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1. 19 September 2016

The main focus of today is to begin to answer the questions: why is topology somehow

related to C*-algebras and why is the study of C*-algebras sometimes called noncommu-

tative topology?

To start, we consider a motivating example.

Example 1.1. Let X be a compact Hausdorff topological space and let C(X) = {f :

X −→ C : f is continuous} be set of complex valued continuous functions with respect

to the given compact Hausdorff topology on X and the usual topology on C. To motivate

the definition of C*-algebra, we list some properties of the set C(X).

(1) C(X) is an algebra under point-wise operations. For example, f + g for f, g ∈
C(X) means the continuous function defined by (f + g)(x) = f(x) + g(x).

(2) C(X) has a norm ‖ ·‖C(X) defined by ‖f‖C(X) = supx∈X |f(x)| for all f ∈ C(X).

(3) This norms behaves well with the algebra structure:

‖f+g‖C(X) 6 ‖f‖C(X) +‖g‖C(X), which is already true by definition of norm,

and

‖fg‖C(X) 6 ‖f‖C(X) · ‖g‖C(X) for all f, g ∈ C(X).

(4) The norm ‖ · ‖C(X) is complete.

(5) There is an involution ∗ : C(X) −→ C(X) defined pointwise by f∗(x) = f(x).

(6) This involution has the following relationship with the norm.

‖f∗f‖C(X) = ‖f‖C(X) for all f ∈ C(X).

We note that in the case that X is a locally compact Hausdorff space, we consider the

set C0(X) = {f ∈ C(X) : ∀ε > 0, {x ∈ X : |f(x)| > ε} is compact}, which satisfies all of

the above properties.

If an algebra A (Complex and associative) has a norm that satisfies properties (3)

and (4), then we call this a Banach Algebra. Now, we define a C*-algebra.

Definition 1.2. Let A be a complex normed vector space with norm ‖ · ‖A. If the norm

‖ · ‖A is complete, and

(1) A is an algebra for which

‖ab‖A 6 ‖a‖A · ‖b‖A for all a, b ∈ A, and

(2) there exists a map ∗ : A → A that is conjugate linear, anti-mutliplicative, and

idempotent called the involution such that

‖a∗a‖A = ‖a‖2 for all a ∈ A,

then A is a C*-algebra. We say that a C*-algebra is unital if it contains a multiplicative

unit.
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We note that C0(X) is an example of a commutative C*-algebra, but also that there

are no other examples of commutative C*-algebras. But, what do we mean by "no other

examples." This motivates the following definition of isomorphism between C*-algebras.

Definition 1.3. Let A,B be C*-algebras. ϕ : A → B is a *-homomorphism if ϕ is a

homomorphism of the algebra such that ϕ(a∗) = ϕ(a)∗ for all a ∈ A. (We note that we

are not implying that A and B have the same involution. This is just common notation).

A *-isomorphism is a *-homomorphism that is a bijection.

The fact that there are no other commutative C*-algebras besides ones of the form

C0(X) was due to Gelfand and Naimark.

Theorem 1.4 (Gelfand-Naimark Theorem). Every commutative C*-algebra is *-isomorphic

to C0(X), for some locally compact Hausdorff space X.

The next theorem establishes our next step in showing why the study of C*-algebras

is sometimes called noncommutative topology.

Theorem 1.5. Let X1, X2 be locally compact Hausdorff spaces.

X1 ∼ X2 (∼ means homeomorphic) if and only if C0(X1) ∼= C0(X2) (∼= means *-

isomorphic).

Therefore, this theorem together with the Gelfand-Naimark theorem provide that

the objects in the category of C*-algebras (with *-homorphisms) are in one-to-one cor-

respondence with the objects in the category of locally compact Hausdorff spaces (with

continuous maps) up to the relations of *-isomorphism and homeomorphism, respectively.

Furthermore, one could establish a natural isomorphism between categories (this would

require an extra subtle requirement).

Hence, the study of commutative C*-algebras can be seen as the study of topology.

Therefore, general C*-algebras can be seen as the study of "noncommutative" topological

spaces.

But, this also motivates whether we can generalize certain properties of topological

spaces themselves into the noncommuative setting rather than just the entire topological

spaces, which we have already done. Let’s first look at some topological properties that are

easy to generalize to the noncommutatvie setting. We will introduce further definitions

as they are needed.

Easy properties:

Example 1.6 (Compactness of a topological space corresponds to unital C*-algebras). .

X is a compact Hausdorff space ⇐⇒ C0(X) = C(X). But, also C0(X) = C(X) if and

only if C0(X) has a constant function or if C0(X) is unital. Thus, a unital C*-algebra

generalizes the notion of compactness.
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We require the following definition for the next example.

Definition 1.7. Let A be C*-algebra. a ∈ A is a projection if a2 = a = a∗.

Example 1.8 (Connectedness and compactness of a topological spaces corresponds to

unital projectionless C*-algebras). Let X be a compact Hausdorff topological space. X

is connected there exist no disjoint open sest U1, U2 ⊂ X such that X = U1 t U2.

Suppose that X is disconnected. So, there exists U1, U2 open such that X = U1 tU2.

Then, the following function

f(x) =

{
1 , x ∈ U1

0 , x ∈ U2

is continuous or f ∈ C(X). We note that f is a projection, f2(x) = f(x) = f∗(x) for all

x ∈ X.

For the other direction. Assume there exists a projection p ∈ C(X) such that p(x) ∈
{0, 1} and p(x) = 0 and p(y) = 1 for some x, y ∈ X. If we let U1 := p−1({0}) and

U2 = p−1({1}), then X = U1 t U2.

Hence, by contraposition X is connected if and only if C(X) is projectionless, which

is a term used for the existence of no nontrivial projection.

Example 1.9 (Points in a topological space correspond to irreducible representations of

a C*-algebra). Let x0 ∈ C0(X). Define evx0
: f ∈ C0(X) 7−→ f(x0) ∈ C, which is

called the evaluation map at a point x0. These are one-dimenstional representations of

the C*-algebra C0(X) and are therefore irreducible representations.

Fact: The irreductible representations of C0(X) are the evaluations evx.

This establishes our relationship between the points and irreducible representations.

For the next example, which provides another take on the immediately above example,

we need.

Definition 1.10. Let A be a C*-algebra. a ∈ A is positive (a > 0) if a = b∗b for some

b ∈ A.

Definition 1.11. Let A be a C*-algebra. Let ϕ : A −→ C be a linear functional.

ϕ is positive if ϕ(a) > 0 for all a ∈ A such that a > 0.

ϕ is a state if it is positive and 1 = ‖ϕ‖ = sup{|ϕ(x)| : ‖x‖A 6 1}.
ϕ is a pure state if is a state and is an extreme poin in the set of states of A.

Example 1.12 (Points in a topological space correspond to pure states on a C*-algebra).

The evaluation maps of the above example evx form the set of pure states of C0(X).

Consider the Riesz Representation theorem, which essentially states that there is a one-

to-one correspondence between the linear functionals on C0(X) and Borel measures on

X. In particular, for every linear functional ϕ there exists a unique Borel measure µϕ on

X such that ϕ(f) =
∫
X
fdµϕ for all f ∈ C0(X).
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If ϕ were a state, then µϕ would be a positive probability measure.

If ϕ were a pure state, then µϕ would be a Dirac point mass or all its mass would be

concentrated at a single point x0.

Next, we move on to a hard example which is a conjecture with a partial answer in

the setting of nuclear C*-algebras.

Hard example:

Example 1.13 (A noncommutative Stone-Weierstraß conjecture). For C([0, 1]), the Weier-

straß approximation theorem states that any function can be approximated by polyno-

mials in the norm of Example (1.1). M. H. Stone generalized to the setting of compact

Hausdorff spaces in the following way.

Theorem 1.14. Let X be a compact Hausdorff space. If A0 ⊂ C(X) is a subalgebra such

that A0

• separates points (if x 6= y ∈ X, then there exists f ∈ A0 such that f(x) 6= f(y))

• contains the constant functions

• is self-adjoint (f ∈ A0 =⇒ f∗ ∈ A0)

then A0
‖·‖C(X)

= C(X).

In our setting, this is: If A0 ⊆ C(X) is a unital C*-subalgebra that separates points,

then A0 = C(X).

Now, by the previous example, we saw that points of X correspond to pure states of

a C*-algebra. It is then natural to conjecture.

The noncommutative Stone-Stone-Weierstraß conjecture: Suppose B is a C*-algebra and

A ⊆ B is a C*-subalgebra that separates the pure states of B ( if ϕ 6= ψ pure states of

B, then there exists a ∈ A such that ϕ(a) 6= ψ(a)), then A = B.

This is still an open problem, which has been proven to be true in the case when B

is a nuclear C*-algebra.

The next step is to introduce the noncommutative generalization of K-theory for topo-

logical spaces. Informally, given a topolocical space X, K-theory for topological spaces

associates an Abelian group K0(X) such that if X ∼ Y then the groups K0(X) and

K0(Y ) are isomorphic.

Thus, to generalize this, we will introduce the notion of K-theory for C*-algebras, in

which given a C*-algebra A, we associate an Abelian group K0(A). Furthermore, we will

show that K0(C0(X)) = K0(X) to provide a suitable generalization.

The first goal of this course will be to move from topological K-theory to K-theory

of C*-algebras.
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2. 20 September 2016

The plan of the course is to cover 3 major topics. The first topic, which was mentioned

at the end of the last lecture is

(1) From topological K-theory to K-theory of C*-algebras.

(2) Brown-Douglas-Fillmore Theory This theory began with the classification of essen-

tially normal operators and turned into a problem about the classification of C*-algebras.

Definition 2.1. Let H be a Hilbert space. Let B1(H) denote the closed unit ball of H.
Let K =

{
T ∈ B(H) : T (B1(H))

‖·‖H is compact
}

denote the compact operators.

An operator N ∈ B(H) is normal if [N,N∗] = 0.

An operator T ∈ B(H) is essentatially normal if [T, T ∗] ∈ K.

So, the notion of essentially normal is saying that the commutator of T with T ∗ is

"small."

Definition 2.2. Since K is an ideal of B(H), we call B(H)/K the Calkin algebra, which

is a C*-algebra. Let π : B(H) −→ B(H)/K be the quotient map.

Let T ∈ B(H). The essential spectrum of T is the spectrum of π(T ) in the Calkin

algebra, σ(π(T )).

We note that the definition of an essentially normal operator T is equivalent to the

statement that π(T ) is normal in B(H)/K.

Now, Brown-Douglas-Fillmore theory was able to associate an invariant from

{Essential operators with essential spectrum X} to some abelian group Ext(C(X)).

One can lift this notion to the setting of a C*-algebra A as Ext(A). To understand

this we will learn many important C*-algebra techniques including:

• quasicentral approximate units

• nuclearity and completely positive (c.p.) maps

• Fredholm index

• Voiculescu’s Theroem

• Choi-Effors Theorem

(3) Noncommutative theory of retracts Borsuk’s theory of retracts provides the notion

of absolute retracts and absolute neighborhood retracts.

The noncommutative analogue to the theory of retracts is known as Blackadar’s

theory.

An important application came in the form of lifting order 0 maps from quotients to

the ambient space in the setting of Mn(C), the n× n complex matrices.

B

��
Mn(C)

order 0

::

order 0
// B/A
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follows from the fact that the C*-algebra

CMn = C0((0, 1],Mn(C)) = {f : (0, 1] −→ Mn(C) : f is continuous and vanishes at 0}
is a noncommutative absolute retract.

2.1. Topological K-theory. We start with Vector Bundles. But, first we give an ex-

ample.

Example 2.3. [Möbius Strip] Fix t > 0. Define M := ([0, 1] × R)/((0, t) ∼ (1,−t)). The
following figure provides a picture of the setting on the left along with a picture of "what

happens" when you "glue" (0, t) and (1,−t) on the right. The green line through the

green x represents a copy of the vector space R. Also, note that we will view the interval

[0, 1] as the circle S1 since we identify 0 with 1.

Figure 1. Möbius Strip

With this example in mind, we define.

Definition 2.4. A vector bundle (E, p,X) over a topological space X consists of a

topological space E, a continuous map p : E −→ X, and a finite-dimensional vector

space structure on each Ex := p−1({x}) compatible with the topology induced from E.

This means that addition and scalar multiplication of Ex is continuous with resepct

to the topology on E. Furthermore, E = tx∈XEx. Also, we call Ex a fiber.

We usually write (E, p,X) = E. And, we assume that our vector spaces are over R

or C and are finite dimensional.

Now, we list some examples.

Example 2.5. (1) (trivial bundle) X×V for a vector space V . The map p : X×V −→
X is defined by p(x, v) := x.

(2) (Möbius Strip) For Example (2.3) the map p : M −→ S1 is defined by p(x, y) :=

x.

(3) (Tangent bundle to sphere Sn) Note that Sn ⊂ Rn+1. Consider the following

figure. We let TSn := {(x, ξ) : 〈x, ξ〉 = 0} and p(x, ξ) = x.
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Figure 2. Tangent Bundle

To gather some properties of these examples, we define.

Definition 2.6. Let E,F be vector bundles over a space X. A map ϕ : E −→ F is a

morphism if

• ϕ is continuous

• ϕ(Ex) ⊆ Fx for all x ∈ X.

• ϕ|Ex is linear, ∀x ∈ X.

We denote ϕx := ϕ|Ex for all x ∈ X.

ϕ is an isomorphism if there exists a morphism ψ : F −→ E such that ψ ◦ ϕ = idE

and ϕ ◦ ψ = idF .

Definition 2.7. A vector bundle E is trivial if E ∼= X × V from (1) of Example (2.5).

A vector bundle E is locally trivial if each point x ∈ X has a neighborbood U such

that E|U := p−1(U) is trivial.

(1) of Example (2.5) is trivial by definition.

(2) of Example (2.5) is locally trivial since if we take a neigborhood (the green paren-

theses around x) around x as in the left picture of Figure (1), then this translates to the

red band in the right picture of Figure (1). And, we can see that it is locally trivial.

But, this example is not trivial. This is due to the fact that the set (S1 ×R) \ S1 is

disconnected. But, M \ S1 is still connected by the "gluing" of (0, t) with (1, t) we can

still "wrap around". So, there is no homeomorphism between M and S1 ×R that sends

S1 to S1, which implies that M 6∼= S1 ×R.
In fact, we can prove something stronger. We can prove that no homeomorphism exits

between M and S1 ×R. Consider the fact that there exists a compact K ⊂ S1 ×R such

that for all compact K ′ ⊇ K, we have that (S1×R) \K ′ is disconntected. Namely as K

one can take the "equator" of the cylinder S1 ×R. But, for M there exists no compact

K ⊂ M such that for all compact K ′ ⊇ K , M \ K ′ is disconnected. Indeed, assume
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there exists such a K. Then, K ⊂ [0, 1] × [N,−N ]/ ∼. Take K ′ := [0, 1] × [N,−N ]/ ∼
and M \K ′ is connected.
(3) of Example (2.5) This example is locally trivial. Consider the right picture of Figure

(2), which is just a 2-dimensional representation of the left picture setting. Consider the

neighborhood U of x defined by U := {y : 〈y, x〉 > 0}. Then, we have the map

(y, ξ) 7−→ (y,Projection of ξ onto P )

is an isomorphism from TSn|U to U × P since we are choosing y not orthogonal to x

with positive inner product.

3. 21 September 2016

Last time for (3) of Example (2.5), we showed that TSn is locally trivial. Now, TS2

is not trivial, but this is not easy and requires the following theorem. A person’s name

is not associated to this theorem, but a certain phrase is that describes the theorem

Theorem 3.1. ["One cannot comb the hair on a hedgehog"] There is no non-vanishing

continuous tangent vector field on S2.

So, imagine we are given a hedgehog, which is the sphere. If we were to try to comb

it’s needles flat, then the idea is that we are forming tangent vector fields.

With this in mind, we can show that TS2 is not trivial. Assume to the contrary that

TS2 is trivial. Then, there exists an isomorphism

S2 ×R2 γ−→∼= TS2.

Assume that z0 ∈ R2 such that z0 6= 0. Then, γ(x, z0) would determine a continuous

tangent vector field on S2, which is a contradiction to Theorem (3.1).

Fact: (Hard) TSn is trivial only for n ∈ {1, 3, 7}.
!!!! From now on, by vector bundle we mean a locally trivial vector bundle!!!!

Remark 3.2 (An aside on connectedness). By the locally trivial assumption, if we let

x ∈ U (a neighborhood of x), then E|U ∼= U × V . So, for all x, y ∈ U , we have that

dim(Ex) = dim(Ey), or that dim(Ex) is locally constant. So, if X were connected, then

all fibers would be isomorphic to the same vector space. If X were not connected, then

we would simply reduce the problem to connected components, where fibers would be

isomorphic, locally. It is therefore safe to assume that X is connected.

We will consider another set of vector bundles, but first we need a topological defini-

tion.

Definition 3.3. A topological space X is paracompact if for each open cover of X there

exists a refinement of the open cover such that ∀x ∈ X, there exists a neighborhood of x

, which intersects only finitely many sets in the refinement.
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An easy example of a paracompact space that is not compact is the interval (0, 1) ⊂ R
with its topology induce from the usal topology on R.

(4) Suppose that X is contractible (homotopic to a point) and paracompact. Then, one

can show that each vector bundle over X is trivial.

3.1. Transition functions. Transitions functions are a useful tool to show it two vector

bundles are isomorphic.

Let E be a vector bundle. There exists a cover {Uα} such that

Uα × V
ϕα−−→∼= E|Uα ,

is a trivialization. If Uα ∩ Uβ 6= ∅, then we have

(Uα ∩ Uβ)× V

ϕα

∼=

''

(Uα × Uβ)× V

ϕβ

∼=

ww
E|Uα∩Uβ

Thus, we may form the following isomorphism

ϕβα := ϕ−1
β ◦ ϕα : (Uα ∩ Uβ)× V −→ (Uα ∩ Uβ)× V,

which defines a transition function.

The following theorem shows us how transtitions functions may be used to provide

an isomorphism.

Theorem 3.4. Let E,E′ be vector bundles over X and let {Uα} be a cover of X such

that E|Uα and E′|Uα are trivial. Let {ϕβα} and {ϕ′βα} be the corresponding transition

functions, then E ∼= E′ if and only if there exist isomorphisms hα : Uα × V −→ Uα × V
such that ϕβα = h−1

β ◦ ϕ′βα ◦ hα.

Proof. "only if:" Suppose E ψ−→∼= . We would like to find hα such that the following diagram

commutes.

E′|Uα E|Uα
ψ|Uαoo

Uα × V

ϕ′α

OO

Uα × V
hαoo

ϕα

OO

Thus, let hα := ϕ′−1
α ◦ψ|Uα ◦ϕα. Now, the function h−1

β ◦ϕ′βα ◦hα is defined on Uα ∩Uβ .
We then have

h−1
β ◦ ϕ

′
βα ◦ hα = ϕ−1

β ◦ ψ
−1|Uβ ◦ ϕ′β ◦

(
ϕ′βα

)
◦ ϕ′−1

α ◦ ψ|Uα ◦ ϕα

= ϕ−1
β ◦ ψ

−1|Uβ ◦ ϕ′β ◦
(
ϕ′−1
β ◦ ϕ′α

)
◦ ϕ′−1

α ◦ ψ|Uα ◦ ϕα

= ϕ−1
β ◦ ψ

−1|Uβ ◦ ψ|Uα ◦ ϕα

= ϕ−1
β ◦ ϕα by defined on Uα ∩ Uβ

= ϕβα,

which completes this direction.



NONCOMMUTATIVE TOPOLOGY 11

"If:" We assume that there exist a family {hα} such that ϕβα = h−1
β ϕ′βαhα. So, we would

like to find a function ψ such that the following diagram commutes.

E′|Uα E|Uα
ψ|Uαoo

Uα × V

ϕ′α

OO

Uα × V
hαoo

ϕα

OO

So, on Uα, define ψ := ϕ′α ◦ hα ◦ ϕ−1
α .

Remains to prove:(easy exercise) On Uα ∩ Uβ

ϕ′α ◦ hα ◦ ϕ−1
α

?
= ϕ′β ◦ hβ ◦ ϕ−1

β .

�

We now have the tools to prove.

Theorem 3.5. Every complex vector bundle over S1 is trivial.

Proof. Let E be a complex vector bundle over S1. We want to show that E ∼= S1 × V .

We can think of S1 = [0, 1]/(0 ∼ 1). Define Ũα = (0, 1) and Ũβ =
[
0, 1

2

)
∪
(

1
2 , 1
]
.

But, we have that Ũα is an open interval, and by our presentation of S1, the set Ũβ
is also an open interval. Thus, E|Ũα and E|Ũβ are trivial. Also, note that Ũα ∩ Ũβ =((

0, 1
2

)
∪
(

1
2 , 1
))
. Thus, the transition function

ϕ̃βα :

((
0,

1

2

)
∪
(

1

2
, 1

))
× V −→ E|Ũα∩Ũβ .

Next, define Uα = (0, 1) and Uβ =
[
0, 1

3

)
∪
(

2
3 , 1
]
. And, so

ϕβα = ϕ̃βα|((0, 13 )∪( 2
3 ,1))×V

are defined at
{

1
3

}
× V and

{
2
3

}
× V .

We want to find hβ , hα such that ϕβα = h−1
β ◦ hα, where in between h−1

β ◦ hα we

have a transition function for the trivial bundle which can be chosen to be the identity

function. Now, consider hβ = id. Then, note that hα : (0, 1)× V −→ (0, 1)× V would be

a matrix valued function, whose values are invertible matrices. So, on
(
0, 1

3

)
and

(
2
3 , 1
)
,

we would want hα = ϕβα. But, at
{

1
3

}
×V and

{
2
3

}
×V , we have that the values of ϕβα

are invertible matrices. Since we are in the complex setting, we can produce a continuous

path of intertible matrices between two invertible matrices. Thus, on
(

1
3 ,

2
3

)
, we define

hα to be this continuous path of invertible matrices.

In other words, to build hα, we extend ϕβα onto (0, 1)×V by connecting ϕβα|{ 1
3}×V

and ϕβα|{ 2
3}×V by a continuous path of invertible matrices. �

4. 22 September 2016

Our goal for today is organize a family of bundles over a fixed space X into a semi-

group.
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Definition 4.1. Fix a topological space X.

Let [E]- the set of all vector bundles isomorphic to E.

Let [n] - the set of all vector bundles isomorphic to the X ×Rn. We will also let [n]

denote all vector bundles isomorphic to X × Cn.
Let V (X) be the set of all isomorphism classes of vector bundles over X.

V (X) is the set for which we will equip with an operation to form a semigroup. The

operation we will use is the

Whitney sum of 2 vector bundles: Let E = (E, p,X) and F = (F, q,X) be two vector

bundles over the same topological space X. The Whitney sum E ⊕ F will be the triple

denoted by E ⊕ F = (E ⊕ F, p⊕ q,X). Now, we define each term in the triple.

E ⊕ F = {(e, f) : p(e) = q(f)}.

p⊕ q : E ⊕ F −→ X is given by

(p⊕ q)(e, f) := p(e),

and we note that by definition of E ⊕ F , it is equivalent to replace p(e) with q(f).

The Fibers of E ⊕ F are

(E ⊕ F )x := (p⊕ q)−1({x})

= {(e, f) : p(e) = x = q(f)}

= {(e, f) : e ∈ Ex, f ∈ Fx}

= Ex ⊕ Fx.

And, thus, the definition of Whitney sum is consistent with the vector spaces structure

of the fibers of E and F .

Easy Observations:

(1) E ⊕ F is locally trivial.

(2) E ⊕ F ∼= F ⊕ E by the map (e, f) 7−→ (f, e)

(3) If E
∼=−−→
ϕE

E′ and F
∼=−−→
ϕF

F ′, then E ⊕ F ∼= E′ ⊕ F ′ by the map (e, f) 7−→
(ϕE(e), ϕF (f)).

(4) [n]⊕ [m] = [n+m]. Hence, V (X) ⊇ N0 = N ∪ {0}.

Now, we define the sum of isomorphism classes by [E]⊕[F ] := [E⊕F ], which well-defined

by observation (3).

So, V (X) is a semigroup with the Whitney sum, and by observation (2), V (X) is an

abelian semigroup. Sometimes we will write VR(X) or VC(X) if a distinction needs to be

made.

Example 4.2. (1) If X is paracompact and contractible, then V (X) = N0 by (4)

from last lecture.

(2) VC(S1) = N0 by Theorem (3.5).
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4.1. VR(S1). By the end of this section, we will prove that VR(S1) =???. Since the

Möbius strip M is a real vector bundle over S1, our approach to answering this question

will rely on understanding the Whitney sum of M with other vector bundles. These are

the following propositions.

Proposition 4.3. M ⊕M = [2]

Proposition 4.4. M ⊕ [n] is not trivial.

Proposition 4.5. Any real vector bundle over S1 is either [n] or M ⊕ [n] for some n.

Propositions (4.3, 4.5) will be left as exercises. We now prove Proposition (4.4).

Proof of Proposition (4.4). First, we show M ⊕ [1] 6= [2] and the proof that M ⊕ [n] 6=
[n+ 1] is absolutely similar.

Recall that M = ([0, 1]×R)/((0, t) ∼ (1,−t)) = {(x, t) : (0, t) ∼ (1,−t)}, but
[1] = {(x, t) : (0, t) ∼ (1, t)}. Therefore, by definition of the Whitney sum

M ⊕ [1] = {((x, t), (x′, t′)) : x = x′, (0, t) ∼ (1,−t), (0, t′) ∼ (1, t′)}

= {(x, t, t′) : (0, t, t′) ∼ (1,−t, t′)}.
(4.1)

We approach with transition functions. Let Uα = (0, 1) and Uβ =
[
0, 1

3

)
∪
(

2
3 , 1
]
. Define

ϕα : Uα × R −→ M ⊕ [1]|Uα by ϕ(x, t, t′) = (x, t, t′) which is an isomorphism since

we avoid {0, 1}.
Next, define ϕβ : Uβ ×R −→M ⊕ [1]|Uβ by

ϕβ :=

{
(x, t, t′) , x ∈

[
0, 1

3

)
(x,−t, t′) , x ∈

(
2
3 , 1
]

We only check that this function is well-defined since isomorphism is clear. For well-

defined, since 0 ∼ 1, we only need to check what happens for these x-values. But, by

Expression (4.1), we have

ϕβ(0, t, t′) = (0, t, t′) = (1,−t, t′) = ϕβ(1, t, t′).

Recall, that the transition function ϕβα is defined on Uα ∩ Uβ . Now,

(4.2) ϕβα(x, t, t′) := ϕ−1
β ◦ ϕα(x, t, t′) =

{
(x, t, t′) , x ∈

(
0, 1

3

)
(x,−t, t′) , x ∈

(
2
3 , 1
)
.

But, ϕβα(x) := ϕβα|{x}×R2 is a matrix-valued function of invertible matrices, as the

maps determines linear bijections.

Now, the transition function for [2] is the identity map, thus to show thatM⊕[1] 6= [2]

it is necessary and sufficient (by Theorem (3.4)) to show that ϕβα 6= h−1
β ◦ hα for some

hβ : Uβ ×R2 −→ Uβ ×R2 and hα : Uα ×R2 −→ Uα ×R2.

For such functions, we would have that hα(x) := hα|{x}×R2 and similarly for hβ ,

which implies that they are also matrix-valued functions of invertible matrices. Therefore,

dethα(x) 6= 0 is a non-vanishing function, so it is either all positive or all negative.

Therefore, sign(dethα(x)) is a constant function on (0, 1). Similarly, sign(dethβ(x)) is a
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constant function on
[
0, 1

3

)
∪
(

2
3 , 1
]
. But, this also imples that sign(det(h−1

β ◦ hα)) is a

constant function on Uα ∩ Uβ =
(
0, 1

3

)
∪
(

2
3 , 1
)
.

However, a closer look at ϕβα in Equation (4.2), reveals that

(4.3) ϕβα(x) := ϕβα|{x}×R2 =


I2 =

(
1 0

0 1

)
, x ∈

(
0, 1

3

)
(
−1 0

0 1

)
, x ∈

(
2
3 , 1
)

where I2 denotes the 2× 2- identity matrix. Therefore, sign(detϕβα) is not constant on

Uα ∩ Uβ =
(
0, 1

3

)
∪
(

2
3 , 1
)
. Hence, ϕβα 6= h−1

β ◦ hα, and thus M ⊕ [1] 6= [2] by Theorem

(3.4).

We note that for the argument for M ⊕ [n] 6= [n + 1] , the argument would be the

same and we would simply replace the top matrix in Equation (4.3) with In+1 and the

bottom matrix with −1 in the top left entry and 1’s on the remaining diagonal entries

with 0’s elsewhere. And, it is easy to see that we would reach the same conclusion. �

Remark 4.6. We note that M ⊕ [n] is the sum of a not trivial vector bundle with a

trivial vector bundle that is not trivial. But, this is not always the case. For instance,

TS2 ⊕ [1] = [3] = [2]⊕ [1], which also provides that in general V (X) might not have the

cancellation property.

To finish our discussion of real vector bundles over S1, we present.

Theorem 4.7. VR(S1) ∼= (Z2 ×N) ∪ (0, 0).

Proof. Define f : (Z2 ×N) ∪ (0, 0) −→ VR(S1) by

f(0, n) := [n] and f(1, n) := M ⊕ [n− 1]

Note that (1, 0) 6∈ (Z2 ×N) ∪ (0, 0) and f is well-defined by Proposition (4.3). To show

that f is a homomorphism is easy. Surjectivity is provided by Proposition (4.5). And,

injecvitivity is Proposition (4.4). �

5. 23 September 2016

The first objectvie of today is to show that the map X 7−→ V (X) is a contravari-

ant functor between the category of topolocial spaces (with continuous maps) and the

category of abelian semigroups (with homomorphisms). We will cover the defininition of

contravariant functor as well.

Now, the map X 7−→ V (X) already sends objects to objects, but how do we send a

morphism (continuous maps) X ϕ−→ Y to a morphism (homomorphism) V (X)
?←− V (Y ).

We note that the fact the arrow is in the opposite direction is why we will have a

contravariant functor and not a covariant functor. Now, let E = (E, p, Y ) be a vector
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bundle over Y . Let X be a topological space and let X ϕ−→ Y be a continuous function.

Consider the diagram

E

p

��
X

ϕ // Y

This diagram suggests the following definition.

Definition 5.1. Let E = (E, p, Y ) be a vector bundle over Y . Let X be a topological

space and let X ϕ−→ Y be a continuous function.

Define ϕ∗E = (ϕ∗E,ϕ∗p,X) by

ϕ∗E = {(x, e) : ϕ(x) = p(e)},

which is motivated by the above diagram.

Let ϕ∗p : ϕ∗E −→ X be given by ϕ∗p(x, e) := x.

Next, we establish that this defines a vector bundle.

Proposition 5.2. ϕ∗E is a vector bundle.

Proof. What remains is to check that we produce fibers that are vector spaces and that

we have local triviality (recall that all our vector bundles are assumed to be locally

trivial).

Fibers: Fix x0 ∈ X. Then,

(5.1) (ϕ∗E)x0
= ϕ∗p−1({x0}) = {(x0, e) : ϕ(x0) = p(e)} = Eϕ(x0),

which is therefore a vector space that satisfies the definition of a fiber of a vector bundle.

Local triviality: Let x0 ∈ X, then ϕ(x0) ∈ Y . Since E is locally trival, we have that there

exists a neighborhood U of ϕ(x0) such that U×V
∼=−→
γ
E|U , where V is a vector space. By

continuity, ϕ−1(U) is a neigborhood of x0. Thus, we will show that ϕ∗E|ϕ−1(U) is trivial.

Define γ̃ : ϕ−1(U)× V −→ ϕ∗E|ϕ−1(U) by

γ̃(x, v) := (x, γ(ϕ(x), v)).

We show that this map is well-defined. So, we show that (x, γ(ϕ(x), v)) ∈ ϕ∗E. But, by

triviality of EU , we have that γ(ϕ(x), v) ∈ Eϕ(x). But, then we have that p(γ(ϕ(x), v)) =

ϕ(x). Therefore, (x, γ(ϕ(x), v)) ∈ ϕ∗E, where x ∈ ϕ−1(U). �

Consider the following 2 propositions. Recall the Whitney sum from the previous

lecture.

Proposition 5.3. ϕ∗(E ⊕ F ) = ϕ∗E ⊕ ϕ∗F .

Proposition 5.4. If E ∼= E′, then ϕ∗E ∼= ϕ∗E′.
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We note the following consequence of these results.

First, by Proposition (5.4), the map ϕ∗ : V (Y ) −→ V (X) defined by ϕ∗[E] := [ϕ∗E]

is well-defined.

Second, by Proposition (5.3), the map ϕ∗ is a semigroup homomorphism.

Now, we are in a position to discuss our contravariant functor, but first let’s recall

the definition.

Definition 5.5. Let C,D. Denote the class of objects of C by obj(C), and similarly for

D, and the class of morphisms C by hom(C) and similarly for D. A contraviant functor

F from C to D is a function that acts on both objects and morphisms by:

(1) X ∈ obj(C) 7−→ F (X) ∈ obj(D.
(2) If X,Y ∈ obj(C) and ϕ ∈ hom(C) such that X ϕ−→ Y , then F (ϕ) ∈ hom(D) such

that F (Y )
F (ϕ)−−−→ F (X).

(3) If X ∈ obj(C), then F (idX) = idF (X).

(4) If ψ,ϕ ∈ hom(C), then F (ψ ◦ ϕ) = F (ϕ) ◦ F (ψ).

Therefore, let V denote our contravariant functor from the category of topological

spaces with continuous maps as the morphisms to the category of abelian semigroups with

homomorphisms as the morphism. On objects, V : X 7−→ V (X) and on morphisms V :

ϕ 7−→ ϕ∗. We have already establised properites (1) and (2) for V to be a contravariant

functor. We leave the remaining 2 properties as exercises, which we list a propositions.

Proposition 5.6. (idX)
∗

= idV (X).

Proposition 5.7. (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

5.1. Grothendieck Group. To move towards K-theory, we need to build an abelian

group from an abelian semigroup. For example, this construction will provide the group

Z with addition from the semigroup N with addition.

Grothendieck Group construction

Let H be an abelian semigroup.

Let x− y denote formal differences of x, y ∈ H. We introduce the following relation.

(5.2) x− y ∼ x′ − y′ ⇐⇒ x+ y′ + z = x′ + y + z for some z ∈ H.

The proof of the next proposition will be left as an exercise, in which the proof of

transitivity will reveal why we have the z in the above relation.

Proposition 5.8. Show that Relation (5.2) is an equivalence relation.

Therefore, let [x− y] denote the equivalence class of x− y with respect to the equiv-

alence relation ∼.
Define [x− y] + [x1 − y1] := [(x+ x1)− (y + y1)].
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The neutral element is [x−x], which is independent of x. Indeed, x−x ∼ y− y since

x+ y = y + x by abelian.

Finally, we define the inverse [x− y]−1 := [y − x].

Definition 5.9. Let H be an abelian semigroup, then the Grothendieck group of H is

σ(H) = {[x− y] : x, y ∈ H}

with operations defined above.

Example 5.10. (1) If H = (N,+), then σ(H) = (Z,+) by the map [n1 − n2] 7−→
n1 − n2.

(2) If H = (N, ·), then σ(H) = (Q+, ·) by the map [n1 − n2] 7−→ n1

n2
.

(3) Let H = (N ∪ {∞},+). Since (∞+ n =∞), for all n1, n2,m1,m2 we have that

n1 + m2 +∞ = ∞ = m2 + n2 +∞ implies that n1 − n2 ∼ m1 −m2. Thus, the

group σ(H) = 0, the trivial group. This leads to the following proposition.

Proposition 5.11. If H has an ∞ element (∞+h =∞,∀h ∈ H), then σ(H) = 0.

(4) If H = (N0, ·), then 0 · n = 0 for all n ∈ N0. Therefore, 0 is an ∞ element and

σ(H) = 0 by the previous proposition.

Let H be an abelian semigroup. Fix k ∈ H. Consider the following map i : H 7−→
σ(H) defined by i(x) = [(x+ k)− k].

We note that this map is independent of the choice of k. Indeed, x+k−k ∼ x+m−m
since x+ k+m = x+m+ k by abelian. Also, in the case that H has a neutral element,

we can define i(x) = [x− 0].

Proposition 5.12. i is injective if and only if H has cancellation.

Proof. If:

i(x) = i(y) =⇒ [(x+ k)− k] = [(y + k)− k]

=⇒ (x+ k)− k ∼ (y + k)− k

=⇒ x+ 2k + z = y + 2k + z for some z ∈ H

=⇒ x = y by cancellation

only if:

x+m = y +m =⇒ [(x+m)−m] = [(y +m)−m]

=⇒ i(x) = i(y)

=⇒ x = y by injectivity.

�

Universal property of σ(H)
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Theorem 5.13. Let H be an abelian semigroup and let G be an abelian group. If ϕ :

H −→ G is a homomorphism, then there exists a unique homorphism ψ : σ(H) −→ G

such that the following diagram commutes.

H
ϕ //

i

��

G

σ(H)

ψ

==

In other words, any homomorphism ϕ : H −→ G can be extended in a unique way to a

homomorphism ψ : σ(H) −→ G via i : H −→ σ(H).

Proof. Define ψ([x − y]) := ϕ(x) − ϕ(y). Well-defined is clear. Now, we check that the

diagram commutes.
ψ ◦ i(x) = ψ(i(x))

= ψ([(x+ k)− k])

= ϕ(x+ k)− ϕ(k)

= ϕ(x) + ϕ(k)− ϕ(k)

= ϕ(x).

For uniqueness, let ψ̃ be another extension.

First, we show that [x− y] = i(x)− i(y).

i(x)− i(y) = [(x+ k)− k]− [(y + k)− k]

= [(x+ k)− k] + [k − (y + k)]

=

(x+ 2k)− (y + 2k)︸ ︷︷ ︸
∼x−y


= [x− y].

Therefore,

ψ̃([x− y]) = ψ̃(i(x)− i(y))

= ψ̃(i(x))− ψ̃(i(y))

= ϕ(x)− ϕ(y)

= ψ([x− y]).

�

6. 26 September 2016

Today, given a topological space X (compact or locally compact), we will construct

the group K0(X) from the Grothendieck groups of the previous day. First, we need some

more properties of extending maps. The next serves as a Corollary to Theorem (5.13).

Corollary 6.1. Let H1, H2 be two abelian semigroups. Recall the map i from Proposition

(5.12). If ϕ : H1 −→ H2 is a homomorphism, then there exists a unique homomorphism
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ψ : σ(H1) −→ σ(H2) such that the following diagram commutes.

H1
ϕ //

i

��

H2

i

��
σ(H1)

ψ // σ(H2)

Proof. Apply Theorem (5.13) to the map i ◦ ϕ. �

Definition 6.2 (K-theory). Let X be a compact Hausdorff space. Define K0(X) :

σ(V (X)).

Proposition 6.3. K0 is a contravariant functor from the category of compact Hausdorff

spaces with continuous maps to the category of groups with homomorphisms.

Proof. Let ϕ : X −→ Y be a continuous map, then by Corollary (6.1)), we have that

there exists a unique map ψ such that the following diagram commutes.

V (Y )
ϕ∗ //

i

��

V (X)

i

��
K0(Y ) = σ(V (Y ))

ψ // σ(V (X))

Define K0(ϕ) := ψ.

It remains to check that K0(ϕ ◦ ψ) = K0(ψ) ◦K0(ϕ). But, K0(ϕ ◦ ψ) is the unique

extension of (ϕ◦ψ)∗. However,K0(ϕ),K0(ψ) are unique extension of ϕ∗, ψ∗, respectively.

Proposition (5.7) showed that (ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗, which implies that K0(ϕ ◦ ψ) =

K0(ψ) ◦K0(ϕ) by uniqueness of extenstions by Corollary (6.1). �

We note that by K0, we mean the complex case whereas K0
R is reserved for the real

case.

Example 6.4. (1) K0({x0}) = σ(N0) = Z.

(2) K0(S1) = Z.

(3) K0
R(S1) = σ(Z2 ×N ∪ {(0, 0)}) = Z2 ×Z.

The next proposition will lead us to the lcoally compact case.

Proposition 6.5. If X is a compact space, then K0(X) contains Z as a direct summand.

And, we denote K0(X) = Z⊕ K̃0(X).

(Caution: V (X) ⊇ N0 6 =⇒ K0(X) ⊇ Z. For instance, N0 ∪ {∞} ⊃ N0 but σ(N0 ∪
{∞}) = 0 and σ(N0) = Z).

Proof. Fix x0 ∈ X. Consider

{x0} �
� i // X

p // // {x0}



20 TATIANA SHULMAN (NOTES TEX’D BY KONRAD AGUILAR)

and we note that i is an injection and p is a surjection. By Theorem (6.3), we have

K0({x0}) K0(X)
K0(i)oo K0({x0})

K0(p)oo

However, p ◦ i = id{x0} =⇒ K0(i) ◦K0(p) = idK0({x0}) =⇒ K0(i) is a surjection and

K0(p) is an injection. Hence, since Z = K0({x0}),

Z K0(X)
K0(i)oooo Z.? _

K0(p)oo

Thus, if we show that there is an isomorphism γ : K0(X) −→ K0(i)(K0(X))⊕kerK0(i),

then we would be done since K0(i)(K0(X)) = Z. Define γ by

γ(g) =
(
K0(i)(g), g −K0(p)

(
K0(i)(g)

))
.

To check that this is well-defined, note that

K0(i)
(
g −K0(p)

(
K0(i)(g)

))
= K0(i)(g)−

(
K0(i) ◦K0(p)

)
◦K0(i)(g)

= K0(i)(g)− idK0({x0}) ◦K
0(i)(g) = 0.

Therefore, g −K0(p)
(
K0(i)(g)

)
∈ kerK0(i).

It is left as an exercise to prove that γ is an isomorphism.

We note that K̃0(X) := kerK0(i) and that this is independent of the choice of x0

since if G = Z⊕G1 = Z⊕G2, then G1
∼= G2. �

Now, assume that X is a non-compact locally compact Hausdorff space. Let X+

denote its one-point compactification. By Proposition (6.5), we have that

K0(X+) = Z⊕ K̃0(X+).

Thus, we define.

Definition 6.6. Let X be a non-compact locally compact space and denote its one-point

compactification by X+. Define

K0(X) := K̃0(X+).

We note that in order for this K0 to be a contravariant functor, we need to consider

instead the category of locally compact Huasdorff spaces with *proper* continuous maps

because a proper continuous map on a locally compact Hausdorff space extendts to a

continuous map on the one-point compactification, which is not the case if our map is

only assumed to be continuous.

Homotopy invariance If f, g : X −→ Y are homotopic, then K0(f) = K0(g). (We will

prove this later in the the more general context of K-theory for C*-algebras.)

Fact: Let X be a locally compact space. If Y ⊆ X is closed, then the sequence

K0(X \ Y ) −→ K0(X) −→ K0(Y )

is exact.

Definition 6.7. K−1(X) := K0(X ×R)

K−n(X) := K0(X ×Rn).
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Note that if Y ⊆ X is closed, then Y ×Rn is closed in X ×Rn. Furthermore, there

exist maps δ such that the following is a long exact sequence.

(6.1) · · ·

δss
K−2(X \ Y ) // K−2(X) // K−2(Y )

δtt
K−1(X \ Y ) // K−1(X) // K−1(Y )

δtt
K0(X \ Y ) // K0(X) // K0(Y )

One of the main benefits to working with the groups K0 instead of semigroups is that

we can use Bott periodicity, which proves very useful for calclating K-theory.

Bott periodicity: There is a natural isomorphism between K0(X) and K−2(X) and hence

between K−n(X) and K−n−2(X). By natural isomorphism, we mean a natural transfor-

mation, which satisfues the following. Given a map X −→ Y there exist maps ηX and

ηY such that the following diagram commutes.

K0(X)

ηX

��

K0(Y )

ηY

��

oo

K−2(X) K−2(Y )oo

With this the Sequence (6.1) becomes the 6-term exact sequence.

K−1(X \ Y ) // K−1(X) // K−1(Y )

δ

��
K0(Y )

δ

OO

K0(X)oo K0(X \ Y )oo

By Bott periodicity we may calculate the following K-groups.

Example 6.8. (1) K0(R2) = K0({x0}) = Z.

(2) Since S2 = R2+, we have K0(S2) = Z⊕K0(R2) = Z2.

Next, to move toward K-theory of C*-algebras, we must describe vector bundles in

algebrac terms. We begin with

Theorem 6.9 (Swan’s theorem). Let X be a compact Hausdorff space. If E is a vector

bundle over X, then there exists a vector bundle E′ over X such that E ⊕ E′ ∼= trivial.

We already observed this phenomenon in the case of the non-trivial vector bundle

M . Indeed, M ⊕M = [2].
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7. 27 September 2016

We continue our journey to reformulate K-theory in a more algebraic way to translate

to C*-algebras. This begins with Swan’s Theorem (6.9). In order to prove Swan’s theorem

we will spend the day proving results that will lead to Swan’s theorem. The first of which

is:

Theorem 7.1. Let E be a vector bundle over X. Let p : E −→ E be an idempotent

morphism (that is, p is a morphism such that p2 = p, where p2 = p ◦ p.) Recall that for

a morphism, px := p|Ex for all x ∈ X. Then,

(i) Ran p = tx∈Xpx and

(ii) ker p = tx∈Xpx

are vector bundles over X.

Remark 7.2. In general, range (and kernel) over morphism needn’t be a vector bundle.

For example, consider X = [0, 1] and the mprhism ϕ : X × R −→ X × R defined by

ϕ(x, t) = (x, xt). Now, if

x 6= 0, then Ran(ϕx) = R and if

x = 0, then Ran(ϕx) = 0, which breaks localy triviality. The philosophy for why this

does not work is because the map from linear transformations T 7−→ dim(RanT ) is not

continuous (although, it is semicontinuous).

Proof. We need to establish local triviality. First note that p2
x = px for all x ∈ X.

Claim 7.3. If x, x0 ∈ X are close, then there exists an invertible linear map fx such

that px = f−1
x px0fx.

Proof of claim. Define fx := 1 − px0
− px + 2px0

px. Now, if x is close to x0, then px is

close to px0 and hence −px0 − px is close to −2px = −2p2
x by idempotent. But, this is

close to −2px0
px. Therefore, fx is close to 1 − 2px0

px + 2px0
px = 1, the identity. This

implies that fx is invertible. But, by idempotent,
px0fx = px0(1− px0 − px + 2px0px)

= px0
− p2

x0
− px0

px + 2p2
x0
px

= px0
− px0

− px0
px + 2px0

px

= −px0px + 2px0px

= (1− px0
− px + 2px0

px)px

= fxpx,

and thus, px0
px = fxpx implies that px = f−1

x px0
fx. �

Hence, let U be a neighborhood of x0 such that for x ∈ U , fx is invertible and

px = f−1
x px0fx. Now, define

Ran p|U = tx∈URan px
γ−→ U × Ran px0
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by γ((x, v)) := (x, fxv). For well-defined, let v ∈ Ran px = Ran f−1
x px0

fx. Then, v =

f−1
x px0fxw =⇒ fxv = px0fxw ∈ Ran px0 .

Next, define

ker p|U = tx∈U ker px
θ−→ U × ker px0

by θ((x, v)) = (x, f−1
x v). The proof of well-defined follows similarly. �

We can think of Swan’s theorem as a way to find a complement of E denoted E′ such

that E ⊕ E′ is trivial. The next theorem establishes a notion of complement for vector

bundles, which transfers the difficulty of finding a complement to finding a suitable

morphism, which is part (3) of the following theorem.

Theorem 7.4. Let E,F be vector bundles over X. The following are equivalent.

(1) There exists a vector bundle E′ over X such that E ⊕ E′ ∼= F .

(2) There exist morphisms α : F −→ E and β : E −→ F such that α ◦ β = idE.

(3) There exists a morphism α : F −→ E such that αx is surjective for all x ∈ X.

Before we prove this theorem, let’s begin with a remark of the case of vector spaces

instead of vector bundles to motiviate the proof of (3) =⇒ (2).

Remark 7.5. Let M,N be vector spaces and let α : M −→ N be a surjective linear map.

We want to find β : N −→ M linear such that α ◦ β = idN . As we are in the case of

vectro spaces M/ kerα ∼= N and M ∼= N ⊕ kerα. Since we are only considering finite

dimensional case, we can view α as a rectangular matrix

α =
[
γ 0

]
,

where γ : N −→ N denotes an isomorphism and 0 denotes kerα. Now, define β as

β :=

[
γ−1

0

]
,

where 0 represents kerα. Therefore,

α ◦ β =
[
γ 0

] [ γ−1

0

]
= 1N .

Proof. We start with the hardest implication (3) =⇒ (2). Now, condition (3) implies

that α(Ex) = Fx for all x ∈ X. As Ex and Fx are vector spaces, we will apply the

techniques of the above remark in a consistent way between different x’s.

By locally trivial, there exists a cover {Ui} of X such that F |Ui = Ui × M and

E|Ui = Ui × N . Let x ∈ Ui. First, we construct β on Ui. Now, M ∼= N ⊕ kerαx. Thus,

following the remark, there is an isomorphism γx : N −→ N such that

αx =
[
γx 0

]
,

where 0 denotes kerαx and for all y ∈ Ui,

αy =
[
γy θy

]
.
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γy is close to γx, and hence γy is an isomorphism. We note that it might be the case

that we need a finer cover than {Ui} for this, but this can be done without consequence.

Thus, we may define

βy :=

[
γ−1
y

0

]
.

Therefore, αy ◦ βy =
[
γy θy

] [ γ−1
y

0

]
= 1{y}×N .

We define βi : E|Ui −→ F |Ui by (βi)x := βy. We thus have

(7.1) α|Ui ◦ βi = idE|Ui .

Next, we need to glue the βi’s together to obtain β : E −→ F .

To do this, let {ηi} be a partition of unity corresponding to {Ui}. Define β : E −→ F

by if e ∈ Ex, then
β(e) :=

∑
ηi(x)βi(e),

(assuming that ηi(x)βi(e) = 0 when ηi(x) = 0). Therefore, if e ∈ Ex, then

α ◦ β(e) = α
(∑

ηi(x)βi(e)
)

=
∑

ηi(x)α|Ui (βi(e))

=
∑

ηi(x)e by Equation (7.1)

= 1e = e by partition of unity.

Thus, α ◦ β = idE .

(2) =⇒ (1). For this, we will prove that F ∼= E ⊕ ker(β ◦ α). By assumption,

(β ◦ α)2 = β ◦ α ◦ β︸ ︷︷ ︸
=idE

◦α = β ◦ α

is idempotent. Thus, by the previous theorem, ker(β ◦ α) is a vector bundle. Therefore,

E ⊕ ker(β ◦ α) is a vector bundle. Hence, we can show that the following map is an

isomorphism.

Let γ : F −→ E⊕ker(β ◦α) be defined by γ(f) = (α(f), f −β ◦α(f)). Easy exercise.

(1) =⇒ (3). Define α : F −→ E by α((e, e′)) = e. �

8. 28 September 2016

Today, we will prove Swan’s Theorem (6.9). But first, we need one more notion.

Definition 8.1. A section of a vector bundle E = (E, p,X) is a continuous map s :

X −→ E such that s(x) ∈ Ex for all x ∈ X. That is, p ◦ s(x) = x for all x ∈ X.

We let Γ(E) be the set of all sections. And, Γ(E) is an abelian group with addition

defined point-wise (s + t)(x) = s(x) + t(x) for s, t ∈ Γ(E), x ∈ X, which is well-defined

since Ex is a vector space.

For example, if we consider the trivial bundle S1 ×R, then a section is a continuous

map s that assigns to each x ∈ S1 some value s(x) ∈ Ex = R such that s is continuous.

Consider the following figure:
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Figure 3. Section of S1 ×R

Definition 8.2. Sections s1, . . . , sN ∈ Γ(E) are linearly independent if for x ∈ X, the

vectors s1(x), s2(x), . . . , sN (x) ∈ Ex are linearly independent.

Proposition 8.3. The vector bundle [n] has n linearly independent sections.

Proof. First consider the trival bundle X × V , where dimV = n. Fix some basis of V

denoted v1, . . . , vn. For i = 1, . . . , n, define constant sections si by

si(x) := (x, vi)

which are linearly independent since v1, . . . , vn are linearly independent.

Next, assume that E is a vector bundle such that X × V
∼=−→
γ
E.

For i = 1, . . . , n, define s̃i ∈ Γ(E) by s̃i(x) = γ ◦ si. �

We list two observation, which will be useful in the proof of Swan’s theorem.

Observation 8.4. Let E be a vector bundle over X. If f ∈ C(X) and s ∈ Γ(E), then

fs ∈ Γ(E) since f(x) ∈ C and s(x) ∈ Ex, which is a vector space, and (fs)(x) =

f(x)s(x) ∈ Ex.

Observation 8.5. Let E be a vector bundle over X. If s1, . . . , sN ∈ Γ(E), then we can

define α : X ×RN −→ E by

α((x, µ1, . . . , µN )) :=

N∑
i=1

µi si(x)︸ ︷︷ ︸
∈Ex

∈ Ex.

We rewrite Swan’s theorem and we note that Swan’s theorem is valid for either the

C or R case.

Theorem 8.6 (Swan’s Theorem). Let X be a compact Hausdorff space. If E is a vector

bundle over X, then there exists a vector bundle E′ over X such that E ⊕ E′ is trivial.

Proof. By Theorem (7.4) from yesterday, it is enough to construct α : X × RN −→ E

such that αx is a surjection for all x ∈ X for some N .
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Let {Ui}ri=1 be a cover of X such that E|Ui = Ui × Rni . (We note that if X is

connected, then ni = nj for i, j = 1, . . . , r). By Proposition (8.3), E|Ui has ni linearly

independent sections s(i)
1 , . . . , s

(i)
ni . Therefore, for x ∈ Ui, the vectors s

(i)
1 (x), . . . , s

(i)
ni (x) ∈

Rni are ni linearly independent vectors, which thus form a basis for Rni . Hence, we note

for all x ∈ Ui, ξ ∈ Ex,∃λ(i)
1 , . . . , λ

(i)
n ∈ R such that

(8.1) ξ =

ni∑
j=1

λ
(i)
j s

(i)
j (x).

From this, we build sections on all of E. Let {ηi} be a partition of unity corresponding

to {Ui}, then for i = 1, . . . , r, j = 1, . . . , ni define

σ
(i)
j := ηis

i
j ∈ Γ(E)

by Observation (8.5). Therefore, we have (n1 + · · ·+ nr) sections. This will be our N in

the definition of α. Indeed, define

α : X ×Rn1+···+nr −→ E

by

α
(
x, µ

(1)
1 , . . . , µ(1)

n1
, . . . , µ

(r)
1 , . . . , µ(r)

nr

)
=

r∑
i=1

ni∑
j=1

µ
(i)
j σ

(i)
j (x).

By Theorem (7.4), all that remains to check is that for x ∈ X, the map αx is surjective.

Now, there exists ηi such that ηi(x) 6= 0 =⇒ x ∈ Ui. By Equation (8.1), for ξ ∈ Ex, we
have since ηi(x) 6= 0

ξ =

ni∑
j=1

λ
(i)
j s

(i)
j (x) =

ni∑
j=1

λ
(i)
j σ

(i)
j (x)

ηi(x)

and by definition of α,

α

x, 0 . . . , 0,
ith-block︷ ︸︸ ︷

λ
(i)
1

ηi(x)
, . . . ,

λ
(i)
ni

ηi(x)
, 0 . . . , 0

 = ξ.

�

Remark 8.7. In general, we don’t know what N is for the trivial bundle X ×RN in the

proof of Swan’s theorem. But, we can find calculate an N (not necessarily the smallest

N) in the case that the covering dimension of X is finite (dimcovX < ∞). This is an

application of Ostrand’s theorem, which states:

Let X be compact. Then, dimcovX = n < ∞ if and only if for every cover {W̃i} there
exists a refinement {Wi} such that this refinement can be split into n + 1 families,

W1, . . . ,Wn+1 such that for fixed j = 1, . . . , n+ 1, we have that U ∩V = ∅ if U, V ∈ Wj .

Now, if Wi ∩Wj = ∅ and E|Wi trivial and E|Wj trivial, then E|WitWj trivial. With

this observation in mind, in the proof of Swan’s theorem, consider the cover {Ui} such
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that U1 is the union of all subsets in in the first family W1 and so on. In the connected

case, this produces the following formula.

(dimcovX + 1) · dim(fiber).

If not connected, then by compactness there are only finitely many connected components

and by locally triviality, we can replace dim(fiber) with the maximum dimension of all

the fibers.

For example, if E = M , since the covering dimension of S1 is 1 and the dimension of

the fiber is 1, then (1 + 1) · 2 implies that M ⊕ E′ = [2].

In the case when E = TS2. The covering dimension of S2 is 2 and the dimension of

the fiber is 2 since the fibers are planes from the second lecture. Thus, (2 + 1) · 2 = 6 and

TS2⊕E′ = [6]. But, of course, we were already able to do better. Indeed, TS2⊕ [1] = [3].

Next, we move to the realm of modules.

An abelian group M is a (left)module over an algebra A ( with product •) if there

is a map (a,m) ∈ A × M 7−→ am ∈ M that satisifes, (a1 • a2)m = a1(a2m) and

(a1 + a2)m = a1m+ a2m.

We already have an example of such a structure.

Proposition 8.8. If E is a vector bundle over X, then Γ(E) is a module over C(X).

Proof. Note that we already stated in the definition of sections that Γ(E) is an abelian

group. For the rest, use Observation (8.5). �

Let’s cover some more examples of modules.

Example 8.9. (1)
⊕n

j=1 C(X) =: C(X)n is a module over C(X) (free-module of rank

n) by the operation f(f1, . . . , fn) = (ff1, . . . , ffn)

(2) Free-module Let A be an algebra and I a set. Then

AI := {(aα)α∈I : only finitely many aα are 6= 0}

is a module over A be the operation a(aα)α∈I = (aaα)α∈I .

(3) Let X = [0, 1], then C0((0, 1]) is a module over C(X) since if f(0) = 0, then

fg(0) = 0 for any f ∈ C(X).

9. 29 September 2016

The goal of today is to state the Serre-Swan theorem and prove a part of it. This

theorem provides an equivalence between the category of vector bundles over a fixed

compact Hausdorff space and the category of finitely generated projective modules over

C(X), which is another important step to our move to K-theory of C*-algebras.

The majority of today will be taken up by proving a proposition that holds many of

the important properties used to prove Serre-Swan. But, first some definitions.
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Definition 9.1. Let M,N be modules over A. γ : M −→ N is a module homomorphism

if γ(am) = aγ(m) for all a ∈ A,m ∈M .

Definition 9.2. A module P over A is projective if it is a direct summand of a free

module. That is, ∃ a module N over A such that P ⊕N is free.

This definition is not the same a saying that P is a submodule of a free module. Indeed,

C0((0, 1]) is a submodule of the free module C([0, 1]) but it is not a direct summand of

C([0, 1]). This is because C([0, 1]) has codimension 1 in C([0, 1]) and thus any vector

space to complement of C0((0, 1]) in C([0, 1]) has the form C0((0, 1]) ⊕ Cf0 = C([0, 1])

for some f0 ∈ C([0, 1]). But, Cf0 is not a submodule of C([0, 1]). This is because there

exists f ∈ C([0, 1]) such that f0f 6∈ Cf0.

Next, we give an equivalent definition to projective module, in which the proof of

equivalence is left as an exercise.

Definition 9.3. A module P over A is projective if for all modules M over A and any

surjective module homomorphism γ : M −→ P there exists a module homomorphism

h : P −→M such that γ ◦ h = idP .

We note that we always assume that the algebra A is unital.

Definition 9.4. A module M over A is finitely generated if there exists finitely many

m1, . . . ,mn ∈M such that for each m ∈M there exist a1, . . . , an ∈ A such that

m =

n∑
j=1

ajmj .

Example 9.5. (1) The free module of rank n, An is n-generated. Consider the ele-

ments of the form (0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0) for j = 1, . . . , n.

(2) (non-example) C0((0, 1]) is not a finitely generated module over C([0, 1]). The

proof of this is left as an exercise.

Now, we are ready to state the large proposition.

Proposition 9.6. Let E,F be vector bundles over a compact Hausdorff space X.

(1) Γ(E) is a module over C(X).

(2) A (iso)morphism ϕ : E −→ F induces a module (iso)homomorphism ϕ∗ :

Γ(E) −→ Γ(F ).

(3) Γ([n]) ∼= C(X)n.

(4) Γ(E ⊕ F ) = Γ(E)⊕ Γ(F ).

(5) Γ(E) is a finitely generated projective module.

Proof of (1). was done yesterday as Proposition (8.8). �
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Proof of (2). Consider the following diagram where ϕ : E −→ F is a morhpism and

s ∈ Γ(E).

E
ϕ // F

X

s

OO

Therefore, ϕ ◦ s ∈ Γ(F ) since ϕ ◦ s(x) = ϕ(s(x)︸︷︷︸
∈Ex

) ∈ Fx by definition of morphism. Thus,

define

ϕ∗ : s ∈ Γ(E) 7−→ ϕ ◦ s ∈ Γ(F ),

which we already showed to be well-defined. For the module homomoprhism property.

Let f ∈ C(X), s ∈ Γ(E). Recall that ϕ is linear on fibers.Therefore,

ϕ∗(fs)(x) = (ϕ ◦ (fs))(x)

= ϕ(f(x)s(x)︸ ︷︷ ︸
∈Ex

)

= ϕx(f(x)s(x))

= f(x)ϕx(s(x))

=⇒ ϕ∗(fs) = fϕ∗(s).

If ϕ were an isomorphism, then ϕ−1
∗ =

(
ϕ−1

)
∗. �

Proof of (3). Let [n] = X × Cn. Fix s ∈ Γ([n]). Then, s is of the form s(x) = (x, fs(x))

for each x ∈ X, where fs(x) ∈ Cn. But then , fs ∈ C(X,Cn) = ⊕nj=1C(X) = C(X)n.

Thus, there exist f1, . . . , fn ∈ C(X) such that fs(x) = (f1(x), . . . , fn(x)). Therefore, it

follows that

s ∈ Γ([n]) 7−→ fs ∈ C(X)n

is a bijection, and the fact that this map is a module homomorphism follows easily. �

Proof of (4). Let s ∈ Γ(E ⊕ F ). Then, recalling the properties of the (Whitney) sum of

vector bundles, we have that s(x) ∈ (E ⊕ F )x = Ex ⊕ Fx. Hence, define s1 : X −→
E, s2 : X −→ F by s(x) = (s1(x), s2(x)) ∈ Ex ⊕ Fx for all x ∈ X. Then, s1 ∈ Γ(E), s2 ∈
Γ(F ). �

Proof of (5). First, we establish the following claim.

Claim 9.7. A direct summand of a finitely generated module is finitely generated.

Proof of claim. Assume that M,N are modules over A and R is a finitely generated

module over A such that M ⊕ N = R. Let r1, . . . , rn ∈ R be a finte set of generators.

Then, for each j = 1, . . . , n we have rj = (mj , nj) and m1, . . . ,mn is a finite gerating set

for M . �
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By Swan’s theorem, there exists a vector bundle E′ over X such that E ⊕ E′ = [n]

for some n. Therefore,

C(X)n
(3)∼= Γ([n]) = Γ(E ⊕ E′) (4)

= Γ(E)⊕ Γ(E′).

Hence, by the claim, since C(X)n is finitely generated, we have that Γ(E) is finitely

generated projective. �

As a corollary to this proposition, we have.

Corollary 9.8. Let X be a compact Hausdorff space. Then, Γ : E 7−→ Γ(E) is a covariant

functor from the category of vector bundles over X with morphisms to the category of

finitely generated projective modules over C(X).

Proof. It remains to check composition. (ϕ ◦ ψ)∗(s) = ϕ ◦ ψ ◦ s = ϕ∗(ψ∗(s)). �

Remark 9.9. If X were not compact (locally compact), then we could not use Swan’s

theorem, which in the compact case shows that Γ(E) is a finitely generated projective

module. Also, Swan’s theorem is used to provide injectivity in the following result.

Now, we state the Serre-Swan theorem, and proof some of it today.

Theorem 9.10 (Serre-Swan Theorem). With the same setting of the previous Corollary,

the map Γ : E 7−→ Γ(E) is a bijection.

Proof. We start with injectivity. So, we will show that if Γ(E) ∼= Γ(F ), then E ∼= F . We

will begin by showing something stronger. We will show that any module homomorphism

γ : Γ(E) −→ Γ(F ) is induced by some morphism ϕ : E −→ F such that γ = ϕ∗. We will

then establish the same for isomorphisms. First, we show take care of the case of trivial

bundles.

Lemma 9.11. If γ : Γ([n]) −→ Γ([m]) is a module homomorphism, then there exists a

morphism ϕ : E −→ F such that ϕ∗ = γ.

Proof of Lemma. Let [n] = X × Cn (or Rn) and [m] = X × Cm (or Rm).

Let v1, . . . , vn ∈ Cn be a basis and w1, . . . , wm ∈ Cm be a basis. We define constant

sections vi ∈ Γ([n]) by vi(x) = (x, vi) and similarly define wi ∈ Γ([m]). Let s ∈ Γ([m]).

Fix x ∈ X, then s(x) = (x, y) such that y ∈ Cm. Hence, there exist λ1(x), . . . , λm(x) ∈ C
such that

s(x) = (x, y) =

(
x,

m∑
i=1

λm(x)wi

)
.

Therefore, s =
∑m
i=1 λi(·)wi and we only need to see how γ acts on the constant sections.

γ(vi) =
∑

λij(·)wj .
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Now, by linearity, we only need to define the morphism ϕ : [n] −→ [m] on the basis. So,

define

(9.1) ϕx(vi) :=

m∑
j=1

λij(x)wj .

It is left as an exercise to check that ϕ∗ = γ. �

Now, let γ : Γ(E) −→ Γ(F ). By Swan’s theorem E ⊕ E′ = [n] and F ⊕ F ′ = [m].

In particular, by (4) of Proposition (9.6), we have that Γ(E) ⊕ Γ(E′) = Γ([n]) and

Γ(F )⊕ Γ(F ′) = Γ([m]). Thus, we may define(
γ 0
0 0

)
: Γ([n]) −→ Γ([m]).

By the above lemma, there exists ϕ : [n] −→ [m] such that ϕ∗ =

(
γ 0
0 0

)
. But, as

E ⊕ E′ = [n] and F ⊕ F ′ = [m], we may write ϕ =

(
ϕ1 ϕ2

ϕ3 ϕ4

)
, where ϕ1 : E −→ F .

And,

ϕ∗ =

(
ϕ1∗ ϕ2∗
ϕ3∗ ϕ4∗

)
=

(
γ 0
0 0

)
.

implies that ϕ1∗ = γ.

Tomorrow, we will begin by verifying the case of isomorphism. �

10. 30 September 2016

Today we finish the proof of the Serre-Swan Theorem (9.10).

Continuation of proof of Theorem (9.10). Last time we proved that a module homomor-

phism γ : Γ(E) −→ Γ(F ) is induced by a morphism ϕ : E → F such that γ = ϕ∗.

Today, we begin by show that if γ is an isomorphism then so is ϕ. Assume that γ is an

isomorphism, then γ−1 : Γ(F ) −→ Γ(E) is an isomoprhism and there exists a morphism

ψ : F −→ E such that γ−1 = ψ∗. But, then

(ϕ ◦ ψ)∗ = ϕ∗ ◦ ψ∗ = idΓ(F ) and (ψ ◦ ϕ)∗ = idΓ(E).

Therefore, the following claim would complete our proof of injectivity of the functor γ.

Claim 10.1. If δ∗ = id, then δ = id.

Proof of claim. By definition and assumption, δ∗(s) = δ ◦ s = s for all s ∈ Γ(E). In

particular, we have that if x ∈ X, then s(x) ∈ Ex and δ(s(x)) = δx(s(x)) = s(x). But,

we want δ(x) = e where e ∈ Ex. Thus, it is enough to find s ∈ Γ(E) such that s(x) = e.

Fix e ∈ E = tx∈XEx. So, there exists x ∈ S such that e ∈ Ex. By local triviality, let

Ux be a neighborhood of x such that E|Ux is trivial. Let ẽ(x) denote the constant section

on E|Ux . Let η be a function with support Ux such that η(x) = 1. Define s = ηẽ. �

Therefore, injectivity is complete.
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Surjectivity: Let M be a finitely generated projective module over C(X). Assume that

M is n-generated. We want to show that there exists a vector bundle over X such that

Γ(E) = M . To prove this, we use a lemma.

Lemma 10.2. If M is an n-generated projective module over A, then M is a direct

summand of An (the free module of rank n.)

Proof. We will use the second definition of projective module Definition (9.3). Letm1, . . . ,mn

be the generators of M . Define a surjection γ : An −→M by

γ(a1, . . . , an) :=

m∑
j=1

ajmj .

Thus, since M is projective, there exists h : M −→ An such that γ ◦h = idM . Therefore,

one can show that

x ∈ An 7−→ (γ(x), x− h ◦ γ(x)) ∈M ⊕ ker γ

is an isomorphism. �

By the lemma, M ⊕R = C(X)n. We define a skew projection

p : (m, r) ∈ C(X)n 7−→ (m, 0) ∈ C(X)n,

and thus p2 = p. But, by Proposition (9.6) (3), p : Γ([n]) −→ Γ([m]) is a morphism.

Therefore, by the part of the proof of Serre-Swan from yesterday there exists ϕ : [n] −→
[n] such that p = ϕ∗. And, ϕ2 = ϕ is idempotent since p is idempotent. Therefore, by

Theorem (7.1), we have that Ran ϕ is a vector bundle.

We will show that M ∼= Γ(Ran ϕ). We can already day that M = Ran p. But,

Ran p = Ran ϕ∗ = {ϕ ◦ s : s ∈ Γ([n])} = {x 7→ ϕx(s(x)) : s ∈ C(X,Cn)} .

And, Γ (Ran ϕ) = {g : X −→ Cn : g(x) ∈ Ran ϕx}. Thus, we have that Ran p ⊆
Γ (Ran ϕ). Let g ∈ Γ (Ran ϕ). Since ϕ is idempotent and g(x) ∈ Ran ϕx, we have

pg(x) = ϕx(g(x)) = g(x).

Thus, pg = g and g ∈ Ran p, which completes the proof. �

Corollary 10.3. Let X be a compact Hausdorff space. Then, V (X) ∼= the semigroup of

finitely generated projective modules over C(X). Hence,

K0(X) = σ(the semigroup of finitely generated projective modules over C(X)).

Now, the right-hand side of V (X) of the above corollary is a statement that makes

sense for any ring, and this gives algebraic K0.

Definition 10.4 (Algebraic K0). Let A be a ring. Define

Kalg
0 (A) := σ(semigroup of finitely generated projective modules over A).

Corollary 10.5. K0(X) = Kalg
0 (C(X)).
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To move to C*-algebras we will formulate algebraic K0 in C*-algebraic terms. We

begin with a definition.

Definition 10.6. Let A be a C*-algebra. We define M∞(A) := ∪n∈NMn(A), where for

each n ∈ N, we have Mn(A) ↪→Mn+1 by the map a 7−→
(
a 0
0 0

)
.

Also, if p ∈ Mn(A), q ∈ Mm(A) are projections (p2 = p = p∗), then p ⊕ q :=(
p 0
0 q

)
∈Mn+m(A) is a projection.

Theorem 10.7. Let A be a unital C*-algebra. The following three semigroups are iso-

morphic.

(1) V1(A) = {[M ] : M is a finitely generated projective module over A}, where [M ] =

[M ′] when M ∼= M as modules.

(2) V2(A) = {[q] : q ∈ M∞(A), q2 = q} and [q] = [q′] if there exist x, y ∈ M∞(A)

such that q = xy and q′ = yx.

(3) V3(A) = {[p] : p ∈ M∞(A), p2 = p = p∗}, where [p] = [p′] if there exists v ∈
M∞(A) such that p = vv∗ and p′ = v∗v.

We will prove these isomorphisms and use (3) to define K-theory for C*-algebras.

Proof. (1) ⇐⇒ (2). Let M be a finitely generated projective module of d-generators.

By Lemma (10.2), we have that M ⊕N = Ad. Define pM : Ad −→ Ad by pM ((m,n)) :=

(m, 0), which is a module homomorphism.

Lemma 10.8. Consider A as the rank 1 module A1. If f : A −→ A is module homo-

morphism, then there exists a0 ∈ A such that f(a) = aa0 for all a ∈ A.

Proof. By definition, f(ab) = af(b). If b = 1, then for all a ∈ A, we have

f(a) = f(a1) = af(1).

Let a0 = f(1). �

We will continue the proof the next day... �

11. 3 October 2016

We continue with the proof of the following theorem.

Theorem 11.1. Let A be a unital C*-algebra. The following three semigroups are iso-

morphic.

(1) V1(A) = {[M ] : M is a finitely generated projective module over A}, where [M ] =

[M ′] when M ∼= M as modules.

(2) V2(A) = {[q] : q ∈ M∞(A), q2 = q} and [q] = [q′] if there exist x, y ∈ M∞(A)

such that q = xy and q′ = yx.
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(3) V3(A) = {[p] : p ∈ M∞(A), p2 = p = p∗}, where [p] = [p′] if there exists v ∈
M∞(A) such that p = vv∗ and p′ = v∗v.

Proof. (1) ⇐⇒ (2). Let M be a finitely generated projective module of d-generators.

By Lemma (10.2), we have that M ⊕N = Ad. Define pM : Ad −→ Ad by pM ((m,n)) :=

(m, 0), which is a module homomorphism. Last time we already prooved part (1) of the

following lemma.

Lemma 11.2. Consider A as the rank 1 module, A1.

(1) If f : A −→ A is module homomorphism, then there exists a0 ∈ A such that

f(a) = aa0 for all a ∈ A.
(2) If f : Ad −→ Ad is a module homomorphism, then there exists b = (bij) ∈Md(A)

such that

f

 a1

...
ad

 =


∑d
j=1 ajb1j

...∑d
j=1 ajbdj

 .

Proof of part (2) of Lemma. f can be written as f =

 f11 · · · f1d

...
. . .

...
fd1 · · · fdd

 where fij :

A −→ A. It follows easily from f being a module homomoprhism that all fij ’s are

module homomorphisms.

Thus, by part (1) of the Lemma, there exist bij ∈ A such that fij(a) = abij for all

a ∈ A. Therefore,

f

 a1

...
ad

 =

 f11 · · · f1d

...
. . .

...
fd1 · · · fdd


 a1

...
ad



=


∑d
j=1 f1j(aj)

...∑d
j=1 fdj(aj)



=


∑d
j=1 ajb1j

...∑d
j=1 ajbdj

 .

�

Hence, by the Lemma, pM is defined by some matrix (bij) ∈ Md(A). Also, p2
M =

pM =⇒ (bij)
2 = (bij) and is thus an idempotent in M∞(A). To construct our map from

V1(A) to V2(A), we use the following claim.

Claim 11.3. If M,M ′ are two finitely generated projective modules over Ad such that

M ∼= M ′, then (bij) ∼ (b′ij) as idempotents.

Proof of claim. By construction of the (bij), is is enough to show that there exist F,G :

Ad −→ Ad such that pM = FG and pM ′ = GF .
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Now, by projective modules, M ⊕N = Ad and M ′ ⊕N ′ = Ad. By assumption, there

exist isomorphisms F0 : M ′ −→M and G0 : M −→M ′. On Ad, define

F (a) =

{
F0(a) : a ∈M ′

0 : a ∈ N ′
and G(a) =

{
G0(a) : a ∈M
0 : a ∈ N

,

then FG(a) =

{
F0G0(a) = a : a ∈M
0 : a ∈ N

= pM (a). Simliarly, GF = pM ′ . �

By the claim, the map [M ] ∈ V1(A) 7−→ [(bij)] ∈ V2(A) is well-defined.

Injectivity: We want to show that (bij) ∼ (b′ij) =⇒ M ∼= M ′. But, by construction, we

can see that (bij) ∼ (b′ij) ⇐⇒ pM ∼ pM ′ in the sense that pM = FG and pM ′ = GF for

G,F : Ad −→ Ad. Now, G|M : M −→ Ad and F |M ′ : M ′ −→ Ad. Next, we check that

G(M) ⊆M ′ and F (M ′) ⊆M . For the first containment,

pM = FG =⇒ M = pM (M) = FG(M)

=⇒ G(M) = GFG(M) = pM ′G(M)

=⇒ G(M) ⊆M ′.

The argument is similar for F (M ′) ⊆M .

Therefore, F |M ′ ◦G|M = (F ◦G)|M = pM |M = idM and G|M ◦ F |M ′ = idM ′ , which

shows that M ∼= M ′.

Surjectivity: Let (bij) ∈ M∞(A) be an idempotent. There exists d such that (bij) ∈
Md(A). Define p : Ad −→ Ad by

p

 a1

...
ad

 =


∑
ajb1j
...∑
ajbdj

 .

By idempotence, Ad = Ran p⊕ ker p. Now, Ran p is a module since

ap

 a1

...
ad

 = p

a
 a1

...
ad


 = p

 aa1

...
aad

 ∈ Ran p.

For ker p. p

 a1

...
ad

 = 0 =⇒ p

 aa1

...
aad

 = ap

 a1

...
ad

 = 0. Hence, Ran p is a

finitely generated projective module such that pRan p = p and Ran p 7−→ (bij).

(2) ⇐⇒ (3) We start with 2 steps.

Step 1. Each idempotent q is equivalent (as idempotents) to some projection p.

Step 2. If p1, p2 are projections that are equivalent as idempotents, then they are equiv-

alent as projections.

We will prove Step 1 now and leave Step 2 as an exercise, which is exercise 5B(f)

from Wegge-Olsen.
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Proof of Step 1. Assume that q2 = q. Define s := q∗q + (1 − q)∗(1 − q). One can show

that

(11.1) q∗s = q∗q = sq.

Now,

s = 1− q∗ − q + 2q∗q =
1

2
+

1

2
(1 + 2q)∗(1 + 2q).

But, 1
2 (1 + 2q)∗(1 + 2q) > 0 is positive. Therefore, by spectral mapping theorem, s is

positive such that 0 6∈ spec(s) (the spectrum of s), and thus s is invertible. Furthermore,

s−1 is positive and has a unique positive square root s−1/2. Now,

Equation (11.1) =⇒ s−1/2(q∗s)s−1/2 = s−1/2(sq)s−1/2

=⇒ s−1/2q∗s1/2 = s1/2qs−1/2

=⇒ (s1/2qs−1/2)∗ = s1/2qs−1/2

(11.2)

Next, define p = s1/2qs−1/2. Note that q = s−1/2ps1/2. By Expression (11.2) and idem-

potence of q, we have p∗ = p = p2, which is a projection. Furthermore,

p = p2 = (ps1/2)(qs−1/2) = (a)(b)

q = q2 = q(s−1/2ps1/2) = (b)(a).

Therefore, p is a projection such that p ∼ q as idempotents. �

�

12. 4 October 2016

Motivated by Theorem (11.1), we define.

Definition 12.1. Let A be a unital C*-algebra. Define

K0(A) := σ (V3(A)) ,

the Grothendieck group of the semigroup V3(A).

Thus, in particular, we have thatK0(C(X)) = K0(X), whereX is compact Hausdorff.

We present some other examples.

Example 12.2. For the first 3 examples, we note that projections in B(H) (C*-algebra

of bounded operators on a Hilbert space) are equivalent if they have the same rank.

(1) K0(C) = σ(N0) = Z.

(2) K0(Mn(C)) = Z, which follows from the first example sinceM∞(C) = M∞(Mn(C)).

(3) If H is infinite dimensional then there exist projections with infinite rank and

K0(B(H)) = σ(N0 ∪ {∞}) = 0.

(4) This example considers von Neumann algebras. In a II1-factor, prjections are

equivalent when the trace are the same. Thus, K0(II1-factor) = σ(R+) = R.

In a II∞-factor, semi-finite traces can take infinite value, and thus,K0(II∞-factor) =

σ(R+ ∪ {∞}) = 0.
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In a III-factor, all non-zero projections are equivalent. Hence, K0(III-factor) =

σ(0 ∪ {∞}) = 0.

(5) (Cuntz) K0(On) = Zn−1, where On is the Cuntz algebra.

Example (4) shows that K-theory is not useful in the setting of von Neumann algebras.

Theorem 12.3. K0 is a covariant functor.

Proof. Let ϕ : A −→ B be a *-homomorphism. We may extend ϕ to a map from Mn(A)

to Mn(B) by defining (aij) ∈ Mn(A) 7−→ (ϕ(aij) ∈ Mn(B). Thus, for p ∈ Mn(A) a

projection, we have that ϕ(p) ∈ Mn(B) is a projection. Hence, [p] ∈ V3(A) 7−→ [ϕ(p)] ∈
V3(B) is well-defined. And, by a previous lecture, we may uniquely extend this map to

the associated Grothendieck groups. Denote this map by

K0(A)
K0(ϕ)−−−−→ K0(B).

�

Next, we provide K0 for nonunital C*-algebras. Assume that A is a non-unital C*-

algebra. Let A+ denote its unitlization (with multiplication (a, λ)(b, µ) := (ab + λb +

µa, λµ)). Consider

C
� � i // A+ p // // C,

where i(λ) = (0, λ) and p(a, λ) = λ and note that p ◦ i = idC. By Theorem (12.3) and

K0(C) = Z, we have

Z
� � K0(i)// K0(A+)

K0(p) // // Z,

and thus, K0(p) ◦K0(i) = idZ. Hence,

K0(A+) = Z⊕ kerK0(p).

This allows us to define K0 for nonunital C*-algebras.

Definition 12.4. Let A be a nonunital C*-algebra. Define p : A+ −→ C by p(a, λ) = λ.

Define

K0(A) := kerK0(p).

(This works also for unital A assuming that A+ = A⊕ C.)

Hence, if X is not compact but locally compact, then C0(X) is nonunital. Also,

C(X+) = (C0(X))+, where X+ denotes the one-point compactification of X. Therefore,

K0(C0(X)) = K0(X).

Proposition 12.5. K0 is a covariant functor.

Proof. Let ϕ : A −→ B. Extend ϕ to ϕ+ : A+ −→ B+ by ϕ+(a, λ) = (ϕ(a), λ). Consider

K0(A+)
K0(ϕ+)−−−−−→ K0(B+).
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Let pA : (a, λ) ∈ A+ 7−→ λ ∈ C and similarly for pB. It remains to check that K0(ϕ+)

sends kerK0(pA) to kerK0(pB). Let [(aij , λij)]− [(bij , µij)] ∈ K0(A+). Then,

K0(pA)([(aij , λij)]− [(bij , µij)]) = [(λij)]− [(µij)],

which equals 0 if λij = µij . Hence, let [(aij , λij)]− [(bij , λij)] ∈ ker(ϕ+)(pA). Then,

K0(ϕ+) ([(aij , λij)]− [(bij , λij)]) = [(ϕ(aij), λij)]− [(ϕ(bij), λij)] ∈ kerK0(pB).

�

Properties of the functor K0:

(1) Homotopy invariance: Let f, g : A −→ B be homotopic. That is, for all t ∈ [0, 1]

there exist ft : A −→ B such that ft is a continuous path with f0 = f and

f1 = g. (Idea of proof: fix a projection p ∈ Mn(A). Extend the ft to Mn(A) we

have that ft(p) forms a continuous path of projections. But, if 2 projections are

close, then they are equivalent. Thus, [f(p)] = [g(p)] and K0(f) = K0(g).)

(2) Continuity:K0(lim−→ An) = lim−→K0(An). (Idea of proof: let p ∈Md(A) = ∪nMd(An).

One can prove there exists pn ∈Md(An) such that p− pn is small, which implies

equivalence. Thus, [p] = [pn], where [pn] ∈ K0(An).)

(3) Half-exactness: Assume that we have a short exact sequence

0 −→ A −→ B −→ D −→ 0,

then the following sequence is exact

K0(A) −→ K0(B) −→ K0(D).

(4) Stability: K0(A) ∼= K0(A ⊗ K(H)), where K(H) is the C*-algebra of compact

operators. The isomorphism is given by [p] 7−→ [p]⊗ [1], where 1 denotes a rank

1 projection. (Vague explanation: K(H) is AF and K(H) = lim−→ Mn(C). Hence,

A⊗K(H) = A⊗ lim−→ Mn(C) = lim−→ (A⊗Mn(C)) = lim−→ Mn(A)).

The next theorem shows that the above properties along with values on the C*-algebras

C and C0(R) completely characterize the functor K0.

Theorem 12.6 (Cuntz). If K is a covariant functor from from the category of C*-

algebras to the category of abelian groups that satisfies properties (1)-(4) above and

K(C) = Z,K(C0(R)) = 0, then K(A) = K0(A) for all C*-algebras A from a bootstrap

class.

Definition 12.7. K1(A) := K0(A ⊗ C0(R)) and Kn(A) = (A ⊗ C0(Rn)) , but Bott

periodicity for C*-algebras gives that K2(A) = K0(A).
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13. 5 October 2016

Today we present some standard results for Fredholm operators in preparation for

Brown-Douglas-Filmore theory.

Notation 13.1. Let H be a Hilbert space.

B(H) = {T : H −→ H : T is linear and bounded }.
Let O1(H) := {h ∈ H : ‖h‖H 6 1} denote the unit ball of H. Define

K(H) =
{
T ∈ B(H) : T (O1(H))

‖·‖B(H) is compact in norm
}
.

K(H) is an ideal (norm-closed two-sided ideal) of B(H). Then, B(H)/K(H) is a C*-

algebra called the Calkin algebra denoted by Q(H).

Let π : B(H) −→ B(H)/K(H) denote the quotien surjection. If T ∈ B(H), then

instead of π(T ) we write Ṫ .

Definition 13.2. T ∈ B(H) is Fredholm if dim kerT <∞, dim kerT ∗ <∞, and Ran T

is closed.

Denote set of all Fredholm operators by F(H).

Index of a Freholm operator T is
j(T ) := dim kerT − dim kerT ∗

= dim kerT − codim Ran T

since kerT ∗ = (Ran T )⊥.

Let’s note some examples and observations.

Observation 13.3. (1) If A is invertible, then j(A) = 0.

(2) Let U+ ∈ B(H) denote the unilateral shift. That is,

U+(x1, x2, . . .) = (0, x1, x2, . . .).

Hence, kerU+ = 0 and it’s range is closed of codimension 1. Thus, j(U+) = −1.

(3) j(T ∗) = −j(T ).

(4) j
(
T 0
0 S

)
= j(T ) + j(S).

(5) If T is Fredholm and S is invertible, then

j(TS) = j(ST ) = j(T ).

(6) If T : Cn −→ Cm, then
j(T ) = dim kerT − codim Ran T

= dim kerT − (m− dim Ran T )

= dim kerT + dim Ran T −m

= n−m
since Cn/ kerT = Ran T. Thus, the finite dimensional case is not of interest.

Theorem 13.4. T is Fredholm if and only if Ṫ is invertible.
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Proof. If: Assume that Ṫ is invertible. So, there exists S ∈ B(H) such that Ṫ Ṡ = 1Q(H) =

ṠṪ , and thus (TS)· = 1Q(H) = (ST )·. Hence, there exist K,K ′ ∈ K(H) such that

TS = 1B(H) +K and ST = 1B(H) +K ′.

Claim 13.5. kerT is finite dimensional.

Proof of claim. Suppose kerT is not finite dimensional. Thus, there exists an infinite

orthonormal basis {xn}∞n=1 for kerT . Therefore, for each n ∈ N, we have

Txn = 0 =⇒ STxn = 0 =⇒ (1B(H) +K ′)xn = 0.

However, by definition of compact operator, there exists a subsequence {xnm}∞m=1 such

that K ′xnm −−−−→
m→∞

x. But, the last in the above string of implications implies that

xnm +K ′xnm −−−−→
m→∞

0.

Therefore, xnm −−−−→
m→∞

x. But, no subsequence of an orthonormal basis can converge

as no subsequence is Cauchy. Indeed, by Pythagoreans theorem, ‖xk−xl‖H =
√

2 for all

k, l ∈ N, k 6= l. Thus, we have reached a contradiction. �

The proof that kerT ∗ is finite dimensional is similar as one would consider S∗T ∗ =

1B(H) +K∗ and so on.

Claim 13.6. Ran T is closed.

Proof of claim. Assume that Tyn −−−−→
n→∞

y. We want to show that y ∈ Ran T.

Tyn −−−−→
n→∞

y =⇒ STyn −−−−→
n→∞

Sy =⇒ (1B(H) +K ′)yn −−−−→
n→∞

Sy.

As above, there exists some subsequence such thatK ′ynm −−−−→
m→∞

z. Therefore, ynm −−−−→
m→∞

Sy − z =⇒ Tynm −−−−→
m→∞

T (Sy − z). But, Tynm −−−−→
m→∞

y. Hence, y = T (Sy − z) ∈
Ran T. �

Only if: Assume T is Fredholm. We may decompose H = (kerT )⊥ ⊕ kerT , and since

Ran T is closed by Fredholm, H = Ran T ⊕ (Ran T )⊥. Therefore, we may decompose T

in the following way

T =

(kerT )⊥ kerT
Ran T A 0

(Ran T )⊥ 0 0
,

where A is invertible as it is surjective and injective. Define and operator S with respect

to the same decomposition as

S :=
A−1 0

0 0

Therefore,

TS = ST =
1 0
0 0

= 1 +R,

where R is finite rank and therefore compact. Hence, in Q(H), we have

Ṫ Ṡ = ṠṪ = 1.

�
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Corollary 13.7. F(H) is closed under compact perturbations and small perturbations.

Proof. If T ∈ F(H),K ∈ K(H), then by definition Ṫ = (T + K)·. Hence, invertibility of

Ṫ implies invertibility of (T +K)·.

Next, assume that S is small in norm. Then, Ṡ is small in norm. Now, if T is Fredholm,

then Ṫ is invertible. But, the set of invertible elements is open, so we would could take

Ṡ sufficiently small such that Ṫ + Ṡ = (T + S)· is invertible. �

Theorem 13.8. If T0 ∈ F(H), then ∃ε > 0 such that ∀T with ‖T − T0‖B(H) 6 ε, we

have T ∈ F(H) and j(T ) = j(T0).

Proof. We decompose T as

T =

(kerT0)⊥ kerT0

Ran T0 A B
(Ran T0)⊥ C D

.

and under the same decomposition, as in the proof of the above theorem,

T0 :=
A0 0
0 0

,

where A0 is invertible. Since T is close to T0, then A is close to A0, which implies that

A is invertible since the set of invertibles is open.

Thus, we define invertible operators R,S.

R =

Ran T0 (Ran T0)⊥

Ran T0 1 0
(Ran T0)⊥ −CA−1 1

and

S =

(ker T0)⊥ kerT0

(ker T0)⊥ 1 −A−1B
kerT0 0 1

Hence, by (5) of Observation (13.3) and matrix multiplication

j(T ) = j(RTS)

= j

((
A B
0 −CA−1B +D

)
S

)
= j

((
A 0
0 −CA−1B +D

))
= j(A) + j(−CA−1B +D),

where the last equality is given by (4) of Observation (13.3). But, by (1) of Observa-

tion (13.3), we have j(A) = 0 since A is invertible and −CA−1B + D : kerT0 −→
(Ran T0)⊥, which are finite dimensional space. Hence, by (6) of Obseravation (13.3), we

have j(−CA−1B+D) = dim kerT0−codim Ran T0 = j(T0). Therefore, j(T ) = j(T0). �

Corollary 13.9. If A,B are Fredholm and At is a path of Fredholm operators with

A0 = A and A1 = B, then j(A) = j(B).
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The idea of this proof is that we may find s ∈ (0, 1] such that As is close enough

to A and apply the previous theorem to achieve j(A) = j(As). We can do this again

for r ∈ (s, 1], and continue until we reach B. In other words, Index is a locally constant

function.

Corollary 13.10. If T is Fredholm and K is compact, then j(T +K) = j(T ).

The idea of the proof of this is to consider the path T + tK from T to T +K.

Corollary 13.11. If a ∈ Q(H) is invertible, then we may define j(a) := j(T ) such that

Ṫ = a.

The previous Corollary shows that this is well-defined by definition of the Calkin

algebra.

14. 06 October 2016

Brown-Douglas-Filmore theory came about for the classification of essentially normal

operators. Today we will discuss how the classification of essentially normal operators

became a problem about C*-algebras.

Definition 14.1. T ∈ B(H) is essentially normal if T ∗T − TT ∗ ∈ K(H). But, this is

equivalent to (TT ∗ − T ∗T )· = 0, where · denotes the image of an operator in the Calkin

algebra B(H)/K(H) =: Q(H). Also,

(TT ∗ − T ∗T )· = 0 ⇐⇒ Ṫ ∗Ṫ = Ṫ Ṫ ∗ ⇐⇒ Ṫ is normal.

Example 14.2. (1) IfN is normal andK is compact, thenN+K is essentially normal.

(2) Recall the unilateral shift U+. Now,
U∗+(x1, x2, . . .) = (x2, x3, . . .) =⇒ U∗+U+(x1, x2, . . .) = (x1, x2, . . .)

=⇒ U∗+U+ = 1.

But, U+U
∗
+(x1, x2, . . .) = (0, x2, x3, . . .). Hence, U+U

∗
+ = 1 − P1, where P1 is a

rank 1 projection. Therefore, U+ is unitary in the Calkin algebra and thus normal

in the Calkin algebra. Hence, U+ is essentially normal.

We note that the example (2) is different than (1) since if we could write U+ = N+K,

then the index −1 = j(U+) = j(N + K) = j(N) = 0 by the results of yesterday along

with an exercise from yesterday. This provides a contradiction. This leads to the natural

question:

Question: When is an essentially normal operator equal to normal + compact? The

answer to this uses Brown-Douglas-Filmore theory. This also motivates the following

equivalence.

Definition 14.3. T ∼ S if T = U∗SU +K if U is unitary and K is compact.

This is equivalent to Ṫ = U̇∗ṠU̇ where U is unitary in B(H), which is stronger than

assume that U̇ is unitary in Q(H).
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Our main problem is:

(14.1)

Main Problem: to classify essentially normal operators up to the above equivalence.

Definition 14.4. The essential spectrum of an operator T is σess(T ) := σ(Ṫ ), which is

the spectrum of Ṫ in the C*-algebra Q(H).

Note that since the quotient map is a *-homomorphism, we have σ(T ) ⊇ σ(Ṫ ) =

σess(T ). This containment can be strict since σ(U+) = {z ∈ C : |z| 6 1}, the unit disc,

and σess(U+) = {z ∈ C : |z| = 1, the unit circle.

Next, note that T ∼ S ⇐⇒ Ṫ = U̇∗ṠU̇ implies that σess(T ) = σess(S) since

spectrum is preserved under conjugtion by unitary. Therefore, Main Problem (14.1) can

be translated to:

to classify essentially normal operators with given essential spectrum X ⊂ C, where X
is compact.

Next, we establish that (up to certain equivalences) there is a one-to-one correspon-

dence between the set of essentially normal operators, T , with a fixed essential spectrum

σess(T ) = X and injective *-homomorphisms τ : C(X) −→ Q(H).

Fix essentially normal T such that σess(T ) = X. For f ∈ C(X), by functional cal-

culus, we define τ(f) := f(Ṫ ). To show that τ is injective, assume that f ∈ C(X) such

that f 6= 0. Then, by functional calculus,

σ(τ(f)) = σ(f(Ṫ )) = f(σ(T )) = f(σess(T )) = f(X) 6= {0}.

Hence, τ(f) 6= 0.

Next, assume that τ : C(X) −→ Q(H) is an injective *-homomorphism. Define T

to be any pre-image of τ(idX) under the quotient map onto the Calkin algebra Q(H).

Hence, T is esstially normal. Let f ∈ C(X) be a polynomial, then since τ is an injective

*-homomorphism, we have

f(Ṫ ) = f(τ(idX)) = τ(f ◦ idX) = τ(f).

And, this can be extended to all of C(X) by continuity.

Also, again by injective *-homomorphism, we have

σess(T ) = σ(Ṫ ) = σ(τ(idX) = σ(idX) = X.

Now, consider the following equivalence for injective *-homomorphisms from C(X) −→
Q(H).

(14.2)

τ ∼ τ ′ if there exists a unitary U ∈ B(H) such that τ(f) = U̇∗τ ′(f)U̇ ,∀f ∈ C(X).

And, we note that this can be extended to a C*-algebra A in place of C(X).

So, we show that our correspondence is injective up to this equivalence and the

equivalence for essentially normal operators. Indeed, assume that T ∼ T ′. Then, there
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exists unitary U ∈ B(H) such that Ṫ = U̇∗Ṫ ′U̇ . Note that if f ∈ C(X), then f(U̇∗Ṫ ′U̇) =

U̇∗f(Ṫ ′)U̇ since U is unitary and one can easily check that this holds on monomials and

thus polynomials, which are dense. Therefore,

τ(f) = f(Ṫ ) = f(U̇∗Ṫ ′U̇) = U̇∗f(Ṫ ′)U̇ = U̇∗τ ′(f)U̇ .

Thus, τ ∼ τ ′. Hence, our correspondence is one-to-one up to these equivalences. Hence,

our Main Problem (14.1) translates to:

to classify injective *-homomorphisms C(X) −→ Q(H) up to ∼ where X ⊂ C is

compact.

The next definition will help extend this to arbitrary C*-algebras.

Definition 14.5. Let A be a C*-algebra. A C*-subalgebra E ⊂ B(H) is and extension

of K(H) by A if K(H) ⊆ E and E/K(H) ∼= A.

Now, consider

B(H)

π
����

A
τ // Q)(H)

where τ is an injective *-homomorphism and π is the quotient *-homomorphism. We can

construct an extension by E := π−1(τ(A)) ⊃ K(H). Therefore, E/K(H) = τ(A) ∼= A.

Thus, any injective *-homomorphism produces an extension.

Next, assume that K(H) ⊆ E ⊆ B(H) is an extension of K(H) by A.

Thus, A ψ−→∼= E/K(H)
ι−→ B(H)/K(H) = Q(H), where ι is inclusion. Hence, τ := ι ◦ψ :

A −→ Q(H) is an injective *-homomorphism. Thus, any extension produces an injective

*-homomorphism.

Definition 14.6. Let A be a C*-algebra.

Ext(A) := {injective *-homomorphisms A −→ Q(H)} / ∼,

where ∼ is given by Equivalence (14.2).

Therefore, Main Problem (14.1) translates to:

to compute Ext(C(X)) where X ⊆ C is compact.

But, in order to compute Ext(C(X)), we need Abelian group structure.

Group structure on Ext(A):

Addition: [τ ]+[τ ′] :=

[(
τ

τ ′

)]
, which is possible since H = H⊕H =⇒ B(H) ∼=

M2(B(H)) =⇒ K(H) ∼= M2(K(H)) =⇒ Q(H) ∼= M2(Q(H)). It is left as an exercise to

show that addition is well-defined.

Abelian: Consider τ, τ ′. A simple calculation shows that(
τ

τ ′

)
=

(
0 1
1 0

)(
τ ′

τ

)(
0 1
1 0

)
.

Hence, [τ ] + [τ ′] = [τ ′] + [τ ].
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Neutral element: This is non-trivial and due to Voiculescu. We will start towards

finding this neutral element today.

Definition 14.7. τ is a trivial extension if ∃ an injective *-homomorphism ρ : A −→
B(H) such that τ = π ◦ ρ, where π : B(H) −→ Q(H) is the quotient map.

Now, for a C*-algebra A, since every abstract C*-algebra can be realized as a concrete

C*-algebra as a consequence of GNS, there always exists some Hilbert space H and an

injective *-homomorphism ρ : A −→ B(H). One might think that the natural choice is

to define τ = π ◦ ρ. But, it may be the case that ρ(A)∩K(H) 6= {0}. Hence, τ would not

be injective in this case. The next proposition remedies this. But, first, a lemma.

Lemma 14.8. If A ∈ B(H) and A 6= 0, then

 A
A

. . .

 6∈ K(H), where we view

H ∼= H⊕H⊕ · · · by separability.

Proof. Exercise. �

Proposition 14.9. Trivial extensions exist.

Proof. As discussed before the lemma, let ρ : A −→ B(H) be an injective *-homomorphism.

Define ρ∞ =

 ρ
ρ

. . .

 ∈ B(H⊕H⊕ · · · ) ∼= B(H). Define τ := π ◦ ρ∞ : A −→

Q(H), where π : B(H) −→ Q(H) is the quotient map. By the previous lemma, τ is an

injective *-homomorphism and therefore a trivial extension. �

It remains to show that trivial extensions form 1 equivlance class and that this is a

neutral element, which is due to Voiculescu.

15. 07 October 2016, Tex’d by Kaveh Mousavand

In the previous lecture, we introduced

Ext(A) = {τ : A→ B(H)/K(H)|τ is an injective ∗-homomorphism}/ ∼,

where τ1 ∼ τ2 if there exists a unitary element u ∈ B(H) such that for every a ∈ A, we
have

τ1(a) = u̇∗τ2(a)u̇.

We remark that our main goal in the following is computing Ext(C(X)), since it is

equivalent to the classification of essential normal operators with essential spectrum X.

Recall that for τ1 and τ2 ∈ Ext(A), we previously defined

[τ1] + [τ2] :=

[(
τ1 0
0 τ2

)]
≡ τ1 ⊕ τ2,
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and τ : A → B(H)/K(H) was called trivial if there exists a ∗-homomorphism ρ : A →
B(H) such that τ = ρ̇ = π ◦ ρ. i.e., the following diagram commutes:

B(H)

π
����

A

∃ρ
::

τ
// B(H)/K(H)

Definition 15.1. Two representations ρ1, ρ2 : A → B(H) are called approximately uni-

tary equivalent and denoted by ρ1 ∼a ρ2 if there exist unitaries un ∈ B(H) such that for

every a ∈ A and every n,

ρ1(a)− u∗nρ2(a)un ∈ K(H),

and furthermore,

‖ρ1(a)− u∗nρ2(a)un‖ → 0,

as n→∞.

Theorem 15.2. (Voiculescu)

If ρ1 and ρ2 are two representations of a C∗-algebra A, then ρ1 ∼a ρ2 if and only if

rankρ1(a) = rankρ2(a), for every a ∈ A.

Remark 15.3. We do not prove the Voiculescu’s theorem here. However, we remark that

the "only if" side of the theorem is easy to prove, whereas the "if" side is very hard.

Lemma 15.4. All trivial extensions are equivalent to each other.

Proof. Let ρ̇1 and ρ̇2 be two trivial extensions. We want to show that ρ̇1 ∼ ρ̇2.

We claim ρ̇1 ∼a ρ̇2, because ρ̇1 and ρ̇2 are injective and therefore for every a ∈ A,

rankρ1(a) =∞ = rankρ2(a).

Hence, there exist unitaries un such that for every a ∈ A and every n,

ρ1(a)− u∗nρ2(a)un ∈ K(H).

In particular, for n = 1 we have ρ1(a)− u∗1ρ2(a)u1 ∈ K(H), which implies

ρ̇1(a) = u̇1
∗ρ̇2(a)u̇1.

Thus, ρ̇1 ∼ ρ̇2 and we are done. �

Lemma 15.5. Every extension equivalent to a trivial extension is trivial itself.

Proof. If τ ∼ ρ̇, there exists u such that τ(a) = u̇∗ρ̇(a)u̇, for every a ∈ A. Define a

∗-homomorphism ρ1 by ρ1(a) := u∗ρ(a)u, for every a ∈ A. Hence, τ(a) = ρ̇(a) for every

a ∈ A, and consequently τ = ρ̇1 is trivial. �

Corollary 15.6. Trivial extensions form a single equivalence class.
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Theorem 15.7. The class of all trivial extensions is the neutral element in Ext(A).

Proof. We want to show that [τ ]⊕ [trivial] = [τ ], for every arbitrary extension τ . Equiv-

alently, we must show τ ⊕ ρ̇ ∼ τ .
We have the following diagram (note that we do not claim commutativity of the dia-

gram!):

B(H)

π
����

A

ρ
::

τ
// B(H)/K(H)

Let’s assume E := π−1(τ(A)), and consider ρ ◦ τ−1 ◦ π|E ⊕ id|E and idE as two represen-

tations of E.

Claim: ρ ◦ τ−1 ◦ π|E ⊕ id|E and idE are approximately equivalent.

For T ∈ E and we should show that

rankρ(τ−1(π(T )))⊕ T = rankT .

We consider two cases:

Case 1: If T ∈ K(H), then ρ(τ−1(π(T )) = 0, and there is nothing to show.

Case 2: If T /∈ K(H), then we get ∞ =∞ and we are done.

Thus, there exist unitaries un such that ρ(τ−1(π(T ))⊕T −u∗nTun ∈ K(H). In particular,

for n = 1,

ρ(τ−1(π(T ))⊕ T − u∗1Tu1 ∈ K(H)

ρ̇(τ−1(π(T ))⊕ Ṫ = u̇∗1Ṫ u̇1

ρ̇(a)⊕ τ(a) = u̇∗1τ(a)u̇1

ρ̇⊕ τ ∼ τ ,

where we used the fact that T ∈ E = π−1(τ(A)) implies π(T ) = τ(a) for some a ∈ A,
such that ρ̇(τ−1(π(T ))⊕ Ṫ = ρ̇(a)⊕ τ(a).

�

Theorem 15.8. [τ ] ∈ Ext(A) is invertible if and only if τ lifts to a completely positive

map, i.e., τ = φ̇, for some φ : A→ B(H).

Proof. We postpone the proof until we have the required tools which will be presented

in the following. �

Definition 15.9. A linear map between C∗-algebras ϕ : A→ B is called positive if for

every a ∈ A+, we have ϕ(a) ∈ B+.

Moreover, the n-th inflation of ϕ is denoted by ϕ(n) : Mn(A)→Mn(B) such that ϕ acts

entry-wise:

ϕ(n)

 a11 ... a1n

...
...

...
an1 ... ann

 =

 ϕ(a11) ... ϕ(a1n)
...

...
...

ϕ(an1) ... ϕ(ann)

,
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and ϕ is called n-positive if ϕ(n) is positive.

Example 15.10. If we consider ϕ : M2 → M2, given by ϕ(T ) = T t, it is clear that ϕ

is positive. However, ϕ(2) is not a 2-positive map. To see that, consider the following

non-example:

ϕ(2)


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

,

where the central (2×2)-block of the matrix on the right takes λ = ±1 as the eigenvalues,

thus the image is not positive!

Definition 15.11. ϕ is called completely positive if ϕ(n) is positive, for every n.

Exercise 15.12. Show that the following maps are completely positive:

• ∗-homomorphisms;

• Let ρ : A→ B be a ∗-homomorphism and for a fixed b0 ∈ B, define ϕ : A→ B,

such that ϕ(a) = b∗0ρ(a)b0;

• Each positive functional ϕ : A→ C.

Theorem 15.13. (Stinespring)

Let A be a unital C∗-algebra and ϕ : A → B(H) is a unital completely positive map.

There exists a Hilbert space K with an isometry V : H → K and a ∗-homomorphism

f : A→ B(K) such that for every a ∈ A, we have

ϕ(a) = V ∗f(a)V .

Remark 15.14. Informally speaking, the previous theorem implies that for a unital com-

pletely positive map ϕ : A→ B(H), we can always find a representation f such that:

f(a) =

(
ϕ(a)

...
... ...

)
.

16. 10 October 2016, Tex’d by Kaveh Mousavand

We finished the last lecture by the following theorem:

Theorem 16.1. (Stinespring)

Let A be a unital C∗-algebra and ϕ : A → B(H) a unital completely positive map.

There exists a Hilbert space K with an isometry V : H → K and a ∗-homomorphism

ρ : A→ B(K) such that ϕ(a) = V ∗ρ(a)V , for every a ∈ A.

Proof. The proof is given via the following four steps:

Construction of K:

Let’s consider A⊗H, equipped with the following inner product:

〈
∑n
i=1 ai ⊗ ζi,

∑m
j=1 bj ⊗ ηj〉 :=

∑n
i=1

∑m
j=1

(
ϕ(b∗jai)ζi, ηj

)
,
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where the inner product on the right-hand side of the equation comes from H.

To show that the new inner product is semi-positive definite, we must prove that for

every
∑n
i=1 ai ⊗ ζi in A⊗H, the following is non-negative:

(16.1)

〈
n∑
i=1

ai ⊗ ζi,
n∑
i=1

ai ⊗ ζi〉 =

n∑
i

n∑
j=1

(
ϕ(a∗jai)ζi, ζj

)

=

(ϕ(a∗jai)
)n
i,j=1

 ζ1
...
ζn

 ,

 ζ1
...
ζn




=

ϕ(n)
((
a∗jai

)n
i,j=1

) ζ1
...
ζn

 ,

 ζ1
...
ζn


 ,

where the fact that
(
a∗jai

)n
i,j=1

> 0 implies ϕ(n)
((
a∗jai

)n
i,j=1

)
> 0, hence the above in-

ner product is non-negative. However, we should remark that 〈−,−〉 is not necessarily

positive definite!

Now, consider all elements of A ⊗ H whose paring with themselves with respect to

the inner product 〈−,−〉 is zero, and denote the set of all such elements by

Nϕ := {
∑n
i=1 ai ⊗ ζi| 〈

∑n
i=1 ai ⊗ ζi,

∑n
i=1 ai ⊗ ζi〉 = 0 for ai ∈ A, ζi ∈ H, n ∈ N}.

By Cauchy-Schwartz inequality we have

|〈x, y〉|2 6 〈x, x〉.〈y, y〉,

which implies that if 〈x, x〉 = 0, then 〈x, y〉 = 0, for every y. Therefore, we have

{
∑n
i=1 ai ⊗ ζi| 〈

∑n
i=1 ai ⊗ ζi,

∑m
j=1 bj ⊗ ηj〉 = 0 for bj ∈ A, ηj ∈ H,m ∈ N},

which shows that Nϕ is a subspace of A⊗H. Hence, we can consider the quotient space

(A⊗H)/Nϕ, on which the inner product 〈−,−〉 is positive definite.

Now, we consider K as the completion of (A⊗H)/Nϕ with respect to the norm

‖ − ‖ = 〈−,−〉 12 .

Construction of V :

Consider V : H → K, given by V (η) := [1⊗ η]. We must show that V is an isometry.

i.e, ‖V η‖ = ‖η‖, for every η ∈ H.

To show the desired equality, we note that

〈V η, V η〉 = 〈1⊗ η, 1⊗ η〉 = (ϕ(1), η) = (η, η) = ‖η‖2.
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Construction of ρ : A→ B(K):

Define

ρ(a) ([
∑
ai ⊗ ηi]) := [

∑
aai ⊗ ηi].

In order to prove that ρ is a well-defined map, we must show
∑
ai ⊗ ηi ∈ Nϕ implies∑

aai ⊗ ηi ∈ Nϕ.
It is enough to notice that we have the following:

(16.2)

〈
n∑
i=1

aai ⊗ ζi,
n∑
i=1

bi ⊗ ηi〉 =
∑
i,j

(
ϕ(b∗jaai)ζi, ηj

)
= 〈

n∑
i=1

ai ⊗ ζi,
n∑
i=1

a∗bj ⊗ ηj〉 = 0,

where we used b∗jaai = (a∗bj)
∗ai.

Exercise 16.2. Show that ‖ρ(a)‖ 6 ‖a‖.

Now, we can extend ρ(a) on K, for every a ∈ A. We also have ρ is linear and

multiplicative.

Exercise 16.3. Show that ρ(a∗) = ρ(a)∗, for every a ∈ A.

Checking that ϕ(a) = V ∗ρ(a)V :

We have V : H → K and V ∗ : K → H. Moreover, from

(16.3)

(
V ∗
[∑

ai ⊗ ζi
]
, η
)

= 〈
[∑

ai ⊗ ζi
]
, V η〉

= 〈
[∑

ai ⊗ ζi
]
, [1⊗ η]〉

=

(∑
i

ϕ(ai)ζi, η

)
,

we get

V ∗ ([
∑
i ai ⊗ ζi]) =

∑
i ϕ(ai)ζi.

Hence,

V ∗ρ(a)V η = V ∗ρ(a) [1⊗ η] = V ∗ [a⊗ η] = ϕ(a)η.

This shows the desired result and finishes the proof. �

Remark 16.4. If ϕ : A→ C is a positive functional, then Stienspring’s theorem gives the

GNS-construction for ϕ.

Remark 16.5. If A and H are separable, then so is K, and furthermore, K ' H.

Remark 16.6. K = V (H)⊕ V (H)⊥. With respect to this decomposition, we have
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ρ(a) =

(
ϕ(a)

...
... ...

)
.

Convention: From now on, all algebras are assumed to be unital.

Theorem 16.7. [τ ] ∈ Ext(A) has an inverse element if and only if there exists a unital

completely positive map ϕ : A→ B(H), such that τ = π ◦ ϕ = ϕ̇.

Proof. (If): Let’s assume τ = ϕ̇ and ϕ is completely positive. By Stinespring’s theorem,

there exists a unital ∗-homomorphism ρ : A→ B(H) such that

ρ =

(
ϕ ψ2

ψ3 ψ4

)
.

Therefore,

ρ̇ =

(
ϕ ψ̇2

ψ̇3 ψ̇4

)
.

Claim: ψ̇2 = 0 = ψ̇3 and ψ̇4 is a ∗-homomorphism.

proof of the claim: ρ is a ∗-homomorphism. Then, it preserves involution, i.e., ρ(a∗) =

ρ(a)∗. Therefore, (
ϕ(a∗) ψ2(a∗)
ψ3(a∗) ψ4(a∗)

)
=
(

ϕ(a)∗ ψ3(a)∗

ψ2(a)∗ ψ4(a)∗

)
,

which implies ψ4(a∗) = ψ4(a)∗ and ψ2(a∗) = ψ3(a)∗.

Since ρ(ab) = ρ(a)ρ(b), we get(
ϕ(ab) ψ2(ab)
ψ3(ab) ψ4(ab)

)
=

(
ϕ(a) ψ2(a)
ψ3(a) ψ1(a)

)(
ϕ(b) ψ2(b)
ψ3(b) ψ4(b)

)

=

(
ϕ(a)ϕ(b) + ψ2(a)ψ3(b) ...

... ψ3(a)ψ2(b) + ψ1(a)ψ4(b)

)
.

Hence, ϕ̇(ab) = ϕ̇(a)ϕ̇(b) + ψ̇2(a)ψ̇3(b).

But, ϕ̇ = τ implies τ(ab) = τ(a)τ(b) + ψ̇2(a)ψ̇3(b), which simplifies to

ψ̇2(a)ψ̇3(b) = 0, for ∀a, b ∈ A.

Therefore, assuming a = b∗, we get

ψ̇2(b∗)ψ̇3(b) = 0, for ∀b ∈ A.

Since we previously showed that ψ2(a∗) = ψ3(a)∗, we have ψ̇2(a∗) = ψ̇3(a)∗, and con-

sequently ψ̇3(b)∗ψ̇3(b) = 0, which implies ψ̇3(b) = 0, ∀b ∈ A, hence ψ̇3 = 0. Since

ψ̇2(a∗) = ψ̇3(a∗), we conclude that ψ̇2 = 0. Since ψ̇4(ab) = ψ̇3(a)ψ̇2(b) + ψ̇4(a)ψ̇4(b), we

conclude that ψ̇4 is a *-homomorphism.

Therefore,



52 TATIANA SHULMAN (NOTES TEX’D BY KONRAD AGUILAR)

ρ̇ =

(
τ 0

0 ψ̇4

)
,

where ψ̇4 is a ∗-homomorphism, but it may not be injective!

�
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17. 11 October 2016, Tex’d by Kaveh Mousavand

At the end of the previous lecture we wanted to prove the following theorem:

Theorem 17.1. [τ ] ∈ Ext(A) is invertible if and only if there exists a unital completely

positive map ϕ : A→ B(H), such that τ = π ◦ ϕ = ϕ̇.

We already showed that

ρ̇ =

(
τ 0

0 ψ̇4

)
,

where ψ̇4 is a ∗-homomorphism. However, we pointed out that it may not be injective!

In order to tackle this issue, we consider τ 0 0

0 ψ̇4 0
0 0 ρ̇1

 =

(
ρ̇ 0
0 ρ̇1

)
=

(
ρ 0
0 ρ1

)·
,

such that the bottom right block is injective and we get

[τ ]⊕
[
ψ̇4 ⊕ ρ̇1

]
= [trivial].

Namely,
[
ψ̇4 ⊕ ρ̇1

]
is the inverse for [τ ].

We complete the proof by showing the other side of the assertion, as following:

Proof. (⇐ Only if)

Suppose [τ ]⊕ [σ] = [trivial]. Then(
τ 0
0 σ

)
= ρ̇ =

(
ψ̇1 ψ̇2

ψ̇3 ψ̇4

)
,

where

ρ =

(
ψ1 ψ2

ψ3 ψ4

)
.

Then τ = ψ̇1, where ψ is unital and completely positive. �

In the following, we show that if A is a nuclear and separable algebra, then every uni-

tal completely positive map A→ B/I lifts to a unital completely positive map A→ B,

here B is any unital C∗-algebra and I an arbitrary ideal of B.

Before we get to the details, we recall some definitions.

Definition 17.2. A is called a nuclear C∗-algebra if there exist unital completely positive

maps δn : A → Mn and γn : Mn → A, such that for every a ∈ A, we have limn→∞ γn ◦
δn(a) = a.

A
id //

δn   

A

Mn

γn

>>
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Exercise 17.3. Show that C(X) is nuclear.

Definition 17.4. If ϕ : A→ B/I is a unital completely positive map, it is called liftable

if there exists a unital completely positive ψ : A→ B such that ϕ = π ◦ ψ ≡ ψ̇. Thus we
have the following diagram commutes:

B

π

��
A

∃ψ
==

ϕ
// B/I

Theorem 17.5. (Choi-Effros)

Let A be a unital nuclear and separable C∗-algebra. If B is a unital C*-algebra and I is

an ideal of B, then every unital completely positive map A→ B/I is liftable to A→ B.

The following proof is given by Arveson:

Proof. The proof of this theorem requires the following steps:

Step 1: The set of all liftable unital completely positive maps from A to B/I is a

closed set in the pointwise convergence topology. i.e., if ϕn(a) → ϕ(a) for every a ∈ A,
and ϕn are liftable, then so is ϕ.

Step 2: Every unital completely positive Mn → B/I is liftable.

Before we prove the above-mentioned assertions, let’s check that they will finish the

proof of the theorem.

Let’s assume the statements of 1 and 2 both hold. Let ϕ : A −→ B/I be a unital

completely positive map. Consider the following diagram.

B

π

��
A

δn

��

idA // A

==

ϕ
// B/I

Mn

γn

>>

By nuclearity, idA is the pointwose limit of γn ◦ δn. Hence, ϕ is the pointwise limit of

ϕ ◦ γn ◦ δn. Note that ϕ ◦ γn : Mn −→ B/I. Hence by the 2nd assumption, there exist

unital c.p. maps ψn : Mn −→ B such that ψ̇n = ϕ ◦ γn. Thus, ϕ ◦ γn ◦ δn = (ψn ◦ γn)·.

Therefore, ϕ is the pointwise limit of liftable unital c.p. maps. By the 1st assumption, ϕ

is liftable. �

Now we prove each of the assertions separately.
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Proof of Step 2. We need to use Choi’s Criterion, which is the following:

Let ϕ : Mn → D be a linear map, then ϕ is completely positive if and only if

(ϕ(eij))
n
i,j=1 > 0, where eij is the elementary matrix with 1 as the (i, j)-th entry and 0

elsewhere.

Now, if we suppose ϕn : Mn → B/I is a unital completely positive map, by Choi’s

criterion we have (ϕ(eij))
n
i,j=1 > 0 in Mn(B/I) = Mn(B)/Mn(I).

Lemma 17.6. If x ∈ (B/I)+, there exists b ∈ B+ such that ḃ = x.

Proof of Lemma. Suppose x = y∗y and take b1 such that ḃ1 = y. Then, (b∗1b1)̇ = x. �

By the previous lemma, there exists (bi,j)
n
i,j=1 ∈Mn(B)+ such that(

(bij)
n
i,j=1

)•
= (ϕ(eij))

n
i,j=1.

Define ψ : Mn(A)→ B by ψ(eij) = bij .

By Choi’s criterion ψ is completely positive, because

(ψ(eij))
n
i,j=1 = (bij)

n
i,j=1 > 0.

Thus, ψ is c.p. and ψ̇ = ϕ since ψ̇(eij) = ϕ(eij),∀i, j. However, ψ might not be unital.

We note that ψ(1) = 1 + k for k = k∗, and use the following fact:

Fact: If k = k∗, then k = k1− k2, for some k1, k2 > 0. In fact, k1 = f(k), and k2 = g(k),

where f, g are continuous functions and f(0) = g(0) = 0.

Therefore, if ψ(1) = 1 + k, for k = k∗, then k = k1− k2, where k1, k2 > 0. Fix a state

σ on B and consider ψ̃ : A −→ B defined by

ψ̃(a) := (1 + k1)−
1
2 (ψ(a) + σ(a)k2)(1 + k1)−

1
2 .

Thus,

ψ̃(1) := (1 + k1)−
1
2 (1 + k1 − k2 + k2)(1 + k1)−

1
2 = 1.

We want to show that ψ̃ is a lift of ϕ. Since ˙̃
ψ(1) = 1, we get k̇ = 0 and by the above

Fact, k̇1 = 0 and k̇2 = 1. Consequently, ˙̃
ψ(a) = ϕ(a), as desired. ψ̃ is c.p. by the following

fact:

Exercise 17.7. For a state G and b > 0, the map given by a 7→ G(a)b is completely

positive.

Therefore, due to the above exercise, ˙̃
ψ is a unital completely positive lift of ϕ and

we are done. �
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18. 12 October 2016

Today we finish the proof of the Choi-Effros Theorem (17.5). To do this, all that

remains is to prove Step 1 in the proof of Choi-Effros Theorem (17.5). We restate this

as a Theorem since it is the main tool for the Choi-Effros Theorem and it is most of the

focus of today.

Theorem 18.1. Let A be a unital separable C*-algebra and B be a C*-algebra. If I is

and ideal of B, then the set of liftable u.c.p. ( unital completely positive) A −→ B/I is

closed in the point-norm topology.

The proof of this Theorem relies on the notion of quasi-central approximate units.

Definition 18.2. Let I be an ideal in a C*-algebra B. Let {uλ} ⊆ I be a net of positive

elements. An approximate unit {uλ} ⊆ I is an increasing net such that ‖uλ‖ 6 1 and

limλ iuλ = limλ uλi = i for all i ∈ I.
If in addition, ∀b ∈ B, ‖[uλ, b]‖ −→ 0, then {uλ} is quasi-central.

Theorem 18.3. [Arveson; Ackemann and Pedersen] Every ideal in every C*-algebra has

a quasi-central approximate unit (q.a.u).

Before we prove our main theorem, we prove a lemma that is useful in general, which

helps us compute norms in quotients. In fact, the following lemma can be used to show

that the quotient norm induced by an ideal of a C*-algebra satisfies the C*-identity, and

therefore quotients are C*-algebras.

Lemma 18.4. Let B be a C*-algebra and I an ideal. For b ∈ B, let ḃ ∈ B/I denote the

image of b under the quotient map.

If {uλ} is an approximate unit in I and b ∈ B, then

‖ḃ‖B/I = lim
λ
‖b(1− uλ)‖B.

Proof. It is enough to prove

lim sup
λ
‖b(1− uλ)‖B 6 ‖ḃ‖B/I 6 lim inf

λ
‖b(1− uλ)‖B

since clearly the right hand side is less than or equal to the left hand side in general.

By definition, ‖ḃ‖B/I = infi∈I ‖b+ i‖B.

Now, fix i ∈ I. Note that 1− uλ is a contraction. Thus,

‖b+ i‖B > ‖(b+ i)(1− uλ)‖B = ‖b(1− uλ) + i(1− uλ)‖B.

Hence, the net on the right hand side is bounded above and by the definition of approx.

unit limλ i(1− uλ) = lim i− iuλ = 0. These together imply that

‖b+ i‖B > lim sup
λ
‖b(1− uλ)‖B, ∀i ∈ I.



NONCOMMUTATIVE TOPOLOGY 57

Thus, since the right hand side is a lower bound for the left hand side for all i ∈ I, the
infimum is

‖ḃ‖B/I > lim sup
λ
‖b(1− uλ)‖B.

Next, since I is an ideal and {uλ} ⊆ I, we have that buλ ∈ I for all λ. Therefore,

‖ḃ‖B/I = inf
i∈I
‖b+ i‖B 6 ‖b− buλ‖B = ‖b(1− uλ)‖B, ∀λ

and ‖ḃ‖B/I 6 lim infλ ‖b(1− uλ)‖B. �

Now, we are in a position to prove Theorem (18.1).

Proof of Theorem (18.1). For n ∈ N, let ϕn : A −→ B/I be liftable u.c.p. maps such

that there exists ϕ : A −→ B/I with ϕn(a)→ ϕ(a) for all a ∈ A.

Recall the following general fact from analysis. If xn → x then there exists a subse-

quence xnk such that ‖xnk − xnk+1
‖ 6 1/2k.

Therefore, by separability let a1, a2, . . . ∈ A be a dense subset of A and passing to

subsequences we can assume for each n ∈ N, we have

‖ϕn(ai)− ϕn+1(ai)‖ 6 1/2n, i = 1, . . . , n.

By assumption, for each n ∈ N, let ψn : A −→ B be the lift of ϕn. We will construct new

lifts ψ̃n that converge in point-norm. Namely, we will find ψ̃n’s such that for all n ∈ N
and i = 1, . . . , n

‖ψ̃n(ai)− ψ̃n+1(ai)‖ 6 1/2n−1.

By Theorem (18.3), let {uλ} be a q.a.u. for I. Define

ψ̃1 := ψ1.

For the next map, fix λ. We will specify later which λ.

ψ̃2(a) := (1− uλ)1/2ψ2(a)(1− uλ)1/2 + u
1/2
λ ψ̃1(a)u

1/2
λ .

Before we estimate, ‖ψ̃2(a)− ψ̃1(a)‖, we verify some basic limits.

Claim 18.5. If b ∈ B, then limλ ‖b(1−uλ)−(1−uλ)1/2b(1−uλ)1/2‖ = 0 and limλ ‖buλ−
u

1/2
λ bu

1/2
λ ‖ = 0.

Proof of claim. By q.a.u., ‖[uλ, b]‖ → 0 implies that ‖[(1−uλ)1/2, b]‖ → 0 since (1−uλ)1/2

is a continuous function of uλ. Now, note that (1−uλ)1/2 is contractive since by the C*-

identity ‖(1− uλ)1/2‖2 = ‖1− uλ‖ 6 1. Therefore,

‖b(1− uλ)− (1− uλ)1/2b(1− uλ)1/2‖ = ‖
(
b(1− uλ)1/2 − (1− uλ)1/2b

)
(1− uλ)1/2‖

= ‖[(1− uλ)1/2, b](1− uλ)1/2‖

6 ‖[(1− uλ)1/2, b]‖ · ‖(1− uλ)1/2‖

6 ‖[(1− uλ)1/2, b]‖ · 1→ 0.

The proof of the second limit is similar. �
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Let ε > 0. The ≈2ε in the following expression is provided by the Claim and the ≈ε
is provied by Lemma (18.4).

‖ψ̃2(a)− ψ̃1(a)‖ = ‖(1− uλ)1/2ψ2(a)(1− uλ)1/2 + u
1/2
λ ψ̃1(a)u

1/2
λ − ψ̃1(a)‖

≈2ε ‖ψ2(a1)(1− uλ) + ψ̃1(a1)uλ − ψ̃1(a1)‖

= ‖ψ2(a1)(1− uλ)− ψ̃1(a1)(1− uλ)‖

= ‖(ψ2(a1)− ψ̃(a1))(1− uλ)‖

≈ε ‖ψ̇(a1)− ˙̃
ψ1(a1)‖

= ‖ϕ2(a1)− ϕ1(a1)‖ < 1/2

So, fix ε = 1/6 and choose λ for ψ̃2 dependent on this ε. Thus, by the above expression

‖ψ̃2(a)− ψ̃1(a)‖ < 1/2 + 3ε = 1/2 + 3(1/6) = 1.

Next, fix η and define

ψ̃3 := (1− uη)1/2ψ3(1− uη)1/2 + u
1/2
η ψ̃2u

1/2
η . And, similarly define η such that

‖ψ̃3(ai)− ψ̃2(ai)‖ < 1/2, i = 1, 2.

Continue in this manner to define ψ̃n for all n ∈ N.
Recalling another basic analysis fact, if ‖xn−xn+1‖ < 1/2n−1 for all n ∈ N, then xn

converges. This is an easy exercise.

Thus, define ψ on the dense subset (ai) ⊂ A by ψ̃n(ai) −−−−→
n→∞

ψ(ai) for all i ∈ N.

Now, an application of Stinespring’s Theorem (15.13) is that the norm of u.c.p. maps

are bounded by 1. Thus, this uniform bound and the density of (ai) ⊂ A together with

the above imply that limit that ψ can be extended to all of A with ‖ψ‖ 6 1. Now,

ψ̃n(a) → ψ(a) for all a ∈ A implies that ψ is unital and positive since positive elements

form a closed set. Also, as ψn are completely positive, one could show that ψ is completely

positive. Finally,

ψ̇(a) = lim
˙̃
ψ(a) = limϕn(a) = ϕ(a).

Thus, ψ is a u.c.p lift of ϕ. �

Theorem 18.6 (1977). If A is a nuclear separable C*-algebra, then Ext(A) is a group.

What about non-nuclear? In 1978, J. Anderson proved that there exists a C*-subalgerba

A ⊂ C∗r (F2) such that Ext(A) is not a group, where C∗r (F2) is the reduced group C*-

algebra of the free group in 2 generators.

In 2005, Haagerup and Thorbjornsen showed that Ext(C∗r (F2)) is not a group.

Proposition 18.7. Ext : A −→ Ext(A) is a contravariant functor from the category of

nuclear and separable C*-algebras to the category of abelian groups.

Proof. Let A
f−→ B. We define Ext(B)

f∗−→ Ext(A) in the following way. Let τ : B −→
B(H)/K(H) be an injective *-homomorphism. Now, τ ◦ f : A −→ B(H)/K(H) which is
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a *-homomorphism that is not necessarily injective. Thus, define f∗([τ ]) := [τ ◦ f ⊕ ρ̇]

where ρ̇ is any trivial extension of A.

Claim 18.8. f∗ is well-defined

Proof of claim. This proof involves 2 steps that are left as exercises.

(1) Let ρ̇1 be another trivial extension of A. Check that τ ◦ f ⊕ ρ̇1 ∼ τ ◦ f ⊕ ρ̇.
(2) If τ ∼ τ ′, then τ ◦ f ⊕ ρ̇ ∼ τ ′ ◦ f ⊕ ρ̇.

�

Claim 18.9. f∗ is a group homomorphism.

Proof of claim. Check that f∗([τ ]⊕ [σ]) = f∗([τ ])⊕ f∗([σ]), which is left as an exercise.

�

The remaining properties of a contravariant functor are easy to check. �

19. 13 October 2016

Today, we discuss how we may compute extension groups. Before we continue, we

need one more thing about index.

Proposition 19.1. If T, S are Fredholm operators, then j(TS) = j(T ) + j(S).

Proof. Recall Corollary (13.9), which states that a family of Fredholm operators on a

continuous path have the same index. Now, if
(
TS

1

)
and

(
S

T

)
can be conn-

tected by continuous path of Fredholm operators, then we would be done since Corollary

(13.9) along with Observation (13.3) would imply

j(TS) = j(TS) + j(1) = j

(
TS

1

)
= j

(
S

T

)
= j(T ) + j(S)

since 1 is invertible. For the continuous path, for t ∈ [0, 1] define Fredholm operators

Ft :=

(
cos(2πt)1 sin(2πt)1
− sin(2πt)1 cos(2πt)1

)(
1

T

)(
cos(2πt)1 − sin(2πt)1
sin(2πt)1 cos(2πt)1

)(
S

1

)
.

F0 =

(
1

T

)(
S

1

)
=

(
S

T

)
and

F1 =

(
0 1
−1 0

)(
1

T

)(
0 −1
1 0

)(
S

1

)
=

(
0 T
−1 0

)(
0 −1
S 1

)
=

(
TS 0
0 1

)
.

�
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The last tool that we need from index theory for today is the following. By Corollary

(13.11), we were able to define index for invertibles in the Calkin algebra. Indeed, if

x ∈ Q(H) is invertible, then j(x) := j(T ) such that T ∈ B(H) and Ṫ = x. Next, we move

on to our main tool for calculating certian extension groups.

19.1. Fredholm index map. Let A be a unital C*-algebra.

Inv(A) is a group under multiplication.

Inv(A)0 is defined to be the connected component of 1. It is a normal subgroup of

Inv(A). Indeed, let a, b ∈ Inv(A)0, then there are continuouts paths at from a to 1 and

bt from b to 1. However, atbt is a continuous path from ab to 1. Now, let c ∈ Inv(A),

then catc−1 is a continuous path from cac−1 to 1, which provides that Inv(A)0 is normal.

Hence, we may define.

Definition 19.2. π1(A) := Inv(A)/Inv(A)0 is a group since Inv(A)0 is a normal subgroup

of Inv(A). For a ∈ Inv(A), let [a] ∈ Inv(A)/Inv(A)0 denote its equivalence class.

Fredholm index map: Fix [τ ] ∈ Ext(A). Fix a ∈ Inv(A). Since τ : A −→ Q(H) is an

injective *-isomorphism, τ(a) ∈ Q(H) is invertible and by the comments above, j(τ(a))

is defined. We may define

a ∈ Inv(A) 7−→ j(τ(a)) ∈ Z.

However, we would like to replace Inv(A) with π1(A). We can do this if the above map

vanishes on Inv(A)0. Let a ∈ Inv(A)0. Then, there is a continuous path at from a to 1A.

Therefore, τ(at) is a continuous path from τ(a) to 1Q(H). Hence, j(τ(a)) = j(1Q(H)) = 0.

Therefore, we may define

γτ : [a] ∈ π1(A) 7−→ j(τ(a)) ∈ Z.
Next, we prove some important properties of this map.

Proposition 19.3. γτ is a group homomorphism.

Proof. By Proposition (19.1),

γτ ([a][b]) = γτ ([ab]) = j(τ(ab)) = j(τ(a)τ(b)) = j(τ(a)) + j(τ(b)) = γτ ([a]) + γτ ([b]).

�

Proposition 19.4. If τ ∼ τ ′, then γτ = γτ ′ .

Proof. There exists unitary U ∈ B(H) such that τ(·) = U̇∗τ ′(·)U̇ .
Let a ∈ Inv(A). By Proposition (19.1) and Observation (13.3),

γτ ([a]) = j(τ(a))

= j(U̇∗τ ′(a)U̇)

= j(U̇∗) + j(τ ′(a)) + j(U̇)

= −j(U̇) + j(τ ′(a)) + j(U̇)

= j(τ ′(a)) = γτ ′([a]).
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�

By these last two propositions, the following map is well-defined

[τ ] ∈ Ext(A)
γ7−→ γ([τ ]) := γτ ∈ Hom(π1(A),Z)

in which

(19.1) γ([τ ])([a]) = γτ (a) = j(τ(a)).

γ is called the Fredholm index map.

In general, if G is a (semi)group, then Hom(G,Z) is an abelian group with addition

defined by: if f1, f2 ∈ Hom(G,Z) then (f1 + f2)(g) := f1(g) + f2(g). Thus, it is natural

to ask if γ is a (semi)group homomorphism. The answer is yes, and if A is nuclear and

separable, then Ext(A) is a group and γ would be a group homomorphism. This is the

following proposition.

Proposition 19.5. γ is a (semi)group homomorphism.

Proof. We approach the proof through 3 Claims.

Claim 19.6. γ([τ ]⊕ [σ]) = γ([τ ]) + γ([σ]).

Proof of claim. By Observation (13.3),

γ([τ ]⊕ [σ])([a]) = γ

([(
τ

σ

)])
([a])

= j

((
τ(a)

σ(a)

))
= j(τ(a)) + j(σ(a))

= γ([τ ])([a]) + γ([σ])([a])

= (γ([τ ]) + γ([σ]))([a])

�

Claim 19.7. γ([trivial]) = 0 ∈ Hom(π1(A),Z).

Proof of claim. Assume that ρ̇ : A −→ Q(H) is a trivial extension, so there exists an

injective *-homomorphism ρ : A −→ B(H) such that ρ̇ = π ◦ ρ where π : B(H) −→ Q(H)

is the quotient map. Note that since ρ is an injective *-homomoprhism, if a ∈ Inv(A),

then ρ(a) ∈ Inv(B(H) and thus has 0 index. Thus, since all trivial extensions are in the

same equivalence class by Corollary (15.6),

γ([trivial])([a]) = j(ρ̇(a)) = j(ρ(a)) = 0, ∀a ∈ a ∈ Inv(A).

�

Claim 19.8. γ([τ ]−1) = −γ([τ ]).
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Proof.

0 = γ([trivial]) = γ([τ ]−1 ⊕ [τ ]) = γ([τ ]−1) + γ([τ ]).

�

�

Now, γ is not always an isomorphism (not even for the abelian case in general). How-

ever, it is and isomorphism when A = C(X), where X ⊂ C is compact. But, this was our

initial goal. Recall, Main Problem (14.1), which was to classify essentially normal opera-

tors with spectrum X. A goal of that section was to show that this problem translated to

calculating the group Ext(C(X)), which is stated after Definition (14.6). The fact that

γ is an isomorphism in this case is the Brown-Douglas-Fillmore theorem.

Theorem 19.9. [Brown, Douglas, Fillmore] When X is a compact subset of C,

γ : Ext(C(X)) −→ Hom(π1(C(X)),Z)

is an isomorphism.

The proof of injectivity is extremely difficult and oustide the scope of this course.

However, after introducing some further results, we can tackle surjectivity. We begin

with the following, which allows us to identify π1(C(X)) in this case.

Theorem 19.10. When X is a compact subset of C, the group π1(C(X)) is the free

abelian group generated by {[z − λi]} where z is the identity function on X and each λi
corresponds to exactly one point in each bounded connected component of C \X.

Corollary 19.11. If there are n bounded connected components of C\X, then π1(C(X)) =

Zn.

On our way to surjectivity, we recall the winding number of a continuous non-zero

complex valued function on the circle. Let f : T −→ C \ {0} be continuous, then the

winding number wind(f) is the number of revolutions of f around {0} with respect to

1 revolution around the circle T. For example, if f(z) = z2, then wind(f) = 2, and if

f(z) = zn, then wind(f) = n.

We finish today with the following lemma.

Lemma 19.12. If f : T −→ C \ {0}, then j(f(U̇+)) = −wind(f), where U+ is the

unilateral shift.

Proof. Assume that wind(f) = n. Then, f is homotopic to zn. Indeed, we can write f as

f(z) = |f(z)|eiargf(z), and define for t ∈ [0, 1]

ft(x) = |f(x)|1−tei((1−t)argf(x)+t2πix).

Thus, f0 = f and f1(·) = ei2π(·)n = zn.
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In particular, ft(U̇+) forms a continuous path from f(U̇+) to U̇+
n
. Therefore, by

Proposition (19.1), Observation (13.3), and Corollary (13.9), we have

j(f(U̇+) = j(U̇+
n
) = nj(U̇+) = nj(U+) = n · −1 = −n.

�

20. 14 October 2016

Recall from yesterday, we defined the Fredholm Index map

γ : Ext(A) −→ Hom(π1(A),Z),

where A is a C*-algebra. This map is not an isomorphism in general, but it is an iso-

morphism when we need it to be, which is the case A = C(X) for X ⊂ C compact, for

the purpose of classifying essentially normal operators. This is Brown-Douglas-Fillmore

Theorem (19.9). We restate it here for convenience.

Theorem (19.9) [Brown-Douglas-Fillmore]: If X ⊂ C is compact, then

γ : Ext(A) −→ Hom(π1(A),Z)

is an isomorphism.

We only prove surjectitivity. We do not have time to prove injectivity.

Proof of surjectivity in Theorem (19.9). Let X ⊂ C be compact. Let O1, . . . , On be the

bounded connected components of C \X. For each i = 1, . . . n, fix λi ∈ Oi. By Theorem

(19.10), [z − λi] are generators for π1(C(X)) where z is the identity function on X.

Now, there are n-generators of Hom(π1(C(X)),A), which we denote hi and are de-

termined by

hi([z − λk]) =

{
1 : i = k

0 i 6= k.

Thus, for surjectivity, without loss of generality, it is enough to show that there exists

[τ ] ∈ Ext(C(X)) such that γ([τ ]) = h1 or that

γ([τ ])([z − λi]) = hi([z − λk]) =

{
1 : i = 1

0 i 6= 1.

We can translate this to a problem about essentially normal operators by the one-to-

one correspndence (up to certain equivalences) from 06 October lecture. We now recall

this correspendence.

Let τ : C(X) −→ Q(H) be an injective *-homomorphism. If z is the identity function

onX, then let T be any preimage of τ(z) under the quotient map. Note that σess(T ) = X.

Also, if T ∈ Q(H) is normal, then define τ(f) := f(Ṫ ).

Thus, if T corresponds to τ by the above correspndence, then Ṫ − λi is invertible in

Q(H) and by Expression (19.1), we have the index

γ([τ ])([z − λi]) = j(τ(z − λi)) = j(Ṫ − λi).
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Therefore, our problem of surjectivity reduces to finding an essentially normal operator

T with σess(T ) = X such that

j(Ṫ − λi) =

{
1 : i = 1

0 i 6= 1.

Let’s first look at some cases for X.

Case 1. Assume X = Γ, where Γ is a single simple closed curve.

Proof of Case 1. Need to find essentially normal operator T such that j(Ṫ −λ1) = 1 and

σess(T ) = Γ, where λ1 lies inside Γ.

Now, since Γ is a simple closed curve, there exists a homeomorphism f : T −→ Γ in

which T has counter orientation to Γ. Now, consider the unilateral shift, U+. σess(U+) =

σ(U̇+) = T. Hence, by continuous functional calculus, we may define T to be any preimage

of f(U̇+) under the quotient map. Now, note by construction and counter orientation,

wind(f − λ1) = −1. Therefore, by Lemma (19.12),

j(Ṫ − λ1) = j((f − λ1)(U̇+)) = −wind(f − λ1) = −(−1) = 1.

Also, σess(T ) = σ(f(U̇+)) = f(σ(U̇+)) = f(T) = Γ. �

Case 2. Assume X = E is a simple closed curve union its interior. In particular, C \X
contains no bounded connected components.

Proof of Case 2. Let x1, x2, . . . ∈ X be a countable dense subset of X. Define

N =



x1

x1

. . .
x2

. . .
x3

. . .


.

Thus, N is normal and σess(N) = X. �

Case 3. Assume X is the union of a set from Case 1 and a set from Case 2 in which

the two sets are disjoint.

Proof of Case 3. Assume X = Γ ∪ E. Define T for Γ and N for E from their respective

case. Let M = T ⊕N . �

Now, consider O1. Let Γ0 be a simple cloased curve that contains O1. Now, the

boundary of O1 is Γ0 ∪Γ1 ∪ . . .Γn the union of oriented simple closed curves in which Γ0

has positive orientation and Γ2, . . . ,Γn have counter orientation to Γ0. Now, assume the

circle T has positive orientation. Let fi : T −→ Γi be homeomorphisms and as in Case
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1, let Ti be any preimage of fi(U̇+). Define

T =


T0

. . .
Tn

N

 ,

where N is normal with σess(N) = X. �

Corollary 20.1 (Classification of essentially normal operators). If T1, T2 are essentially

normal operators, then T1 ∼ T2 if and only if σess(T1) = σess(T2) and the index j(T1 −
λ) = j(T2 − λ) for all λ 6∈ σess(T1).

Proof. Only if: Assume that T1 ∼ T2. Thus, there exists unitary U ∈ B(H) such that T1 =

U∗T2U+K where K is compact. We already showed in a previous lecture that σess(T1) =

σess(T2). Now, let λ 6∈ σess(T1). Then, λ 6∈ σ(Ṫ1) ⇐⇒ Ṫ1 − λ ∈ Inv(Q(H)) =⇒
T1 is Fredholm =⇒ j(T1 − λ) is defined. Thus, since index is unchanged by compact

perturbations and index of finite products is sum of index and j(U∗) = −j(U), we have

j(T1 − λ) = j(U∗T2U − λ+K) = j(U∗T2U − U∗λU) = j(U∗(T2 − λ)U) = j(T2 − λ).

If: Let T1, T2 be essentially normal operators such that X := σess(T1) = σess(T2) and

j(T1−λ) = j(T2−λ) for all λ 6∈ X. Define injective *-homomorphisms τ1, τ2 : C(X) −→
Q(H) by τ1(f) = f(Ṫ1) and τ2(f) = f(Ṫ2), which are well-defined by assumption. There-

fore, it is enough to show that τ1 ∼ τ2 or equivalently [τ1] = [τ2] ∈ Ext(C(X)). Fix one

λi 6∈ X for each connected component of C\X. Then, by assumption, Expression (19.1),

and injectivity of γ by the Brown-Douglas-Fillmore Theorem (19.9),

j(T1 − λi) = j(T2 − λi) ∀i =⇒ j(Ṫ1 − λi) = j(Ṫ2 − λi) ∀i

=⇒ j(τ1(z − λi)) = j(τ2(z − λi)) ∀i

=⇒ γ([τ1])([z − λi]) = γ([τ2])([z − λi]) ∀i

=⇒ γ([τ1]) = γ([τ2])

=⇒ [τ1] = [τ2] ∈ Ext(C(X)).

�

Recall, that the unilateral shift is essentially normal, but is not of the form "normal

+ compact." But, for these, we can now classify them.

Corollary 20.2. An essentially normal operator has the form "normal +compact" if

and only if j(T − λ) = 0 for all λ 6∈ σess(T ).

Proof. Only if: Assume T = N+K, whereN is normal andK is compact. Fix λ 6∈ σess(T )

so that j(T − λ) is defined and note that N − λ is normal and recall that the index is

unchanged by compact perturbation. Thus,

j(T − λ) = j(N − λ+K) = j(N − λ) = 0.
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If: Assume j(T − λ) = 0 for all λ 6∈ σess(T ). Let N be normal with σess(N) = σess(T ).

Thus, N − λ is Fredholm and normal for all λ 6∈ σess(T ). And, by normality, we have

j(N − λ) = 0 = j(T − λ)

for all λ 6∈ σess(T ). Hence, by previous corollary T ∼ N and so there exists unitary

U ∈ B(H) such that T = U∗NU +K where K is compact. But, U∗NU is normal. �

Assume X is a topological space, then X 7−→ Ext(C(X)) is a covariant functor

and a homotopy invariant (this is difficult). Also, there exist a sequence of covariant

homotopy invariant functors for X 7−→ Ext(C(SnX)) with long exact sequences that

forms generalized homology theory.

On the other hand, K-theory is a generalized cohomology theory (that is X 7−→
K0(X × Rn) is a sequence of contravariant functors which are homotopy invariant and

form long exact sequence). It turned out, that the above generalized homology theory

constructed by Brown, Douglas and Fillmore is dual to K-theory. Thus Brown, Douglas

and Fillmore found a concrete realization of K-homologies (K-homologies is by definition

the dual homology theory for K-theory and it was a problem of great interest to find out

its concrete realization)

21. Exercises

21.1. Day 2.

(1) Let ϕ : E −→ F be a morphism of vector bundles. Prove that ϕ is an isomorphism

⇐⇒ ϕ|Ex is an isomorphism for all x ∈ X.

(2) Prove that TS1 is trivial.

21.2. Day 3.

(1) Finish the proof of the "If:" part of Theorem (3.4).

21.3. Day 4.

(1) Prove Proposition (4.3).

(2) Prove Proposition (4.5).

21.4. Day 5.

(1) Prove Proposition (5.3).

(2) Prove Proposition (5.4).

(3) Prove Proposition (5.6).

(4) Prove Proposition (5.7).

(5) Prove Proposition (5.8).

21.5. Day 6.

(1) Finish the proof of Proposition (6.5).



NONCOMMUTATIVE TOPOLOGY 67

21.6. Day 9.

(1) Prove that Definition (9.2) and Definition (9.3) are equivalent.

(2) Verify (2) of Example (9.5).

(3) Finish the proof of Lemma (9.11).

21.7. Day 11.

(1) Prove Step (2) in the proof of Theorem (11.1).

21.8. Day 13.

(1) If N is normal and Fredholm, then j(N) = 0.

(2) Is the set of all invertible operators dense in B(H)?

21.9. Day 14.

(1) Show that if τ1 ∼ τ2, τ ′1 ∼ τ ′2, then [τ1] + [τ2] = [τ ′1] + [τ ′2].

(2) Prove Lemma (14.8).

21.10. Day 15.

(1) Solve Exercise (15.12).

21.11. Day 16. Solve Exercises (16.2, 16.3).

21.12. Day 17. Solve Exercises (17.3, 17.7)

21.13. Day 18. Prove Claims (18.8, 18.9).

E-mail address: konrad.aguilar@du.edu
URL: http://www.math.du.edu/~kaguilar/
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