domains

agree. So if in addition D is formally self-adjoint, then it is essentially self-adjoint.

Remark 3.6. In the non-compact case, the theorem is true with the following modifica-

tion: if f ∈ C∞comp(M), then

f · {maximal domain} = f · {minimal domain}.

The next theorem is even more fundamental:

Theorem 3.7. If M is compact, then all the minimal domains of all elliptic operators

D of the same order q that act on E are equal to one another. Moreovoer the common

minimal domain of elliptic operators of order q is the intersection of all minimal domains

of all PDO of order q or less.

Remark 3.8. If M is not compact, then there is a modification like the one in the previ-

ous remark: all domains agree after multiplication pointwise by any smooth, compactly

supported function f on M . Moreover the common (in this sense) domain agrees with

the interection described above after pointwise multiplication by f .

The theorem summarizes just above everything we need to know about the functional

analysis of elliptic operators. The proof is not easy, but we can discuss part of it. The

idea is to reduce from the case of general operators to the case of constant coeefficient

operators (in some coordinate system), and then apply the following argument:

Proof for constant coefficient operators on Tn = Rn/Zn. Thanks to Fourier, we have a

unitary isomorphism

L2(Tn)
∼=−→ `2(Zn).

Then, under the constant coefficient assumption the operator D =
∑
aα∂

α corresponds

poinwise multiplication by
∑
|α|=q aα(in)α. These multiplication operators are easy to

analyze directly. �
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3.3. Rellich and Sobolev. The following results of Rellich and Sobolev pertaining to

the common domain will lead us towards the conclusion Elliptic =⇒ Fredholm.

Definition 3.9. Assume that M is compact. Fix q > 0. Let EL2
q
be the common domain

of Theorem (3.7) for elliptic PDO of order q. This is called the qth L2-Sobolev space

associated to E .

Lemma 3.10 (Rellich lemma). If M is compact and q > 0, then the inclusion

EL2
q
−→ EL2

is/factors through a compact operator. Moreover, it is/factors through a Schatten class

operator of type dim(M)/q + ε for all ε > 0.

Remark 3.11. IfM were not compact, the lemma would say instead that the composition

EL2
q
−→ EL2

q

f−→ EL2

is compact and indeed Schatten class, as above, for any f ∈ C∞comp(M).

Theorem 3.12 (Sobolev embedding theorem). If M is compact, then⋂
q

EL2
q

= E .

Remark 3.13. If M were not compact, we would have

f ·
⋂
q

EL2
q

= f · E

for f ∈ C∞comp(M).

3.4. Eigenfunctions, Hypoellipticity, Hodge, and the Fredholm property. We’re

ready to draw some important conclusions after all the hard work of the previous section

(that we didn’t actually do).

3.4.1. Eigenfunctions and eigenvalues. If M is compact and D is elliptic and formally

self-adjoint, then (D + iI)−1 is bounded, normal, and compact (by the Rellich lemma

(Lemma (3.10))).

So, by Hilbert’s theory of compact operators,

Theorem 3.14. If M is compact and D is elliptic and formally self-adjoint, then there

is a basis for EL2 consisting of eigenfunctions for D. Moreover the eigenvalues converge

to infinity (in absolute value). �

Moreover, due to Sobolev, the eigenfunctions are smooth, since from the eigenvalue

equation it is clear that they lie in the (maximal) domains of all powers of D (and all

powers are elliptic).
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Corollary 3.15. If M is compact and D is elliptic, then the kernel of D in its maximal

domain is equal to its kernel on E, and the kernel is finite-dimensional. Moreovoer the

operator is bounded below (in the Hilbert space norm) on the orthogonal complement of

the kernel.

Proof. Use the 2× 2 matrix trick to reduce to the formally self-adjoint case, then apply

the previous theorem. �

3.4.2. Hypoellipticity. Suppose that M is compact and D is elliptic. Suppose Du = v,

where v is smooth everywhere. Then, u ∈ dom(Dk) for all k, so u is smooth.

The above is an easy version of hypoellipticity. The fuller version, that if v is smooth

on U , then u is smooth on U , is easy to get, too, using smooth cutoff functions to reduce

to the case we have just considered. It’s a fun exercise.

3.4.3. Hodge Theorem.

Theorem 3.16. Suppose that M is compact and let

D : E −→ F

be an elliptic PDO. If v ∈ F and if

v ⊥ ker
(
D� : F → E),

then v = Du for some u ∈ E.

Proof. Elementary Hilbert space theory tells us that v, being orthogonal to the kernel of

D�, is in the closure of the range of D in FL2 . But by the corollary of the previous section

the range of D as it acts on its minimal domain is closed in FL2 . So can write v = Du

with u in the miminal domain. But hypoellipticity now implies that u is smooth. �

3.4.4. Fredholm Property. From Hilbert and Hodge we see that if

D : E −→ F

is an elliptic operator on a compact manifold, then both ker(D) (on smooth functions)

and coker(D) (on smooth functions) are finite dimensional. so D is Fredholm. That is,

Theorem 3.17. If M is compact and D is elliptic, then D is Fredholm. �

4. 08 September 2016, Erik van Erp

Theorem 4.1. [Atiyah-Singer] If M is a closed (compact without boundary) spin man-

ifold, and D the Dirac operator of M , then

(4.1) IndexD =

∫
M

Â(TM).

In this lecture I will describe in detail the meaning of the left hand side and the right

hand side of Equation (6.1). We begin with...
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4.1. Left Hand Side of Equation (6.1) of Atiyah-Singer. We need to explain what

the Dirac operator is for a spin manifold. In Section 06 September we constructed the

"model" Dirac operator on Rn. For n = 2r, 2r + 1:

D : C∞
(
Rn,C2r

)
−→

(
Rn,C2r

)
,

is defined by

D =

n∑
j=1

Ej
∂

∂xj

where Ej are 2r × 2r matrices with entries 0,±1,±i. The main property of D is that its

square D2 is a Laplacian, and that D is Spin(n) equivariant.

Spin-manifold: Let M be an oriented Riemannian manifold. Choose a good open cover

of M and local trivializations: TM |Ui ≈ Ui×Rn . Then TM is represented by transition

functions ψij : Ui ∩ Uj −→ SO(n). Locally, we can lift each smooth map ψij to the spin

group:

Ui ∩ Uj

ψ̃ij %%

ψij // SO(n)

Spin(n)

OOOO

For each triple intersection Ui ∩ Uj ∩ Uk, we have the cocyle condition ψijψjkψki = I ∈
SO(n). This implies that

ψ̃ijk = ψ̃ijψ̃jkψ̃ki = ±1 ∈ Spin(n)

In other words, ψ̃ijk defines a 2-cocyle with values in Z/2Z. The cohomology class of

this 2-cocycle does not depend on the choice of trivializations. It is called the second

Stieffel-Witney class,

w2(M) =
[
ψ̃
]
∈ H2(M,Z/2Z)

If w2(M) = 0, then ψ̃ijk is the boundary of a 1-cochain Ui ∩Uj → Z/2Z. This 1-cochain

tells us how to correct the original choices ψ̃ij to obtain maps for which

ψ̃ijψ̃jkψ̃ki = 1

Such a choice of lift ψ̃ij is called a spin structure.

Spinor bundle: If we have a spin structure {ψ̃ij}, as above, then the spinor represen-

tation c : Spin(n)→ GL (2r,C) of Expression (2.3) gives rise to transition functions

c ◦ ψ̃ij : Ui ∩ Uj → GL (2r,C)

The spinor bundle S associated to the spin structure ψ is the complex vector bundle with

fiber C2r

defined by the transition functions c ◦ ψ̃ij .
Recall that the R-linear map

c : Rn −→ End
(
C2r
)

c(v) =

n∑
j=1

Ejvj
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is Spin(n)-equivariant. Therefore we have a well-defined global map

c : TpM −→ End(Sp) p ∈M

Furthermore,{
E2
j = −I, ∀j

EiEj = −EjEi,∀i, j, i 6= j

}
⇐⇒ c(v)2 = −‖v‖2I,∀v ∈ Rn

shows that we also have c(v)2 = −‖v‖2I for v ∈ TpM . In summary, by choosing a spin

structure ψ̃ on M , we obtain a spinor bundle S equipped with some extra structure:

(4.2) Spinc structure


c : TpM −→ End(S)

c(v)2 = −‖v‖2I

dim(Sp) = 2r

 .

Remark 4.2. We have seen that a spin manifold has a Spinc structure. But there are

other ways in which Spinc structures arise. For example, a complex manifold is Spinc:

T 1,0M = holomorphic tangent bundle with dimRM = n = 2r, dimCM = r

S =
∧0

T 1,0M  dim(Sp) = 2r.

z ∈ T 1,0M = TpM
c−→ End(S)

c(z)α = z ∧ α− zxα with α ∈ Sp
Exercise: c(z) = −|z‖2I.
This defines a natural Spinc structure associated to a complex structure. But there

are many other geometric structures that give rise to a Spinc structure. The following

diagram gives an overview.

(spin) +3 (Spinc) contact

rz

symplectic

ow
stably almost complex

KS

almost complex

KS

(complex)

KS

Now, that we know what a spin manifold is, we move on to the Dirac operator on a

spin manifold. The "model" Dirac operator on Rn,

DRn : C∞
(
Rn,C2r

)
−→ C∞

(
Rn,C2r

)
is Spin(n) equivariant, and therefore for every point p ∈M we have a well-defined Dirac

operator on the tangent fiber,

DRn  Dp : C∞ (TpM,Sp) −→ C∞ (TpM,Sp)

Now each Dp is an operator on TpM , not on M . But in a small neighborhood of p, TpM

is a good approximation of M . What the family of operators {Dp, p ∈ m} defines is, in
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fact, the highest order part of a differential operator on D on M ,

{Dp, p ∈M} D : C∞(S) −→ C∞(S)

The choice of the order zero term of D is arbitrary, but it should be chosen such that

D is formally self-adjoint. Regardless of the choice of the order zero term, the principal

symbol of D is precisely the map c : TpM → End(Sp). We see from c(v)2 = −‖v‖ · I
that c(v) is invertible as long as v 6= 0, which means, by definition, that D is elliptic.

Therefore as long as we choose the order zero term such that D is formally self-adjoint,

it will also be essentially self-adjoint (i.e., the minimal and maximal domains of D are

equal, and the closure of D is self-adjoint).

The index that appears at the left hand-side of Equation (6.1) is not

IndexD = dim kerD − dim cokerD

= dim kerD − dim kerD∗

Since D is essentially self-adjont, this index is zero. To understand the left hand side of

Equation (6.1) we need to consider one final bit of structure.

Grading: We now need to restrict ourselves to even dimensional manifolds. If n = 2r,

then the inductively defined matrices E1, . . . , En are all off-diagonal,

E1, . . . , En =

[
0 ∗
∗ 0

]
Thus, the spinor vector space C2r

= W splits into two vector spaces W = W+ ⊕W−

such that each Ej maps W+ → W− and W− → W+. Therefore each of the subspaces

W+,W− is invariant under all products EiEj . Recall that Spin(n) = exp g, where g =

span{eiej : i 6= j} in the Clifford algebra Cn. Therefore every element g ∈ Spin(n) is

represented onW by a matrix of the form c(g) =

[
∗ 0
0 ∗

]
. In other words, the subspaces

W+ and W− are invariant under the action of Spin(n).

Fact: W+,W− are irreducible representations of Spin(n) that do not factor through

representations of SO(n) (they are so-called 1
2 -spin representations), and W+ and W−

are the two smallest such representations.

It follows that the splitW = W+⊕W− also exists for the spinor bundle S = S+⊕S−

(if n = 2r even). Moreover, by the way it is defined, the Dirac operator maps positive

spinors to negative spinors,

D+ : C∞(S+) −→ C∞(S−)

Then the “total” Dirac operator D defined before can be represented as the 2× 2 matrix

of operators

D =

[
0 D∗+
D+ 0

]
,

corresponding to the splitting S = S+ ⊕ S−.
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The index on the left hand side of Equation (6.1) is really the index of D+,

IndexD+ = dim kerD+ − dim cokerD+ = dim kerD+ − dim kerD∗+.

4.2. Right Hand Side of Equation (6.1) of Atiyah-Singer.

IndexD =

∫
M

Â(TM).

The left hand side IndexD is a global invariant. For example, the kernel of D—i.e., the

space of solutions of the differential equation Ds = 0 for section s in the spinor bundle

S+—is locally an infinite dimensional space. Ds = 0 is equivalent to D∗Ds = 0, and

D∗D is a Laplace-type operator. In an open subset of Rn the space of harmonic spinors

(solutions of D∗Ds = 0) is infinite dimensional, and the same is true in small open

subsets of a manifold.

However, to solve Ds = 0 globally, you need to “propagate” a local solution across the

manifold. If the manifold is closed, only in very exceptional cases will the local solution

propagate in such a way as to “match up” to a globally defined smooth solution. Indeed,

as we know, the solution space of Ds = 0 is finite dimensional if M is closed.

Thus, the index of a geometrically defined differential operator, like D, depends on

the global topology of the manifold.

By contrast, the right hand side of the formula is an integral of a function Â(TM),

which, as we will see, is a polynomial expression in the Riemannian curvature tensor of

M . Curcature is of course a purely local phenomenon.

Â - class/genus. On a Riemannian manifold we have the Riemannian curvature tensor

R ∈ C∞
(
∧2T ∗M ⊗ End(TM)

)
which can be thought of as an End(TM) valued 2-form. If we choose an orthonormal

basis for TpM at a point p ∈ M , then R is represented concretely as an n × n skew

symmetric matrix of 2-forms (on M). We want to extract differential forms on M from

the curvature R.

Definition 4.3. A polynomial p : so(n) −→ R in the coefficients of n×n skew-symmetric

real matrices is O(n)-invariant if

p(gAg−1) = p(A) ∀A ∈ so(n), g ∈ O(n)

How do we get such a polynomial? Skew symmetric matrices can be brough in a

normal form:

∀A ∈ so(n),∃g ∈ O(n) such that gAg−1 =


0 −x1

x1 0
0 −x2

x2 0
. . .
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Therefore an invariant polynomial p is entirely determined by its value on matrices in

normal form, which is a polynomial in the variables x1, . . . , xr. Furthermore, the O(n)-

action can permute the values x1, ..., xr, and even exchange each pair xj ,−xj (i.e., change
the sign of each xj). It follows that p, when evaluated on matrices in normal form, must

be a symmetric polynomial in x2
1, . . . , x

2
r. It is not hard to prove the following result.

Proposition 4.4. There is a ring isomorphism

• {O(n)− invariant polynomials p : so(n) −→ R}
•
{
symmetric polynomials in x2

1, . . . , x
2
r

}
.

We wish to apply an invariant polynomial p to the Riemannian curvature tensor

R. While R is (in a local representation) a skew symmetric matrix, its coeffiecients are

2-forms instead of real numbers. But note that∧even
TpM is a commutative algebra

Thus, it makes sense to evaluate an invariant polynomial p : so(n)→ R on the coefficients

of the curvature matrix R.

Definition 4.5. Given an O(n)-invariant polynomial p : so(n) :−→ R. Then

p (TM) := p

(
R

2π

)
∈ Ω•(M).

Note that each xj is replaced by a 2-form, and hence x2
j by a 4-form. Thus, p(R) is

a form in degrees 0, 4, 8, 12, . . . .

Fact: p(TM) is a closed form

Fact: The de Rham cohomology class [p(TM)] ∈ H•dR(M,R) does not depend on the

metric.

It follows that every symmetric polynomial in formal variables x2
1, . . . , x

2
r gives rise to

a smooth invariant of a closed manifolds. If we orient M , then for every p we can define

the real number

p(M) :=

∫
M

p(TM) ∈ R

It is a deep result of Novikov that these numbers are, in fact, topological invariants of M .

Remark 4.6. The Pfaffian Pf : so(n) → R is the polynomial that, when restricted to

matrices in normal form, is defined by Pf(x) = x1x2 · · ·xn. However, this expression

is not O(n)-invariant but only SO(n)−invariant. Conjugation by a matrix in O(n) can

change the sign of any of the variables xj . But conjugation by a matrix in SO(n) can

only change the signs of an even number of the variables x1, . . . , xr. Thus the product

x1x2 · · · , xr is invariant for SO(n) but not O(n).

It follows that the differential form Pf(R) is well-defined on every oriented Riemann-

ian manifold. We thus obtain an invariant of closed oriented manifolds,

Pf(M) =

∫
M

Pf(
R

2π
)
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The Chern-Gauss-Bonnet theorem identifies this number as the Euler number∫
M

Pf

(
R

2π

)
= Euler number ∈ Z

This classical theorem is a special case of the Atiyah-Singer theorem. Note that the

invariant is always an integer in this case. This justifies, to some extent, the factor 2π in

the definition p(TM) = p(R/2π).

For surfaces (n = 2, r = 1) the Riemann curvature is of the form R =

[
0 −κ
κ 0

]
,

where κ is the Gaussian curvature. In this case Pf(x) = x1 and so Pf(R/2π) = κ/2π.

The Chern-Gauss-Bonnet theorem reduces to the much simpler Gauss-Bonnet theorem,∫
M

κ

2π
= Euler number

The Â-genus Â(M) ∈ R is an invariant of closed manifolds defined in the same way

by specifying an invariant polynomial Â(x). We will define the Â polynomial next time

in Section 12 September.

5. 09 September 2016, Nigel Higson

Throughout this lecture we shall be dealing with a linear elliptic PDO

D+ : E+ −→ E−

on a closed manifold M . We’ll assume that D is of order one, although today that is no

more than a small convenience, and we shall use the 2× 2 matrix trick to convert D into

a formally self-adjoitn operator

D =

[
0 D−
D+ 0

]
acting on E = E+ ⊕ E−.

The Atiyah-Singer index formula expresses the index of D+ as an integral

(5.1) Index(D+) =

∫
M

a certain form on M ,

at least for Dirac operators, where form comes from the world of geometry (connections

and curvature). Our goal today is to calculate that irrespective of geometric considera-

tions

(5.2) Index(D+) =

∫
M

a certain function on M dm.

An advantage of equation (5.2) over (5.1) is that the equality will result from a rather

direct and general calculation, and in principal enough students locked in a room for long

enough could actually compute the integral. A huge disadvantage of (5.2) is that the cal-

culation, if done using only the technoloyg we’ll develop today, would be extraordinarily

complicated: in principal it would involve calculating all the partial derivatives of all the

coefficients of D+ (and a bit more) to order the dimension of M . That’s a lot of partial

derivatives. In contrast the integral provided by the Atiyah-Singer formula involves only

second order derivatives.
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What eventually emerges is that for “the” Dirac operator (a term we shall have to

explain), not only are the two integrals the same (this is what the index theorem says)

but the integrands are the same, point by point. So all those higher derivatives do not

in fact contribute to the integrand, let alone to the integral. This is the phenomenon of

miraculous cancellations, as McKean and Singer called it.

5.1. Traces of operators. We begin with a quick review of the the trace in the Hilbert

space context. Fix a bounded Hilbert space operator T . If we have a diagram of bounded

operators

EL2

!!

T // EL2

EL2
k

==

with k � 0 (actually k > dim(M)/2), then T is a Hilbert-Schmidt operator and can be

representated as a kernel

kT ∈ E ⊗ E

in the Hilbert space tensor product. If k is still larger (k > dim(M), in fact), then T is

a trace-class operator, and kT can be represented as a sum

kT =
∑

ej ⊗ f j

with ∑
‖ej‖ · ‖fj‖ <∞

The trace of T is then

Trace(T ) =
∑
〈fj , ej〉.

Keeping in mind the definition of the inner product (see Lecture 3), we find that the

Trace has the form of an integral over M (of the sum of the pointwise inner products of

ej with fj). We are making (a very small bit of) progress towards equation (5.2).

To make further progress, we need to represent the index as a trace. There are many

options here; we’re going to examine a strategy originally outlined by Atiyah and Bott

(see for example Atiyah’s 1966 ICM address). Actually, we’ll begin with a modification

suggested by Hörmander) that is perhaps easier to understand on a first encounter.

5.2. Heat Equation Approach to the Index Theorem. Use the functional calculus

(part of von Neumann’s symbol package) to form the family of operators

e−t∆ : EL2 −→ EL2 ,

where ∆ = D2 and t > 0. The ranges of these operators lie in EL2
k
for all k, so the

operators belong to the trace class. Rather than study the traces of the operators e−t∆

themselves we shall study Trace(γe−t∆), where

γ =

[
1
−1

]
: E −→ E .
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Lemma 5.1. Trace(γe−t∆) is equal to Index(D+) for all t > 0.

Proof. Let’s first show that the index is independent of t. Calculus gives
d

dt
Trace(γe−t∆) = −Trace(γ∆e−t∆)

= −Trace(γD2e−t∆)

Next, we use the trace property to compute that

Trace(γD2e−t∆) = Trace(γDe−t∆D)

= Trace(DγDe−t∆).

But D and γ anticomute, so

Trace(DγDe−t∆) == Trace(γD2e−t∆).

As a result,

Trace(γD2e−t∆) = −Trace(γD2e−t∆),

so the derivative is zero. Now recall that there exists an orthonormal basis (en)n∈N for

EL2 consisting of (smooth) eigenfunctions for D. We have that e−t∆en = e−tλ
2

en, and we

see therefore that e−t∆ converges, even in the trace norm, to the orthogonal projection

onto the kernel of D. As a result,

lim
t→∞

Trace(γe−t∆) = Index(D+),

as required. �

The operators e−t∆ are closely related to the heat equation
du

dt
= −∆u,

and Hörmander’s proposal was to take advantage to the theory of this PDE in the service

of index theory. The point is that heat equation techniques show that for a second order

∆ (subject to some hyptotheses that are certainly satisfied when D is the Dirac operator

and ∆ = D2) there is an asymptotic expansion

Trace(e−t∆) ∼
∑

n≥− dim(M)

ant
n/2

as t → 0. Moreover each of the coefficients is the integral over M of an explicit (but

complicated) expression in the coefficients of ∆ and their derivatives. More on this later

(in the lecture after the next one).

5.3. Zeta Function Approach to the Index Theorem. Let us turn now to the

original proposal of Atiyah and Bott, who suggested that one should study, instead of

the operators e−t∆, the zeta function

Trace
(
γ(I + ∆)−s

)
.

As with the heat operators e−t∆, it is easy to see that the trace is a constant function

of s, and that the constant is Index(D+). Moreover it can be shown (and we shall show

it in the lecture after next) that the value at s = 0 can be computed by local methods,
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like the coefficients in the asymptotic expansion. So the the zeta function above offers

an alternative to the heat equation approach to the index theorem (and actually, as we

have noted, it was the original local approach).

Before we can go any further, we need to address the following important issue: the

operators (I + ∆)−s are only in the trace class when Real(s) > dim(M)/2, so it does not

(yet) make sense to consider the value of the zeta function at s = 0. The issue is resolved

by the following remarkable result:

Theorem 5.2. [Minakshisundaram-Pleijel] Let ∆ be any (2nd order), positive, invertible,

elliptic PDO with scalar symbol,1 then Trace(∆−s) extends to a meromorphic function

on C with only simple poles.

In the remainder of this lecture we shall sketch a proof of this theorem.

5.3.1. Traces on the Algebra of Differential Operators. The key idea (in the proof that

we shall present) is well illustrated by the proof of the following little result:

Proposition 5.3. There are no nonzero traces on the algebra of differential operators

on M

Lemma 5.4. There are functions A1, . . . , BN and vector fields B1, . . . , BN on M such

that

(1)
∑

[Bi, Ai] = nI, where dim(M) = n, and

(2) if T is any differential operator of order q, then

(n+ q)D =
∑

[BiD,Ai] +R,

where the remainder R has order less than q.

Proof. If the manifold is Rn, then let Ai = xi and Bi = ∂
∂xi

. If the manifold is not Rn,

use local coordinate charts and partitions of unity to reduce to the case of Rn. �

Note that in (2), the expression [BiD,Ai] = D[Bi, Ai] +Bi[D,Ai], in which the first

term provides the constant n in (n+ q) by (1), and q comes from the second term.

Proof of the Proposition. If τ is any trace on the algebra of differential operators, then

applying it to both sides of the identity in the lemma we find that

(n+ q)τ(D) = τ(R)

since the trace vanishes on commutators. So if the trace is zero on every operator of

order less than q then it vanishes on every operator of order q. But the trace does indeed

vanish of every operator of order −1 (there are none). �

1Recall that the symbol is a function valued in matrices; we require that the matrices be multiples
of the identity. This hypothesis will be used in the following way: if T is any differential operator acting
on E, of order q, then the commutator [T,∆] has order at most q + 1.
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5.3.2. Algebras of Holomorphic Families of Operators. We’re going to prove the mero-

morphic continuation theorem by applying the idea of the previous section to the algebra2

C of families of differential operators (parametrized by z ∈ C) that have asymptotic ex-

pansions of the form

T1∆az+b1 + T2∆az+b2 + · · · ,

where a and the bk are nonpositive integers, and if we define

order
(
T∆az+b) = order(T ) + 2(az + b),

then the order of the terms is strictly decreasing. We won’t spell out the nature of the

asymptotic expansion, but it will be clear from the proofs below (which supply examples)

that the definition ought to be.

Let’s take it for granted, for a moment, that the above is indeed an algebra (obviously

the issue is how to compute the product of two families, as above). We want to define a

trace, argue as in the previous section that the trace must be zero, and then deduce the

meromorphic continuation theorem from the vanishing of the trace.

The range of the trace will be a vector space QN , rather than the complex scalars

(actually, as the notation suggests, there will be a trace for each N ∈ N). It is defined as

follows

(i) Given N ∈ N, let AN be the vector space of functions that are holomorphic in

the region Real(z) > N . These spaces form a directed system

A1 −→ A2 −→ · · ·

and we define A to be the direct limit. It consists of functions that are defined

and analytic in some right half-space in C.

(ii) Next, let M−N be the space of functions that are meromorphic in the region

Real(z) > −N , with only simple poles, and analytic in some right half-space.

(iii) Finally, define QN to be the quotient vector space

QN = A/M−N .

There is an obvious functional

τN : C −→ QN

that maps T∆az+b to its trace function z 7→ Trace(T∆az+b). If the order of T∆az+b is

sufficiently small then the trace function is defined on Real(z) > −N and is analytic

there (and in particular it is meromorphic there). So the τN -trace of T∆az+b is zero if

the order is sufficiently small, and as a result, the trace τN is well defined on all families

admitting an asymptotic expansion of the type we are considering (only finitely many

terms have a nonzero trace).

2Actually it is technically better to work with the bimodule over the algebra of differential operators
that consists of those families with a = −1 in the definition below, but we’ll allow some slight inaccuracies
and work with algebras rather than bimodules. This is because we want to emphasize the relation between
the proof of the M-P theorem and the proof of the proposition in the previous section.
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It will be obvious that the functional τN is indeed a trace once we have consider the

issue of whether or not C is an algebra, which is what we shall turn to next.

5.3.3. Commutators and the Binomial Expansion. We shall use the Cauchy formula

∆z =
1

2πi

∫
λz(λ−∆)−1dλ

to define the complex powers of ∆. The contour of integration is a (downwards oriented)

vertical line in the plane separating 0 from the spectrum of ∆.

The fact that our algebra C is indeed an algebra follows from the following lemma,

due to Connes and Moscovici.

Lemma 5.5. If C is any differential operator, then

[C,∆z] =

(
z

1

)
∆z−1C(1) +

(
z

2

)
∆z−2C(2) + · · ·+

(
z

k

)
∆z−kC(k)

+

∫
λz(λ−∆)−1[∆, C](k)(λ−∆)−kdλ,

where C(1) = [C,∆] and C(k+) = [∆, C(k)]

Remark 5.6. It will actually suffice to consider values of z which have large negative real

part. For these, all the operators under discussion will be bounded, and indeed trace

class.

Proof. Using the commutator identity

[C, (λ−∆)−1] = (λ−∆)−1[C,∆](λ−∆)−1

we find that

[C,∆z] =
1

2πi

∫
λz[C, (λ−∆)−1l] dλ

=
1

2πi

∫
λz(λ−∆)−1[C,∆](λ−∆)−1 dλ

=
1

2πi

∫
λz(λ−∆)−2[C,∆] dλ+

1

2πi

∫
λz(λ−∆)−1[[C,∆], (λ−∆)−1] dλ

The first term can be calculated by using the Cauchy integral formula:

1

2πi

∫
λz(λ−∆)−2[C,∆] dλ =

(
z

1

)
∆z−1[C,∆]

As for the second term can manipulate it using the commutator formula

[[C,∆], (λ−∆)−1] = (λ−∆)−1[[C,∆],∆](λ−∆)−1

Plugging this into the second integral gives
1

2πi

∫
λz(λ−∆)−1[[C,∆], (λ−∆)−1] dλ =

1

2πi

∫
λz(λ−∆)−2[[C,∆],∆](λ−∆)−1 dλ

=
1

2πi

∫
λz(λ−∆)−3[[C,∆],∆] dλ

+
1

2πi

∫
λz(λ−∆)−2[[C,∆], (λ−∆)−1] dλ
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We can once again calculate the first term at the bottom using the Cauchy integral

formula. As for the second term, we can continue to manipulate it in the same way. After

k steps like this we arrive at the formula in the statement of the lemma. �

Proof of the Minakshisundaram-Pleijel theorem. The argument used to prove the van-

ishing of traces on the algebra of differential operators applies, because the lemma on

which it depends applies to the algebra C. The key formula is

Trace(T∆az+b) = (n+ q + 2(az + b))−1 Trace(Rz)

where q = order(T ) and the family Rz has lower order than (n + q + 2(az + b)) (note,

by the way, that the pole of (n + q + 2(az + b))−1 is the reason meromorphic functions

appear). We find that if the trace τN vanishes on all families

T1∆az+b1 + T2∆az+b2 + · · · ,

with leading order q+az+b1 then it vanishes on all families of leading order q+az+b1+1.

On the other hand τN vanishes on all families of sufficiently low leading order just by

virtue of its definition. So it vanishes on all families. This being true for all N , we see

that each function Trace(T∆−z) extends to a meromorphic function as required. �

6. 12 September 2016, Erik van Erp

6.1. continuation of right hand side of Equation (6.1) of Atiyah Singer. Recall

the version of the Atiyah-Singer formula that we are considering.

Theorem 6.1. If M is a closed (compact without boundary) spin manifold, and D the

Dirac operator of M , then

(6.1) IndexD =

∫
M

Â(TM).

As we saw in Subsection (4.1), by IndexD we really mean Index(D+), where D+ :

C∞(S+) −→ C∞(S−).

We continue with the description of the right hand side of the equation. As before,

we let dim(M) = n = 2r, and

R = Riemannian curvature

= (locally) n× n skew matrix of 2-forms,

As we explained, every n×n skew matrix with coefficients in R is similar (via conjugation

by an orthogonal matrix) to a matrix of the form

skew ∼


0 −x1

x1 0
0 −x2

x2 0
. . .
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Every symmetric polynomial in the variables x2
1, x

2
2, x

2
3, . . . induces an O(n)-invariant

polynomial so(n) → R, which can be evaluated on the Riemannian curvature matrix of

2-forms.

The Â-class corresponds to the invariant polynomial

Â : so(n) −→ R

Â(x1, x2, . . .) =

r∏
j=1

xj
exj − e−xj

 even function

=
∏

1− 1

24
x2
j +

7

5760
x4
j − · · · ,

(6.2)

Note that the series has rational coefficients. As defined here, Â(x) is of course a formal

power series, and not a polynomial. But on a finite dimensional manifold M the higher

powers of xj correspond to forms of too high a degree, and so those terms will vanish

when Â is evaluated on the curvature matrix R.

The Â-genus of M is by definition

Â(M) =

∫
M

Â

(
R

2π

)
∈ Q,

This is a rational number (because Expression (6.2) has rational coefficients). Note that

the number Â(M) is defined for any oriented Riemannian manifold, and like all numbers

defined in this way, it is independent of the choice of metric, and in fact a topological

invariant of M .

Genus Properties:

(6.3)

(1) Â(MtN) = Â(M)+Â(N). This is clearly true by the way the number is defined.

This property hold for all numbers p(M) associated to invariant polynomials

p : so(n)→ R. Here t denotes disjoint union.

(2) Â(M×N) = Â(M)Â(N). This property holds essentially because the Â-plynomial

is defined as a product of functions in xj . To see why this is so consider

T (M ×N) = p∗1TM ⊕ p∗2TN

M ×N
p1

{{

p2

##
M N

RM×N =

[
RM 0

0 RN

]

Note that the Pfaffian Pf(x) = x1x2 · · · = Πxj is also a product of functions

in xj . Indeed, the Euler number satisifies properties (1) and (2), but not the

following property (3).

(3) Â(∂M) = 0 =⇒ Â is bordism invariant.

Proof. Because Â(x) is a product of the form Πf(xj), we have Â(E ⊕ F ) =

Â(E)Â(F ). Moreover, for a trivial vector bundle Â( trivial bundle ) = 1. Com-

bining these two facts we see that Â is stable, i.e., adding a trivial bundle does
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not affect the Â-class of a vector bundle. So, if N is the boundary N = ∂M of a

compact manifold M , then the tangent bundle TM restricted to N is TN plus

a trivial line bundle (the normal bundle of the boundary N). Therefore Â(TN)

is the restriction of Â(TM) to the boundary N . Then by Stokes’s Theorem,∫
N

Â(TN) =

∫
∂M

Â(TM) =

∫
M

dÂ(TM) = 0

because Â(TN) is a closed form. �

Any topological invariant with properties (1), (2), (3) is called a genus. A priori, the

Â-genus is a rational number. There are examples of manifolds for which Â(M) is not

an integer. But it was known, before the work of Atiyah and Singer, that the Â-genus

of a spin manifold is always an integer. The fact that the Â-genus of a spin manifold

can be identified with the index of the Dirac operator “explains” in some sense why it is

an integer. Understanding the integrality of the Â-genus of spin manifolds was Atiyah’s

original motivation for defining the Dirac operator.

6.2. Other versions of the Atiyah-Singer theorem. Recall: IfM is a closed complex

manifold (to be more precise, a Kähler manifold), then we obtain a Spinc structure by

Spinc :

 c : T 1,0
p M = TpM −→ End(Sp), where S =

∧0
T 1,0M

c(v)α = v ∧ α− vxα v ∈ T 1,0
p (M), α ∈ Sp

c(v) = −‖v‖2I

The Dirac operator for this Spinc structure is D = ∂ + ∂
∗
, where ∂ is the Dolbeault

operator, and ∂
∗
its adjoint. The Dolbeault operator is the ∂

∂z̄ version of the de Rham

operator d. The index of D is the Euler characteristic χ(∂) of the Dolbeault complex,

which is called the arithmentic genus of M . This number plays an important role in

algebraic geometry.

Theorem 6.2 ( Todd, 1937; Hirzebruch ∼ 1954). Considering D as above

IndexD =

∫
M

Td(T 1,0M),

where Td(T 1,0M) is the Todd class of the complex vector bundle T 1,0M .

The Todd class that appears in this formula is a characteristic class of C vector

bundles, defined by Hirzebruch using the formalism of Chern classes. However, the Todd

class can be defined for every Spinc manifold M as

Tdc(TM) = Â(TM) exp(c1(L)/2)

Here L is the so-called Spinc line bundle, a complex line bundle on M associated, in a

natural way, to the Spinc structure of M . Recall that complex line bundles on M are

in one-to-one correspondence with elements in H2(M,Z). The class c1(L) ∈ H2(M,Z)

denotes the 2-cocycle associated to L (the first Chern class).
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On a spin manifold, the line bundle L is trivial, and we have

Tdc(TM) = Â(TM)

On a complex manifold (of complex dimension r), the Spinc line bundle L is just the

determinant line bundle L = ΛrT 1,0M , and it is an easy calculation to see that in this

case

Tdc(TM) = Td(T 1,0M)

The two versions of the Atiyah-Singer formula discussed so far–the first for spin manifolds,

the second for complex manifolds–can be generalized to,

Theorem 6.3. If M is an even dimensional Spinc manifold, then

IndexD =

∫
M

Tdc(TM).

Twisting A last generalization of the theorem that we need to consider involves the

construction referred to as “twisting” the Dirac operator by a complex vector bundle.

M Spinc  D =Dirac operator, as above

E −→M , a C vector bundle on M

The symbol of the Dirac operator D is the map

c : TpM −→ End(Sp)

that is part of the Spinc-structure. We twist c by E to obtain

c⊗ IdE : TpM −→ End(Sp ⊗ Ep)

where IdE : Ep −→ Ep is the identity. Then the twisted Dirac operator DE is a first

order elliptic differential operator with symbol c⊗ IdE ,

DE : C∞(S+ ⊗ E)→ C∞(S− ⊗ E)

With a suitable choice of lower order terms the twisted operator DE (like D itself) is an

essentially self-adjoint elliptic operator.

Theorem 6.4. If M is an even dimensional Spinc manifold and E −→M is a C vector

bundle on M , then for the twisted Dirac operator

IndexDE =

∫
M

ch(E) ∧ Tdc(TM),

The expression ch(E) in the formula refers to the Chern character of E. It can be

defined as

ch(E) = trace

(
exp

(
− Ω

2πi

))
∈ Heven

dR (M)

where Ω is the curvature of a (random choice of) connection on E.

Remark. There is an even more general version of the Atiyah-singer formula which is

valid for all elliptic operators. In this more general formula of the theorem there appears

a Todd class. However, the Todd class in the most general formula is Td(TM ⊗ C)—

i.e., the Todd class of the complexified tangent space. This is not to be confused with
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Td(T 1,0M , which only makes sense if M is a complex manifold. To make matters more

confusing, this class can also be written as Td(TM ⊗ C) = Â(TM)2.

proof of above theorem. Strategy of topological proof. Reduce (M,E)  (S2n, F ) and

then apply Bott periodicity. �

The Bott Generator in K-theory

Theorem 6.5 (Bott, 1959). For the even integers k = 0, 2, 4, . . . , 2n − 2 we have

πk(GL(n,C)) = 0. For the odd integers k = 1, 3, 5, . . . , 2n−1 we have πk(GL(n,C)) ∼= Z.

Stated more simply, if we let GL = limk→∞GL(k,C) then πk(GL) = 0 if k even,

and πk(GL) ∼= Z if k odd. In this section we give various (equivalent) descriptions of the

“Bott generator” of the cyclic group πk(GL) for odd k. This element plays a central role

in index theory.

(6.4)

(1) At the very beginning we defined the R linear map

c : R2n −→ End(C2n) c(v) =

2n∑
j=1

vjEj

for v = (v1, . . . v2n) ∈ R2n. We had a split C2n = W = W+ ⊕W− into positive

and negative spinors, and c(v) maps W+ →W−

c : R2n −→ Hom(W+,W−)

From c(v)2 = −‖v‖2 · I, we see that c(v) is an isomorphism of vector spaces

W+ ∼= W− as long as v 6= 0. Thus the pair of (trivial) vector bundles R2n×W+

and R2n × W− together with the maps c(v) defined at every point v ∈ R2n

defines a class in the K-theory with compact supports,

[c] =
[
c,Rn ×W+,Rn ×W−

]
∈ K0

(
R2n

) ∼= Z

This group is Z by Bott periodicity in K-theory. The class [c] is a generator of

this group K0(R2n).

(2) If v ∈ R2n is a unit vector, then c(v)2 = −I implies that c(v) is invertible. Thus,

the map c(v) : W+ → W− it is an isomorphism (in fact, it is a unitary). If we

identify W+ = W− = C2n−1

, we obtain a map

c : S2n−1 → GL(2n−1,C)

Thus, c defines an element in the homotopy group

[c] ∈ π2n−1(GL) ∼= Z

This homotopy element [c] is a generator of the group π2n−1(GL).
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(3) We have the isomorphism

K0
(
R2n

) ∼= K0
(
S2n, •

)
Under this isomorphism, the Bott generator [c] of K0(R2n) maps to a vector

bundle β on the sphere,[
c,R2n ×W+,R2n ×W−

]
7−→ [β]− [S2n × C2n−1

]

The vector bundle β on S2n is obtained as follows. On the upper hemisphere

S2n
+ we have the trivial vector bundle S2n

+ ×W+, and on the lower hemisphere

we have S2n
− ×W−. The equator can be identified with the unit sphere S2n−1 in

R2n. Now use the map

c : S2n−1 → Iso(W+,W−)

to clutch the trivial bundle with fiber W+ on the upper hemisphere to the trivial

bundle with fiber W− on the lower hemisphere. The resulting bundle is the Bott

generator vector bundle. We denote it by β.

(4) The chern character gives an isomorphism

K0(S2n, •) ∼= H2n(S2n,Z) ∼= Z

by

β 7−→ ch(β)→
∫
S2n

ch(β) ∈ Z

Exercise: With β as defined above,
∫

ch(β) = −1.

7. 13 September 2016, Nigel Higson

We’re going to continue our examination of zeta functions

(7.1) s 7−→ Trace(T∆−s)

from the last lecture. Our aim is to show that the residues of these zeta functions can

be calculated, at least in principle, by purely local means, from the coefficients of T and

∆ and their partial derivatives. And we’ll show in a bit more detail what this has to do

with index theory.

7.1. The Index as a Zeta Value st Zero. Let M be a closed manifold of dimension

n. Let T be a differential operator of order q. Let

D =

[
0 D−
D+ 0

]
be a (first order, for simplicity) formally self adjoint elliptic partial operator on M and

let ∆ = I +D2. Finally, let

γ =

[
I 0
0 −I

]
be the grading operator. We noted in an earlier lecture that

Index(D+) ≡ Trace(γ∆−s)
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(that is, the zeta function is in fact constant, and is equal to the index everywhere). Atiyah

and Bott suggested that this observation might open a route toward the index theorem

because they knew from work of Seeley and others that the value of any zeta function at

s = 0 can in principle be computed from the coefficients the operators involved. In this

section we shall begin to explain this fact by proving that every zeta function

s 7−→ Trace(T∆−s)

is regular at zero (there is no pole).

Definition 7.1. The Residue Trace on the algebra of differential operators is the func-

tional

ResTr(T ) := Ress=0(Trace(T∆−s)).

Remark 7.2. The same formula can be defined for a much wider class of operators than

the differential operators, namely the pseudodifferential operators, where it is known as

the noncommutative residue. This is a very interesting quantity; in contrast, our aim here

is to show that the residue trace is zero on the algebra of differential operators.

Lemma 7.3. The residue trace is a trace on the algebra of differential operators

Proof. Let S and T be differential operators. We calculate, using the trace property of

the ordinary trace, that

ResTr(ST ) = Res|s=0(Trace(ST∆−s))

= Res|s=0(Trace(T∆−sS))

= Res|s=0(Trace(TS∆−s)) + Res|s=0(Trace(T [∆−s, S]).

But

T [∆−s, S] = ±
(
s

1

)
T [∆, S]∆−s−1 ±

(
s

2

)
T [∆[∆, S]]∆−s−2 ± · · ·

= s×Rs,

where Rs is a combination of the families that we have been considering all along (whose

traces are meromorpohicm functions on C with only simple poles). Thanks to the factor

of s we find that

Res|s=0(Trace(T [∆−s, S]) = 0,

and so the residue trace is indeed a trace, as required. �

Corollary 7.4. If T is any differential operator, then the meromorphic function

s 7−→ Trace(T∆−s)

is regular at s = 0.

Proof. We have already shown that there are no nonzero traces on the algebra of differ-

ential operators. �
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We find that for any T the zeta function Trace(T∆−s) is regular at s = 0, and so we

can study its value there. In fact the value is computable as a residue, as we shall show

next.

7.2. Zeta Values at Zero as Residues. In this section we shall realize the zeta value

Trace(T∆−s)|s=0

(which we’ve just seen is extremely interesting from the point of view on index theory)

as a residue of a zeta function.

We’ll consider the simple case where T = γ, since this is all we actually need. If we

examine again the proof of the M-S theorem, then we see that in the identity

(n− 2s)γ∆−s =
∑

[Biγ∆−s, Ai] +Rs

the remainder Rs, which is

−Bi[γ∆−s, Ai]− 2s∆−s = −Biγ[∆−s, Ai]− 2s∆−s

is s times a combination Fs of families of the type T∆−s−k (which we could write down

explicitly). So

(n− 2s) Trace(γ∆−s) = sTrace(Fs)

As a result

n · Trace(γ∆−s)|s=0 = (sTrace(Fs)) |s=0 = Res |s=0 Trace(Fs),

as required.

7.3. Zeta Values and Residues as Distributions. Recall that if T is a differential

operator of order q on a closed manifold M , and if ∆ is a postive, invertible, elliptic

operator of order 2 with scalar symbol, then the zeta function (7.1) is defined as an

ordinary trace for Re(s) > (n + q)/2, and is a holomorphic function there. And, by the

Minakshisundaram-Pleijel Theorem (5.2), the zeta function extends to a meromorphic

function on C with only simple poles, at

n+ q

2
,
n+ q − 1

2
,
n+ q − 2

2
, . . .

(of course, some of these singularites might be removeable, and indeed we shall see

precisely this in a little while).

It will be convenient to enlarge our analytical perspective a bit. We shall no longer

require M to be compact. Instead, let U ⊆ M and let D be a formally self-adjoint,

first-order differential operator on M that is elliptic over U . Assume that D is essentially

self-adjoint (for instance, this will be so if D is compactly supported). Let ∆ = I +D2.

Let f be a smooth function on M whose support is a compact subset of U . If T is a

differential operator on M of order q, then the zeta function

(7.2) s 7−→ Trace(f · T∆−s),
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is defined and analytic on Real(s) > (n + q)/2. This uses the facts about the maximal

and minimal domains of elliptic operators on nocompact manifolds that we mentioned

in an earlier lecture.

Think of the zeta function (7.2) is associating to each complex scalar s a distribution

on U :

f 7−→ Trace(fT∆−s).

The argument from last Friday shows that this is a meromorphic function on C with

values in distributions on U . The following argument shows that the residue distributions

(7.3) f 7−→ Res|s=s0Trace(fT∆−s)

depend only on the restriction of T and D to U :

Lemma 7.5. If T1, D1 are equal to T,D, respectively on U , then the difference of zeta

functions

Trace(f · T1∆−s1 )− Trace(f · T∆−s)

extends to an entire function.

Proof. Recall

∆−s =
1

2πi

∫
L

λ−s(λ−∆)−1dλ,

where L is a downwards oriented vertical line in the plane separating 0 from the spectrum

of ∆. Choose L so that it separates 0 fromthe spectrum of ∆1, too. Then

f ·∆−s − f ·∆−s1 =
1

2πi

∫
L

λ−sf ·
(
(λ−∆)−1 − (λ−∆1)−1

)
dλ

=
1

2πi

∫
L

λ−sf · (λ−∆1)−1(∆−∆1)(λ−∆)−1 dλ,

where (∆−∆1) is supported away from supp(f).

Choose a smooth function h so that h ≡ 1 whereever D−D1 is nonzero, yet f ·h = 0.

Then

(7.4) f ·∆−s − f ·∆−s1 =
1

2πi

∫
L

λ−sf · (λ−∆1)−1 · h · (∆−∆1)(λ−∆)−1 dλ,

and now we calculate that

f · (λ−∆1)−1 · h = f · [(λ−∆1)−1, h]

= f(λ−∆1)−1[∆1, h](λ−∆1)−1

= f(λ−∆1)−1[∆1, [∆1, h]](λ−∆1)−2

...

= f(λ−∆1)−1 · h(k)︸︷︷︸
order k

· (λ−∆1)−k︸ ︷︷ ︸
order −2k

,

where h(k) = [∆1, h
(k−1)] (more or less as before). We find that for any s the integrand

in (7.4) is trace class with rapidly decaying trace norm as a function of λ. �
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Remark 7.6. We can say a little bit more: not only is the difference of traces an entire

function, but before traces, the quantity

fT∆−s − fT1∆−s1

is an entire function with values in the trace class operators, and indeed, if we multiply

by a compactly supported function on the right, with values in those trace class operators

represented by smooth kernels k(x, y).

We are going to study the residue distributions. We shall see that on a closed manifold

the index of an elliptic (first order) operator is representable as an (in principle) explicit

combination of residue zeta functions. We shall also see that each residue distribution

is in fact a smooth function on M (so that the index is in principle computable as a

combination of integrals overM of these smooth functions). Finally we shall see that each

of these smooth functions is (in principle) computable as a function of the coefficients of

T and D and their derivatives. This gives an (in principle) explicit local solution of the

index problem.

7.4. Residue Trace Distributions as Smooth Functions. In this section we shall

prove that the residue distribution (7.3) is (integration against) a smooth function.

To do this, let’s return one more time to the argument that proved the M-S theorem.

The argument in the previous section shows that it suffices to prove the M-S theorem on

Rn. In this context we can set

Ai = xi and Bi =
∂

∂xi
,

which have the property that [Bi, Ai] = I, of course, and for any differential operator,

T , of order q,

(n+ q)T =
∑

[BiT,Ai] +R,

where R is differential operator of order less than q. Recall that we proved the M-S

theorem by computing the same for families of operators with asymptotic expansions

T1∆−z−k1 + T2∆−z−k2 + · · ·

in place of T and R. The terms here should be of decreasing order qi − 2(z + ki).

Sobolev theory tells us that for any r = 1, 2, 3, . . ., if Real(z) > r + (n + q)/2, then

fT∆−z is represented by a kernel kz(x, y) which is r-times continuously differentiable in

x and y.

Now, if the kernel of fT∆−z is kz(x, y), as above, then the kernel of
∑

[BifT∆−z, Ai]

is

(∂ikz(x, y))(xi − yi)

where the partial derivative operator ∂i is applied to the x-slot. This kernel vanishes on

the diagonal x = y. So in the formula

(n+ q − 2z)fT∆−z =
∑

[BifT∆−z, Ai] +Rz,
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the kernels of fT∆−z, times (n + q − 2z), is exactly equal to the kernel of Rz on the

diagonal. We find that the restriction of the kernel for fT∆−z to the diagonal is not only

a Cr-function but a C∞-function (away from poles). Hence:

Theorem 7.7. There is a meromorphic function on C with values in C∞(M),

z 7−→ kz(x, x),

such that

Trace(fT∆−z) =

∫
M

kz(x, x) dx

away from poles and

Res |s=s0 Trace(fT∆−z) =

∫
M

Res |s=s0kz(x, x) dx

at poles.

In what follows we’ll write this function as

kz(x, x) = tracex(fT∆−z)

to indicate as clearly as possible the relation between the kernel and the operator.

In the reverse direction we’ll write

Op(k) : f 7−→
[
x 7→

∫
k(x, y)f(y) dy

]
for the integral operator associated to a kernel k.

7.5. Computation of Residues. Our last topic is the computation of the residues

Res |s=s0 Trace(fT∆−s).

As for where the residues are, we have seen that the poles of our zeta function are at

s0 =
n+ q

2
,
n+ q − 1

2
,
n+ q − 2

2
. . .

We’ll call n+q
2 the leading residue and we shall indicate how to compute it in the next

section. The purpose of this section is to point out that every other residue of our zeta

function can be identified with an explicit (but complicated) combination of leading

residuea of different zeta functions.

It follows that the value of our zeta function at can also be identified with an ex-

plicit but complicated combination of leading residues of other zeta functions, since we

have already seen how to identify the value at s = 0 with an explicit but complicated

combination of (non-leading) residues.

Let’s consider the problem of computing the next-to-leading residue of our zeta func-

tion, at

s0 =
n+ q − 1

2
.

Let’s invoke our Minakshisundaram-Pleijel formula

(n+ q − 2s)fT∆−s =
∑

[BifT∆−s, Ai] +Rs,
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one last time. The remainder Rs is given by the formula

(7.5) Rs = (q − 2s)fT∆−s −
∑

Bi[fT∆−s, Ai]

and

Bi[fT∆−s, Ai] = Bi[fT,Ai]∆
−s +BifT [∆−s, Ai],

or, better,

(7.6) Bi[fT∆−s, Ai] = Bi[fT,Ai]∆
−s + [Bi, fT ][∆−s, Ai] + fTBi[∆

−s, Ai]

Let’s analyze the terms on the right-hand side.

(i) The first term on the right of (7.6), summed over all i, yields

qfT∆−s + S∆−s,

where S is a differential operator of order less than q.

(ii) For each value of i the second term on the right of (7.6) has the form

Ti[∆
−s, Ai]

where Ti is a differential operator of order no more than q. And the commutator

can be expanded as

[∆−s, Ai] =

(
−s
1

)
[∆, Ai]∆

−s−1 +

(
−s− 1

1

)
[∆, [∆, Ai]]∆

−s−2 + · · ·

The first term on the right has order −2s−1; the next has order −2s−2, and so

on. So overall, the second term on the right of (7.6) has an expansion as a sum

of terms

Xk∆−s−k

for k = 1, 2, . . . , with Xk a differential operator, and with order q−2s−k. There
are infinitely many terms, but only finitely many will contribute to the residue

that we are interested in.

(iii) The third term is

(7.7) fTBi[∆
−s, Ai]

= −sfTBi[∆, Ai]∆−s−1 +

(
−s− 1

2

)
fTBi[∆, [∆, Ai]]∆

−s−2 + · · ·

Summing over i we get

−sfT
∑

Bi[∆, Ai]∆
−s−1 = −2s∆∆−s−1 + Y∆−s−1

where Y has order 1 or less. The remaining terms in (7.7) are of the form

Xk∆−s−k as in item (ii) above.

Putting all of this mess together (and it is a mess, although we can in principle write

down all the terms involved with great precision), and returning to (7.5), we find that

there is an “asymptotic expansion”

Trace(T∆−s) ∼
∑
k≥1

Trace(Zk∆−s−k),
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where the order of Zk is no more than q+k, and where the meaning of the term “asymp-

totic expansion” is that for any given right-half plane Real s > −N in C the difference

between the left-hand side and the sum of any sufficently large (but finite) number of

terms from the right is holomorphic in that half-plane (so the other terms will not con-

tribute to residues in our half-plane). We get

Ress=(n+q−1)/2(Trace(T∆−s)) =
∑
k≥1

Ress=(n+q−1)/2(Trace(Zk∆−s−k))

and the sum is actually finite. Moreover, all the residues on the right-hand side are leading

residues or zero.

If we want to consider the next-to-next-to-leading order residue, then the above ar-

gument identifies it with a combination of next-to-leading order residues, which we can

then reduce to a combination of leading order residues. And so on.

7.6. Calculation of the Leading Residue. In this final section we shall explain how

to calculate the leading residue. From everything that went before, we can write

Res |s=(n+q)/2 Trace(fT∆−s) =

∫
M

Res |s=s0 tracex(fT∆−s) dx.

We shall show how to compute integrand

Res |s=(n+q)/2 tracex(fT∆−s).

Since we are computing at a single point we can assume that

M = Rn,

that x = 0. We are going to use a rescaling method that we shall see again in the next

lecture.

Define operators

Uε : L2(Rn) −→ L2(Rn)

for ε > 0 by

(Uεf)(x) = εn/2f(εx).

The scalar factor εn/2 is not very important, but it makes Uε into a unitary operator.

Given a differential operator

T =
∑
|α|6q

aα(x)∂α,

we compute that

UεTU
∗
ε = ε−q

∑
|α|6q

aα(εx)εq−|α|∂α.

Let’s write this as

UεTU
∗
ε = ε−qTε,

and note that the operator

Tε =
∑
|α|6q

aα(εx)εq−|α|∂α
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can be defined for negative ε and for ε = 0, where we obtain a constant coefficient

operator of homogeneous degree q (in effect, it is the symbol of T at x = 0), and that

the coefficients of Tε vary smoothly with ε ∈ R.
Suppose now that k(x, y) is a kernel function, and that Op(k) is the asssociated

integral operator. Then

UεOp(k)U∗ε = ε+nOp(kε),

where kε(x, y) = k(εx, εy). Now,

Putting these two things together, we find that

εn+q−2strace0(T∆−s) = trace0(Tε∆
−s
ε ).

and therefore

Resn+q−2s=0(trace0(T∆−s)) = Resn+q−2s=0(trace0(Tε∆
−s
ε ))

for all ε > 0. By continuity of the residue as a function of the coefficients of T and ∆

Resn+q−2s=0(trace0(T∆−s)) = Resn+q−2s=0(trace0(T0∆−s0 ))

But the residue on the right is easily computed explicitly using the Fourier transform.

More on this in the next lecture.

8. 14 September 2016, Erik van Erp

Recalling the setting of Theorem (6.4). LetM be an even dimensional Spinc manifold

and E −→M complex vector bundle.

(8.1) IndexDE =

∫
M

ch(E)Tdc(TM).

Here DE was the twisted Dirac operator. We note that this formula is exactly correct,

i.e., there are not hidden constants or signs. This is due to the fact that we have defined

the characteritic classes in the right hand side terms with the appropriate factors of 2π

or 2πi.

Also, recall that Tdc denotes the Todd class of a Spinc vectr bundle, which is defined

in such a way that

Tdc(TM) =

{
Â(TM) M spin
Td(T 1,0M) M complex

Proof. Idea: To reduce via two moves to a sphere, then use Bott periodicity.

Step 1: Prove the above formula if M = S2n with its standard spin structure.

Bott periodicity [Theorem of Raoul Bott, 1959]

πk(GL(n,C)) =

{
0 k even
Z k odd

if k = 1, 2, . . . , 2n− 1.

This theorem tells us exactly what the vector bundles on S2n are, up to stable isomor-

phism. Every vector bundle on S2n, when restricted to the upper or lower hemisphere,

can be trivialized. Thus, the isomorphism class of the vector bundle is determined by
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the transition function, which is a map S2n−1 → πk(GL(k,C)). The equator of S2n is

S2n−1, and k is the rank of the vector bundle. The isomorphism class of the vector bundle

only depends on the homotopy type of the transition function, which is an element in

π2n−1(GL(k,C)). If we only want to classify vector bundle up to stable isomorphism,

we may assume that k is large enough so that Bott’s theorem applies. Therefore, the

reduced K-theory of S2n is K0(S2n, •) = Zβ. The non-reduced K-theory also includes

trivial vector bundles. So,

K0(S2n) ∼= Z⊕Zβ

Here β is the Bott generator vector bundle on S2n.

Remark. Rcall the Clifford map c and that we viewed C2n

as W = W+ ⊕W−. We

then have

R2n c // End(W+,W−)

S2n−1

⊆

OO

// GL(2n−1,C) ∼= Iso(W+,W−)

This defines the generator of π2n−1(GL(2n−1,C)).

Lemma 8.1. IndexDe =
∫
S2n ch(E) on S2n.

Proof. First establish that

• IndexDE = 0 (which will be proven later)

• IndexDβ = −1 =
∫
S2n ch(β).

The first item follows from bordism invariance of the index (to be discusses later), and

the fact that the spin structure on S2n is the boundary of the spin structure on the unit

ball in R2n+1. The second equality is obtained by direct calculation.

Now Bott periodicity, and the knowledge it gives us of the group K0(S2n), implies

that the lemma holds for all vector bundle E on S2n. �

Remark 8.2. The right hand side of the above equation is indeed the Atiyah-Singer

formula, because Â(TS2n) = 1. This is why the Â-class does not appear in the formula.

Indeed,

TS2n ⊕R = R2n+1, where R denotes the trivial bundle with fiber R. Now, recalling

the genus Properties (6.3), we have

Â(TS2n)Â(R) = Â(R2n+1),

and Â(R) = Â(R2n+1) = 1 implies that Â(TS2n) = 1.
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We now consider pairs (M,E), whereM is a closed Spinc manifold and E is a complex

vector bundle. To every such pair we assign two numbers.

(M,E)

��
IndexDE ∈ Z (Analytic index)

(M,E)

��∫
M

ch(E)Tdc(TM) ∈ Q (Topological index)

We must prove that for every pair (M,E) these two numbers—the analytic and topolog-

ical index—are equal. To achieve this we will modify the pair in 2 moves

(M,E) −→ (·, ·) −→ (S2n, F )

and we will show that the both the analytic index and the topologically defined number

are invariant under each of the two moves. We have already proved (above) that the two

numbers are equal for the pair (S2n, F ). So it will follow that the two numbers must be

equal for the pair (M,E). This is how we will prove the index formula.

The first move we will cover is the move (·, ·) −→ (S2n, F ). This involves the notion of

bordism.

Definition 8.3. Two closed manifolds are bordant if ∃ compact W such that the bound-

ary of W is the disjoint union of M with N .

∂W = M tN.

Oriented bordism: M,N,W are oriented then

∂W = M t (−N),

where (−N) denotes the manifold N with its orientation reversed. �

Spinc bordism: Let M,N,W be Spinc, in which oriented is implicit by Spinc. Consider

dim(W ) = 2r + 1 and dim(Sp) = 2r . Note that dim(∂W ) = 2r.

W is Spinc : S −→ W and c : TpW −→ End(Sp). Restrict both the spinor bundle S

and the map c to the boundary to get the Spinc structure on the boundary ∂W .

We will say that a pair (M,E0) is bordant to a pair (N,E1) ifM,N are Spinc bordant

by W , and ∃E −→W such that E|M ∼= E0 and E|N ∼= N.

To see that the analytic index is invariant under this move is hard. But to see that the

topological index is invariant under this move is an easy application of Stokes’s theorem∫
∂W

=
∫
W
d.

Next, we cover the first move We first cover the notion of a Thom Isomorphism from

K-theory. We recall the following Setting (6.4).
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We had a split C2n = W = W+ ⊕W− into positive and negative spinors, and c(v)

maps W+ →W−

c : R2n −→ Hom(W+,W−)

and we had

[c] =
[
c,Rn ×W+,Rn ×W−

]
∈ K0

(
R2n

) ∼= Z

Recall that K0(R2n)
∼=−→ K0(S2n, •) = Z by Bott periodicity in K-theory. The class [c]

is a generator of this group K0(R2n).

Vector bundle version: Consider F π−→M  R vector bundle with fibers Fp ≈ R2n.

A Thom class for F is a class in K0(F ) that is a "Bott generator in each fiber".

Explicitly, this means that we have two complex vector bundles E0, E1 −→ M . If

π : F → M denotest the projection onto the base point, let π∗E0, π∗E1 be the pull

back of the bundles Ej to the total space of F . A Thom class for F consists of two such

bundles together with a vector bundle map τ ,

π∗E0

""

τ // π∗E1

||
F

which restricted to each fiber Fp ≈ R2n is a Bott element. This means that the lmap

τp : Fp → Hom(E0
p , E

1
p)

defined by

τp(v) = τ(p, v) : E0 −→ E1 v ∈ Fp, p ∈M

is isomorphic to our familiar map

c : R2n → Hom(W+,W−)

Notet that [τ, π∗E0, π∗E1] is an element in the compactly supported K-theory K0(F ).

Theorem 8.4 (Thom isomorphism in K-theory). If ∃ Thom class for F , then K0(F ) ∼=
K0(M)

The Thom isomorphism generalizes the Bott isomorphism K0(R2n) ∼= Z to vector

bundles.

We now discuss how the Thom isomorphism is used as one of the two moves that

gets us from an arbitrary pair (M,E) to (S2n, F ).

Given: F π−→ M a vector bundle F on M with a Thom class. The fiber of this vector

bundle Fp ≈ R2n. If we compactify each fiber we get F+
p ≈ S2n. The resulting space is

denoted ΣF , and it is a fiber bundle over M whose fibers are spheres. Alternatively, we

may identify ΣF with

B(F ) t
S(F )

B(F )︸ ︷︷ ︸
ΣF−→M
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in which ΣF −→M is fiber bundle with fibers ≈ S2n and B(F ) denotes the ball bundle

of F and S(F ) is the sphere bundle.

The Thom class τF of F corresponds to a vector bundle βF −→ ΣF . Recall how the

Bott vector bundle β → S2n was obtained by clutching the Bott element of K0(R2n)

to get an element in K0(S2n, •). The same construction, performed in each fiber, turns

the Thom class τF of F into the vector bundle βF on the bundle of spheres ΣF . Put

differently, βF → ΣF is a vector bundle that, when restricted to a fiber (ΣF )p ≈ S2n, is

isomorphic to the Bott vector bundle β → S2n.

We then have

K0(ΣF ) = K0(M)⊕K0(M)βF

where the first copy of K0(M) on the RHS corresponds to vector bundles on ΣF obtained

by pulling back vector bundles from M to ΣF , while the second copy is obtained by

tensoring such vector bundles from M by βF . This generalizes K0(S2n) = Z⊕Zβ. It is
the “compactified” version of the Thom isomorphism in K-theory.

Remark. A real vector bundle with a Thom class is called a (Spinc vector bundle).

We have discussed here only the case of vector bundles of even rank, but one can also

define the Thom isomorphism for real vector bundles of odd rank. Note thatM is a spinc

manifold precisely if the tangent space TM is a spinc vector bundle, i.e., if it has a Thom

class.

"Move 2": Compactified Thom isomorphism.

Start with a pair (M,E) of a closed spinc manifold M with a complex vector bundle

E →M . Given a real vector bundle F −→M with even dimensional fibers and a Thom

class τF . We may then replace the pair (M,E) with the pair (ΣF, βF ⊗ π∗E). It has to

be shown that both the analytic index and the topological index are invariant under this

move.

Now that we know what the two moves are, how to get from M to S2n?

(M,E) −−−−−−→
Thom Iso

(·, ·) −−−−−→
bordism

(S2n, F )

This is done as follows. Embed M in R2N , for large enough N . The normal bundle ν of

M in R2N is the quotient bundle of M ×R2N by TM . M is Spinc means that there is a

Thom class for TM . There is a Thom class for M ×R2N , because this is a trivial bundle

and we can just take the Bott element of R2N and place it in each fiber. Then by the

“2-out-of-3” principle for Thom classes, there is also a Thom class for the normal bundle

ν.

0 // TM // M ×R2N // ν

��

// 0

Spinc Thom class

OO

Thom class

OO

+3 Thom class
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Step 1. Using the Thom isomorphism for the normal bundle ν →M , replace the pair

(M,E) by (Σν, π∗ν ⊗ βν).

Step 2. Σν is bordant to S2N . To see this identify

ΣF = S(ν ⊕R)

where S(ν ⊕R)→M is the sphere bundle of the vector bundle ν ⊕R→M . This shows

that we may identify the sphere bundle Σν with the boundary of a tubular neighborhood

of M in the larger vector space R2N+1 = R2N × R. This boundary of the tubular

neighborhood is bordant to S2N , as we can see by considering the following picture,

The red region in the picture is the manifold W whose boundary is ∂W = S2N t
(−Σν). Thus, ignoring the vector bundle E for the moment, our two steps are a Thom

isomorphism followed by a bordism,

M
Thom // Σν

bordism // S2N

S(ν ⊕R)

Remark. The vector bundle π∗E⊗βν may not extend from the sphere bundle Σν to the

red colored region in the picture. This is an obstruction to obtain a bordism from the pair

(Σν, π∗E⊗ βν) to a pair (S2N , F ). However, this can be fixed by an easy Mayer-Vietoris

argument in K-theory. Before you extend the vector bundle π∗E ⊗ βν , you may need

to add a vector bundle on Σν that is obtained as the pull-back of a vector bundle from

M . It follows easily from bordism invariance that this modification does not affect the

analytic or toplogical index. This is a minor point in the proof, and I will leave out the

details.

We have sketched how the verification of the index formula can be reduced, in two

moves, to the problem on a sphere. On S2N we verified the formula by direct calculation.
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The crux of the proof is therefore to verify that both sides of the index formula—the

analytic index on the left hand side, and the topological index on the right hand side—

are preserved under the two moves. In other words, there are four things to prove. The

proofs of these four facts are entirely independent.

IndexDE

∫
M

ch(E)Tdc(TM)
Hard Stokes’s Theorem bordsim
Easy Todd class Thom

Note that the index formula on the spin manifold S2N (to which we reduce) contains

the Chern character ch(E), but reveals nothing about the Todd class Tdc(TM). Next

time I will discuss the details of the proof of the invariance of the topological index under

the Thom isomorphism (the bottom right corner in the above diagram). It is in this

part of the proof that the formula for the Todd class (and therefore also the Â-class) is

calculated.

Of the other three corners in the diagram, two are easy (bordism invariance of the

topological index, and invariance of the analytic index under the Thom isomorphism).

However, the bordism invariance of the analytic index is the deepest fact of the four.

Like Bott Periodicity, it is a result of independent interest that is a key ingredient of the

topological proof as I outlined it here.

9. 15 September 2016, Nigel Higson

In this final lecture on the local index theorem we shall (more or less) reach our

goal of computing the index of the Dirac operator in purely local terms, arriving at the

Â-genus. But first we shall say more about the leading residue that we were considering

in the last lecture.

9.1. Completion of the Leading Order Residue Computation. LetM be a closed

manifol of dimension n. As usual, let ∆ be a positive invertible operator of order 2, and let

T be a compactly supported differential operator of order q. There is a smooth function

x 7→ tracex(T∆−s)

on M , varying meromorphically with s ∈ C, such that

Trace(T∆−s) =

∫
M

tracex(T∆−s)dx.

Our function is analytic in half-plane Re(s) > n+q
2 , and T∆−s is trace-class there. The

pointwise residue

Ress= n+q
2

tracex(T∆−s)

is a smooth function of x, and

Ress=(n+q)/2Trace(T∆−s) =

∫
M

Ress=(n+q)/2tracex(T∆−s) dx.

Finally, the pointwise residue at x depends only on the germs of T and ∆ at x.
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Because of the last point, it suffices to compute residues in the case where M = Rn

and x = 0 ∈ Rn. We proved that

Resn+q
2

trace0(T∆−s) = Resn+q
2

trace0(T0∆−s0 ),

where "0" means we freeze the coefficients at 0 ∈ Rn. Thus if

T =
∑
|α|≤q

aα(x)
∂α

∂xα
,

then

T0 =
∑
|α|≤q

aα(0)
∂α

∂xα
.

We shall review this reduction-to-constant-coefficients argument in a little while, but for

now let us continue with an analysis of the right-hand side in the above equation. We

calculate, using Fourier analysis, that if Re(s) > (n+ q)/2, then

trace0(T0∆−s0 ) =

∫
Rn

symbol(T0) symbol(∆0)−sdξ.

Here symbol(T0) is more or less the symbol (at the point 0) that we were discussing in

earlier lectures, but not exactly:

symbol(T0) =
[
ξ 7−→

∑
|α|≤q

aα(0)(iξ)α
]
.

So in contrast to the symbol discussed earlier, here we have not dropped the lower order

terms, and we have also inserted powers of i =
√
−1 (the effect of the latter is to make the

symbol of ∆ a positive function, so that raising it to a complex power is unproblematic).

The behaviour of the integral as s converges to (n+ q)/2 is easy to analyze, and we

find that

Res(n+q)/2tracex(T0∆−s0 )

= constantn
∫
Sn

princ-symbol(T0) princ-symbol(∆0)−
n+q
2 dξ,

where the constant in front depends on the dimension n alone, and

princ-symbol(T0) =
[
ξ 7−→

∑
|α|=q

aα(0)(iξ)α
]

(the lower order terms have been dropped, as in the definition of the order p symbol, but

we’ve kept the powers of the square root of minus one).

Remark 9.1. We’ve tacitly assumed that our operators are acting on scalar functions. If

that’s not the case, we need to insert traces at various points in the formulas above. For

instance if T0 and ∆0 act on vector-valued functions rather than scalar functions, so that

the coefficients of these operators are matrices, then

Res(n+q)/2tracex(T0∆−s0 )

= constantn
∫
Sn

trace
[
princ-symbol(T0) princ-symbol(∆0)−

n+q
2

]
dξ,

where the trace within the integral is the standard trace on matrices.
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9.2. Weyl’s Theorem on Eigenvalue Asymptotics. The computation has a famous

consequence, which it’s worth pausing to enjoy. Let’s go back to a closed manifold M .

Assume for simplicity that ∆ acts on scalar functions. There is an orthonomal basis of

L2(M) consisting of eigenfunctions for ∆, say

∆fk = λkfk,

and

Trace(∆−s) =
∑
k

λ−s.

Therefore

Resn/2 Trace(∆−s) = lim
s↘n/2

(s− n/2)
∑
k

λ−sk

Let us now apply the following Tauberian theorem (see for example Hardy’s book Diver-

gent Series):

Theorem 9.2. If µk are positive numbers with

lim
s↘1

∑
k

µsk = M

then

lim
µ→0

µ ·#{µk > µ } = M.

We obtain Weyl’s famous asymptotic law for the the eigenvalues λk:

Theorem 9.3. If ∆ is the Laplace-Beltrami operator on a closed Riemannian manifold

M of dimension n, and if

λ1 ≤ λ2 ≤ λ3 ≤ · · ·

is the eigenvalue sequence of ∆ (with eigenvalues listed possibly multiple times, according

to their multiplicity), then

lim
k→∞

λk · k−
2
n = constantn · vol(M),

where the constant depends only on n.

This uses the fact that that, thanks to our explicit computation, the leading residue

is proportional to the volume of M , with the constant of proportionality depending only

on the dimension of M .

9.3. Review of the Rescaling Argument. In this section we shall review the rescaling

argument that we used last time to reduce the computation of leading order residues to

the constant coefficient case. We want to study whether or not we can adapt it to the

direct computation other residues, and, most importantly, to zeta values at zero (of course

we already know that we can identify these with complicated combinations of leading

order residues by a laborious inductive argument involving the operators Ai and Bi from

the M-S theorem; but we want to study whether or not we can find a more direct route).
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We defined a rescaling unitary isomorphism on L2(Rn) by

Uε : L2(Rn) −→ L2(Rn)

defined by

(Uεf)(x) = εn/2f(εx)

(the fact that this operator is unitary is not important, and we could drop the εn/2 factor

without really affecting anything, but we’ll keep it in here). Our analysis of the leading

residue using these scaling operators had the following two parts (which for clarity we’ll

formulate for ∆−s alone, on a compact M , rather than a more general family T∆−s):

(i) If we define

Uε∆U
−1
ε = ε−2∆ε

then the coefficients of differential operator ∆ε depends smoothly on ε, and

the family of differential operators so obtained extends smoothly through ε = 0,

where we obtain an operator with constant coefficients, giving us a smooth family

of operators parametrized by ε ∈ R.
(ii) If k is any smooth kernel function, then

UεOp(k)U−1
ε = εnOp(kε)

where kε(x, y) = k(εx, εy). As a result

ε2strace0(∆−sε ) = εntrace0(∆−s)

Taking residues at s = n/2, it follows from the second formula in (ii) that

εnResn/2trace0(∆−sε ) = εnResn/2trace0(∆−s)

Cancelling the εn-factors and integrating over a compact M gives

Resn/2Trace(∆−sε ) = Resn/2Trace(∆−s),

That is, the leading residue is unchanged under rescaling.

It is at this point that we invoke item (i) above to complete our calculation. The

residue on the left-hand side varies continuously with ε,and not only with ε > 0 but

with ε ∈ R (all we need is that the operators ∆ε vary smoothly with ε and are elliptic,

positive and invertible). So we obtain

Resn/2Trace(∆−s0 ) = Resn/2Trace(∆−s),

and we can complete the leading order residue computation as we did earlier in this

lecture.

For the purposes of index theory we’re interested not in the leading residue but in

the zeta value at s = 0. Can we somehow adapt the the argument just given to cover

zeta values at zero?

It is not evident at all that this is possible. For instance if we repeat the steps just

taken without any serious chance, then we obtain
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(9.1) εn trace0(γ∆−s) = ε2strace0(γ∆−sε )

(here γ is the grading operator), and so, evaluating at s = 0,

(9.2) εn trace0(γ∆−s)|s=0 = Trace0(γ∆−sε )|s=0.

Unfortunately if we now take the limit as ε→ 0 we obtain

0 · trace0(γ∆−s)|s=0 = Trace0(γ∆−s0 )|s=0,

which tells us nothing of interest since we have multiplitied the quantity of importance

to us by zero.

In order to repair the argument we need to somehow get rid of the term εn that

appears in (9.1). There is a remarkable trick that allows us to do this for (the squares of)

Dirac operators, using information about the Clifford algebra, and specifically its relation

to exterior algebra. We shall discuss this in just a moment, and so conclude the proof of

the index theorem. But first we shall pause to disucss the relation between zeta functions

and heat kernel traces.

9.4. Zeta Functions and Heat Traces. Our zeta functions are related to traces of

heat kernels by the Mellin transform formula

Γ(s)λ−s =

∫ ∞
0

e−λtts
dt

t
,

which implies that

Γ(s) Trace(∆−s) =

∫ ∞
0

Trace(e−t∆)ts
dt

t
.

The formula requires some care. Since we need to be sure that both sides make sense

(the traces exist and the integrals converge) in at least some region of the s-plane. But

suffice it to say that the material we’ve covered is sufficient to prove trace-ability for all

t > 0 and convergence for all s with Real(s) > n/2.

There is an inverse Mellin transform formula and it implies that

Trace(e−t∆) =
1

2πi

∫
L

Γ(s)t−s Trace(∆−s)ds

where the contour of integration is any upwards-traversed) vertical line in the plane to

the right of all the poles of Γ(s) Trace(∆−s). Once again, a bit of care is needed, but

the integrand is in fact a rapidly decreasing function on any vertical line away from the

poles, which is what we need to make sense of (and to prove) the formula.

Further information can be gathered by considering the integral of the same function

around the contour C pictured below. right vertical line is to the right of all the poles;

the left vertical line passes between the poles (coming from the Gamma function) at 0

and −1; the top and bottom horizontal lines are very far above and very far below the

x-axis, respectively: soon we are going to take a limit as these distances tend to infinity.
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The residue formula says that
1

2πi

∫
C

Γ(s)t−s Trace(∆−s)ds =
∑
p

Resp Γ(s) Trace(∆−s)

= Trace(∆−s)|s=0 +

2n∑
k=1

Γ(k/2)t−k/2 Resk/2 Trace(∆−s)

The integral can be analyzed as follows:

(i) In the limit as the height and depth of the rectangular contour C converge to

infinity, the contributions to the integral from the horizontal parts of the contour

are zero.

(ii) In the same limit, the contibution from the left vertical part of the contour is

Trace(e−t∆).

(iii) Whether or not we take a limit, the left vectical part of the contour is o(t).

We find that

Trace(e−t∆) = o(t−1) + Trace(∆−s)|s=0 +

2n∑
k=1

Γ(k/2)t−k/2 Resk/2 Trace(∆−s),

and so we have obtained the asymptotic expansion for the heat kernel (and determined

the coefficients of the asymptotic expansion).

9.5. Getzler’s Rescaling and the Index Theorem. Let’s start with the ingredients

we’re given. The first is the Dirac operator D on a closed Riemannian spin manifold.

We’re interested in its square, and if we compute it in geodesic coordinates (and the

associated trivialization of the spinor bundle), what we find is that

(9.3) ∆ = −
∑
i

(
∂i +

1

4
Rijxj

)2

+ small error

where Rij entry at 0 in Riemann’s curvature matrix of 2-forms, and where we’ll explain

what we mean by the small error in due course.

The formula (9.3) requires some further explanation. First, we haven’t discussed in

these lectures what we mean by “the” Dirac operator, only the Dirac symbol. But using

ideas from Riemannian goemetry, in particular the Levi-Civita connection, we can define

one preferred (by geometers, and by us here) operator whose symbol is the Dirac operator.

It has the rather beautiful property that

D2 = ∇∗∇+
κ

4
,
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where ∇ is the Levi-Civita connection on the spinor bundle, and κ is the scalar curvature

function on the underlying Riemannian manifold. Some Clifford algebra with n even. This

is called the Lichnerowicz identity (although it was discovered earlier by Schrodinger).

Next, we said that Rij is a two-form at 0, but it appears in (9.3) as a coefficient of an

operator that acts on spinors. We are using the standard isomorphism of vector spaces

Cliff(V ) ∼= ∧•V

that corresponds

ei1 . . . eip ∈ Cliff(V )

to

ei1 ∧ · · · ∧ eip ∈
∧
•V

whenever ei1 , . . . , eip are distinct and orthornormal.

Before we go on, let’s pause to note that if there was no “small error” term in (9.3) we

would be in absolutely great shape. The reason is that the value of trace0(γ∆−s) at s = 0

would have to be a function of the entries Rij alone, because that is all the information

from the manifold M and from its spin structure that would be present in the formula

for ∆. In fact, re-examining our clumsy-but-in-principle explicit formula for the value

of trace0(γ∆−s) at s = 0, we find that this quantity would be a polynomial in the Rij
and indeed a symmetric polynomial in them. No higher derivatives of any sort would

be involved; we would have verified the miraculous cancellation phenomenon, or most of

it (it would remain to actually compute the polynomial). Remember, that in contrast,

what we know up to now is that the local index is the integral of a possibly immensely

complicated function of all partial derivatives, up to order n, or perhaps it’s 2n, of our

operator . . .

This observation should make it obvious what we ought to do: find a rescaling that

shrinks the error part of (9.3) to zero, while preserving the local index, that is, the value

of trace0(γ∆−s) at s = 0.

To accomplish this we shall use Getzler’s method of rescaling not only the underlying

space, as we did to compute the leading residue, but also the Clifford algebra (or, if you

like, the noncommutative space underlying the Clifford algebra).

The method is a bit awkward to grasp, at first, because it involves not only traces on

operators, but also traces on algebras, and rather than think of ∆ as an operator acting

on some Hilbert space we shall need to think of it (or rather its semigroup of complex

powers ∆s for Real(s)� 0) as lying in an appropriate algebra. We shall then rescale the

algebra along with ∆.

Let’s start by describing how to rescale the Clifford algebra. Recall that

Cliff (Rn) =
〈
ej : eiej + ejei = 0 & e2

j = −1
〉
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(the angle-brackets mean the algebra generated by the indicated elements subject to the

indicated relations) and form the following variant:

Cliffε(R
n) =

〈
ej : eiej + ejei = 0 & e2

j = −ε21
〉

When ε 6= 0 this is not really different from the original Clifford algebra, because the

correspondence

(9.4) ej 7−→ ε−1ej

induces an isomorphism of algebras

(9.5) Cliff(Rn) −→ Cliffε(R
n).

On the other hand when ε = 0 we get

Cliff0(Rn) =
〈
ej : eiej + ejei = 0 & e2

j = 0
〉
.

This is of course the exterior algebra on the indicated generators. Altogether, we obtain a

smooth bundle of algebras parametrized by ε ∈ R. The sections ei1 · · · eip for i1 < · · · < ip

give a global frame and so trivialize it as a smooth vector bundle.

We shall need to use the so-called supertraces or (fancier) ferminonic integrals on

these algebras. These are the linear forms on Cliffε(R
n) that are defined as follows:

str :
∑

ai1...ipei1 · · · eip 7−→ a12...n.

Thus all the supertraces on all the Cliffε(R
n) are given by the same formula.

We’re assuming throughout that n is even, and so if ε 6= 0, then there there is an

isomorphism

(9.6) Cliffε(R
n)

∼=−→ End(Sε),

where Sε is the spinor representation of the Clifford algebra—its unique irreducible rep-

resentation. Under this algebra isomorphism, the supertrace corresponds to a rescaling

of the usual operator trace, but with the grading operator γ inserted:

(9.7) Cliffε(R
n)

x 7−→εn(−2i)n/2 str(x) //

∼=
��

C

End(Sε)
X 7→trace(γT )

// C

On the other hand the supertrace at ε = 0 obviously calls to mind the integral of

differential forms.

Now let’s return to the Dirac operator on a closed Riemannian spin manifold, or

rather its square, ∆. As usual we shall study ∆, its complex powers, and so on, near one

point in M , and introducing coordinates as we did at the beginning of this section we

can consider ∆ as an operator

∆: C∞(U,S) −→ C∞(U,S),
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where U is an open ball around 0 ∈ Rn and S is the spinor representation of Cliff(Rn) as

above. This is a second order partial differential operator whose coefficients are smooth

End(S)-valued functions. Let’s also write

Uε∆U
−1
ε = ε−2∆ε,

exactly as we did in our treatment of the leading residue. As we saw before, the coefficients

of ∆ε are smooth End(S)-valued functions that vary smoothly with ε. There is a smooth

extension to the value ε = 0 (where the coefficients are constant), but this is not what

we are interested in. Instead we are first going to modify ∆ε, or at least modify the way

we look at ∆ε (so to speak, we are going to change gauge), and only then will we extend

to ε = 0.

The modification is as follows. Denote by ∆ε,ε the second order differential opera-

tor on U whose coefficient functions are smooth, Cliffε(R
n)-valued functions, which is

obtained by applying the isomorphism defined by the diagram

End(S) // Cliffε(R
n)

Cliff(Rn)

∼=

OO

∼= (9.5)

55

to the coefficients of ∆.

What sort of an object is this? We could think of ∆ε,ε as an actual differential

operator, acting on the space C∞(U) ⊗ Sε, where Sε is the spinor representation of

Cliffε(R
n). But this is not what we are going to do, and the reason is that the spinor

representations of Cliffε(R
n) do not have a good limit as ε→ 0. Instead we shall simply

view ∆ε,ε as an element of the algebra

D(U)⊗ Cliffε(R
n)

of differential operators with coefficients in the ε-Clifford algebra. (If you really want

∆ε,ε to act somewhere, you can think of is as acting on the algebra D(U) ⊗ Cliffε(R
n)

by left multiplication.)

The justification for this point of view is as follows.

Lemma 9.4. The operators ∆ε,ε vary smoothly with ε and extend smoothly to ε = 0,

where

(9.8) ∆0,0 = −
∑
i

(
∂i +

1

4
Rijxj

)2

,

with Rij the (i, j)-entry at 0 of Riemann’s curvature matrix of 2-forms. �

Remark 9.5. To make the lemma precise, it is helpful to note that the differential opera-

tors of order 2 or less (or of any order q or less) form a locally free and finitely generated

sheaf of modules over the sheaf of smooth functions, or in otherwords can be identified
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with the sheaf of sections of a smooth vector bundle over U . The family {∆ε,ε}ε∈R dis-

cussed in the lemma is a smooth section of the tensor product bundle, over U × R, of
this bundle with the bundle of algebras Cliffε(R

n).

Let’s now think of the operators ∆ε,ε as acting on the Hilbert spaces

L2(Rn,Cliffε(R
n)) = L2(Rn)⊗ Cliffε(R

n)

(the coefficient functions act by left multiplication), where we make Cliffε(R
n) into a

finite-dimensional Hilbert space by decreeing the monomials ei1 · · · eip to be an orthonor-

mal basis. They are elliptic.3 The various operators such as fT∆−s that we have consid-

ered commute with right-multiplication by elements of Cliffε(R
n) on L2(Rn)⊗Cliffε(R

n),

and when they are trace class they lie in

(9.9) L1
(
L2(Rn)

)
⊗ Cliffε(R

n) ⊆ L1
(
L2(Rn)⊗ Cliffε(R

n)
)

(the left-hand copy of the Clifford algebra acts by left multiplication on the Hilbert

space). Thus

fT∆−sε,ε ∈ L1
(
L2(Rn)

)
⊗ Cliffε(R

n)

for Real(s) � 0. If Real(s) is larger still, then the tensor product on the left can be

replaced by r-times continuously differentible kernels valued in Cliffε(R
n), and moreover

the restriction to the diagonal is a smooth function, meromorphic in s ∈ C. Let’s denote
by

s 7−→ supertrace0(fT∆−sε,ε)

the supertrace (for Cliffε(R
n)) of the diagonal value at 0 ∈ Rn.

At this point, let’s pause to consider ε = 1. Thanks to (9.7), the value of the function

s 7−→ trace0

(
γ∆−s : L2(Rn,S)→ L2(Rn,S)

)
at s = 0 that we need to calculate (at s = 0) for index theory is equal to the value of

s 7−→ (−2i)n/2supertrace0(fT∆−s1,1)

at s = 0. Now think of this this as the value of

(−2i)n/2supertrace0(fT∆−sε,ε)

at s = 0 and ε = 1, and observe from (9.7) again, and (9.2) that this is independent of ε.

We find that

trace0

(
γ∆−s

)∣∣∣
s=0

= (−2i)n/2supertrace0(fT∆−s0,0)
∣∣∣
s=0

.

This is really our grand conclusion about index theory for Dirac operators (just as our

grand conclusion about point-values of leading residues was that they depended only

on principal symbols, and so could be computed using constant coefficient operators).

Keeping in mind the formula for the supertrace at ε = 0, we see immediately that

3They are not quite formally self-adjoint, but if we cut off on the left and right by a suitable smooth
bump function that is supported near 0 ∈ Rn, then they are norm-bounded perturbations of formally
self-adjoint and indeed essentially self-adjoint operators, and this is enough for the analysis to proceed.



INDEX THEORY 63

the index is some degree n/2 invariant polymnomial in the Rij over M , and so is a

characteristic number. To understand which characteristic number it is, only a modest

amount of extra work is needed, involving an explicit calculation parallel to the one we

did with Fourier theory at the beginning of this lecture.

Namely to calculate the precise formula for the (local) index, we need to determine

the value at zero of the zeta function

s 7−→ supertrace0

(
∆−s0,0

)
for the operator ∆0,0 in (9.8). Using the result of our discussion on heat traces and zeta

functions, this is essentially the same as the following computation, which can be done

quickly by appealing to the theory of the quantum harmonic oscillator

∆harmonic = − d2

dx2
+ x2

(although time is up and we won’t do the calculation here).

Lemma 9.6. If ∆0,0 is the operator (9.8), then

supertrace0(exp(−t∆)) = (4πt)
n
2 det1/2

(
tR/2

sinh(tR/2)

)
where R = [Rij ]. �

10. 16 September 2016, Erik van Erp

The Dirac operator D of a closed even dimensional spinc manifold M determines a

summable Fredholm module, which gives an element in K-homology K0(M). A complex

vector bundle E →M represents an element in K-theory K0(M) (a cohomology theory).

The pairing of the K-homology cycle [D] and the K-theory class [E] is the integer

Index(DE). The Chern character (in homology and cohomology) turns this into a pairing

between the homology class ch•(D) and the cohomology class ch•(E).

〈[D], [E]〉 ∈ K0(M)×K0(M)
_

��

� // IndexDE ∈ Z

〈ch•(D), ch•(E)〉 ∈ Hev(M,R)×Hev(M,R) // R

The Chern character of a vector bundle ch•(E) is well understood. We can therefore

think of the Atiyah-Singer index theorem as giving a topological formula for the homology

Chern character ch•(D). The formula

IndexDE =

∫
M

ch(E) ∧ Tdc(TM)

is equivalent to

Theorem 10.1 (Atiyah-Singer).

ch•(D) =

∫
M

− ∧ Tdc(TM) = Poincaré Dual of Tdc(TM)



64 ERIK VAN ERP AND NIGEL HIGSON (NOTES BY KONRAD AGUILAR)

Topological proof. We have sketched a proof of the Atiyah-Singer formula by reduction

to the spin manifold S2n. The formula can be directly verified on S2n, because Bott

Periodicity gives us full knowledge of the stable isomorphism classes of vector bundles

E → S2n. The reduction of the problem to the calculation on S2n proceeds in two steps,

and we must prove invariance of both the analytic index and the topological index in

each of these two steps. Thus, the proof of the index formula in this approach depends

on Bott Periodicity, and four “invariance” proofs.

IndexDE

∫
M

ch(E)Tdc(TM)
(co)bordism Hard Stokes’s theorem
Thom Isom. Easy calculation of Tdc(TM)

In this approach, the calulation of the homology Chern character ch•(D) takes place

in the bottom right corner of the diagram, i.e., it is implicit in the proof of the invariance

of the topological index under the Thom isomorphism. In today’s lecture I will focus on

this calculation. I will first very briefly comment on the other three “invcariances”.

The bordism invariance of the analytic index is a difficult analytic fact. There are

several proofs available, many of which depend on the analysis of elliptic boundary value

problems. An elementary proof that avoids boundary value problems, and only requires

some basic knowledge about the resolvent of the Dirac operator on complete manifolds,

can be found in a paper by Nigel Higson, A note on the cobordism invariance of the

index, published in Topology (1991).

By contrast, the bordism invariance of the topological index is an easy consequence

of Stokes’s Theorem.

The invariance of the analytic index under the (compactified) Thom isomorphism is

also not difficult to prove. It relies on the fact that if M and N are two even dimensional

spinc manifolds, then the index of the Dirac operator DM×N of the product manifold

M ×N is the product

Index(DM×N ) = Index(DM ) · Index(DN )

We know that on the even sphere S2n with Bott generator vector bundle β we have

IndexDβ̄ = 1. Therefore on the product M × S2n the index of the twisted Dirac DE

on M equals the index of the operator DE⊗β̄ on M × S2n. This same argument can

be easily adapted to nontrivial sphere bundles ΣF → M because the Dirac operator

and Bott generator vector bundle of the even sphere S2n are both equivariant for the

structure group of the spinc vector bundle F →M .

Having briefly commented on the other three “invariances”, the content of this lecture

concerns the bottom right corner of the above table, i.e., the proof of the invariance

of the topological index under the Thom isomorphism. As we will see, this amounts to
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the calulation of the characteristic class Tdc(TM), and therefore, in essence, this step is

where we calculate ch•(D).

Invariance of the topological Index under the "Thom Isomorphism". Let M be an

even dimensional Spinc manifold and E be a complex vector bundle. Recall that in our

reduction of the index problem to an even sphere S2n, one of our two “moves” was to

replace a pair (M,E) by

(M,E) (ΣF, π∗E ⊗ βF ),

Here ΣF
π−→ M is a sphere bundle over M , whose fibers are even dimensional spheres.

F −→ M is a vector bundle with a Thom class τ ∈ K0(F ). The fibers of F are even

dimensional, Fp ≈ R2n. Denote the one-point compactification of Fp by F+
p ≈ S2n ≈

S(Fp ×R). We may identify ΣF with the sphere bundle S(F ⊕R).

Need: Before embarking on this proof, one needs to establish the following two properties

of the Todd class:

Td(E ⊕ F ) = Td(E)Td(F ) Td(trivial) = 1

Using these two properties we find that∫
M

ch(E)Tdc(TM) =

∫
ΣF

ch(π∗E)ch(βF ) Tdc(T (ΣF ))︸ ︷︷ ︸
Tdc(π∗TM)Tdc(π∗F )

=

∫
M

ch(E)π!(ch(βF ))Td(TM)Td(F ),

where π! : H•c (F ) −→ H•−2n(M) denotes integration in the fiber. Therefore, to prove

the equality, and thereby establish invariance of the topological index under the Thom

isomorphism, it suffices to prove the following proposition.

Remark: In the next proposition we actually need βF instead of βF , but we will see

why this is the case at the end of the lecture.

Proposition 10.2.

π!(ch(βF )) =
1

Tdc(F )

Proof. First, it is not hard to prove that we may replace the vector bundle βF of ΣF by

the Thom class τF on F . Thus we will prove that,

π!(ch(τF )) =
1

Tdc(F )

Facts about Euler class The Euler class is the characteristic class associated to the Pfaf-

fian, i.e., the invariant polynomial Pf : so(2n) → R that corresponds to e = Pf =
∏
xj

on skew matrices in normal form (see below).

Let κ : M → F denote the zero section, and κ∗ restriction to M of compactly

supported differential forms on F ,

κ∗ : H•c (F ) −→ H•(M)
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Then the Euler class e(F ) ∈ H•(M) has the property that

π!(a) ∧ e(F ) = κ∗(a),

where a ∈ H•c (F ) −→
π!

H•−2n(M). With a = ch(τF ) we get

π!(ch(τF )) ∧ e(F )) = κ∗(ch(τF ))

= ch( κ̃(τF )︸ ︷︷ ︸
[S+]−[S−]

)

= ch(S+)− ch(S−),

where K0(F )
κ̃−→ K0(M) is the map in K-theory induced by the zero section κ : M → F ,

and S+/− →M are the two vector bundles that are part of the Thom class τF : π∗S+ −→
π∗S− of F . Because M is compact, the restriction map κ̃ “forgets” the map τF , and only

remembers the vector bundles S+/−.

To simplify things, we will now restrict our attention to the case of spin vector

bundles. To calculate Tdc(TM) for spinc manifolds, we need a little more knowledge

about characteristic classes of spinc vector bundles. Instead, I will discuss the calculation

of Tdc(TM) in the case where M is a spin manifold. In other words, I will calculate

Â(TM). Thus, for the sake of exposition, from now on I will assume that F is a spin

vector bundle.

To finish the calculation we use the following lemma.

Lemma 10.3. If F is a Spin(2n) - vector bundle, then the characteristic class

f(F ) = ch(S+)− ch(S−)

is associated to the invariant polynomial

f : so(2n) −→ R

defined by f(x1x2 · · · ) = (−1)n
∏(

exj/2 − e−xj/2
)
for skew matrices in normal form

0 −x1

x1 0
0 −x2

x2 0
. . .

 ∈ so(2n).

This suffices to finish the proof of the proposition 10.2. From

π!(ch(τF )) ∧ e(F ) = f(E)

we see that the characteristic class π!(ch(τF )) of the spin vector bundle F corresponds

to the invariant polynomial defined by

(−1)n
n∏
j=1

(
exj/2 − e−xj/2

)
xj

The sign (−1)n is removed if we replace βF by the dual bundle β̄F . What we get then is

precisely the inverse of Â, which is what we needed to prove. With a minor modification
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the proof will work for spinc vector bundles F , in which case we obtain the inverse of the

Todd class, as required. �

Proof of Lemma (10.3). A spin vector bundle F is given by transition functions, defined

on an open cover of M . For two open subsets U, V ⊂M , we have

U ∩ V → Spin(2n)

If these are the transition functions for F , then the transition functions for the spinors

S = S+ ⊕ S− are obtained as follows,

U ∩ V // Spin(2n) //

φ &&

End(C2n)

U(2n),

⊆

OO

The structure group of S is the unitary group U(2n). In fact, because of the grading

S = S+ ⊕ S−, the structure group is really the subgroup U(2n−1)× U(2n−1) ⊂ U(2n).

The curvature of F is a so(2n)-valued 2-form, while the curvature of S is a u(2n)-

valued 2-form. To evaluate which characteristic class f of F corresponds to the charac-

teristic class

chS(S) = ch(S+)− ch(S−)

of S, we consider the diagram

so(2n)

f
$$

dφ // u(2n)

chS

��
C

We need an explicit formula for the Lie algebra map dφ −→ u(2n). We can obtain such

a formula from the calculations in the Clifford algebra that we did in an earlier lecture.

Recall,

so(2n)
∼=−→ Λ2R2n ⊂ C2n

where Λ2R2n denotes the subset of the Clifford algebra C2n spanned by elements of

the form eiej , i 6= j. We have shown in an easlier lecture that the element 1
2eiej ∈ Cn

corresponds to the skew matrix in so(n) with a −1 in row i and column j, and +1 in row

j and column i. We can therefore realize the Lie algebra map dφ explicitly by means of

the 2n× 2n complex valued matrices Ei of Equation (2.1). We find, for a skew matrix in

normal form,

dφ :


0 −x1

x1 0
0 −x2

x2 0
. . .

 ∈ so(2n) 7−→ x1

2
E1E2 +

x2

2
E3E4 + · · · .
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Let us denote A = x1

2 E1E2 + x2

2 E3E4 + · · · . To identify the characteristic class f , we

need to calculate

f(x1, x2, . . . , xn) = chS(A) = tr(γ exp(A))

where γ =

[
I 0
0 −I

]
is the grading operator.

Note that EiEj commutes with EkEl if i, j, k, l are four distinct indices. Thus,

exp(A) =
∏

exp
(xj

2
E2j−1E2j

)
=
∏(

cos
(xj

2

)
+ sin

(xj
2

)
E2j−1E2j

)
.

We now need the following fact about the “supertrace” tr(γ−) defined on the Clifford

algebra C2n → R. Exercise: Verify that

tr(γEi1Ei2 · · ·Eip) =

{
0 , except
(−2i) , if E1E2 · · ·E2n.

hint: You need to first verify that the grading operator is given by γ = inE1E2 · · ·E2n.

With this knowledge about the supertrace on the Clifford algebra, we obtain

tr(γ exp(A)) = (−2i)n
n∏
j=1

sin
(xj

2

)
= (−1)n

∏(
eixj/2 − e−ixj/2

)
This should be our expression for the function f : so(2n)→ R.

What about the i′s in the exponents? This has to do with the fact that S is a complex

vector bundle, and F is a real vector bundle.

conventions. If Ω denotes the curvature of a connection on a vector bundle, then the

conventions for characteristic classes of real and complex vector bundles are slightly

different.
R vector bundle
p : so(n) −→ R

p(F ) = p
(

ΩF

2π

) C vector bundle
p : u(N) −→ C

p(S) = p
(
−ΩS

2πi

)
.

If we take this into account, the i′s in the exponents will go away. Moreover, to get all

the signs to work out correctly, we note that in the statement of Proposition (10.2) we

really need βF instead of βF . �
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