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Singularities in the classical theory

Definition of a singularity
A spacetime is singular if it is incomplete with respect to a
timelike or null geodesic and if it cannot be embedded in a
bigger spacetime.

◮ Energy condition
◮ Condition on the global structure
◮ Gravitation strong enough to lead to the existence of a

closed trapped surface



Theorem (Hawking and Penrose 1970)
A spacetime M cannot satisfy causal geodesic completeness if,
together with Einstein’s equations, the following four conditions
hold:

1. M contains no closed timelike curves.

2. The strong energy condition is satisfied at every point.

3. The generality condition (. . . ) is satisfied for every causal
geodesic.

4. M contains either a trapped surface, or a point p for which
the convergence of all the null geodesics through p
changes sign somewhere to the past of p, or a compact
spacelike hypersurface

Strong energy condition:

ρ+
∑

i pi ≥ 0, ρ+ pi ≥ 0, i = 1, 2, 3



Cosmological singularities for homogeneous and
isotropic spacetimes

Classified by behaviour of scale factor a, energy density ρ,
pressure p:

Big Bang/Crunch a = 0 at finite proper time, ρ diverges

Type I (Big Rip) a diverges in finite proper time, ρ and p diverge

Type II or “sudden” (Big Brake/Big Démarrage) a finite, ρ finite,
p diverges, Hubble parameter finite

Type III (Big Freeze) a finite, both ρ and p diverge

Type IV a finite, both ρ and p finite, but curvature
derivatives diverge

Most of these singularities occur in spite of the violation of
energy conditions



Relation to observations
The observation of the Cosmic Microwave Background
Radiation (CMB) indicates that there is enough matter on the
past light-cone of our present location P to imply that the
divergence of this cone changes somewhere to the past of P .

but: inflationary phase in the early Universe may violate the
strong-energy condition; does this lead to singularity
avoidance?



What about inflation?

◮ Borde et al. (2003): Singularities are not avoided by an
inflationary phase if the universe has open spatial sections
or the Hubble expansion rate is bounded away from zero in
the past;

◮ Ellis et al. (2004): There exist singularity-free inflationary
models for closed spatial sections.

moreover: observation of “dark energy” suggests the possibility
of a future singularity at a finite a in the future (e.g. Big Rip/ Big
Brake)

Quantum gravitational avoidance of classical
singularities?



Main Approaches to Quantum Gravity

No question about quantum gravity is more difficult
than the question, “What is the question?”
(John Wheeler 1984)

◮ Quantum general relativity
◮ Covariant approaches (perturbation theory, path integrals,

. . . )
◮ Canonical approaches (geometrodynamics, connection

dynamics, loop dynamics, . . . )

◮ String theory
◮ Other approaches

(Causal sets, group field theory, . . . )

Topic here: Canonical quantum geometrodynamics

(For more details on all approaches, see e.g. in C. K., Quantum Gravity, 3rd ed.,

Oxford 2012)



Erwin Schrödinger 1926:
We know today, in fact, that our classical mechanics fails for
very small dimensions of the path and for very great curvatures.
Perhaps this failure is in strict analogy with the failure of
geometrical optics . . . that becomes evident as soon as the
obstacles or apertures are no longer large compared with the
real, finite, wavelength. . . . Then it becomes a question of
searching for an undulatory mechanics, and the most obvious
way is by an elaboration of the Hamiltonian analogy on the lines
of undulatory optics.1

1wir wissen doch heute, daß unsere klassische Mechanik bei sehr kleinen
Bahndimensionen und sehr starken Bahnkrümmungen versagt. Vielleicht ist
dieses Versagen eine volle Analogie zum Versagen der geometrischen Optik
. . . , das bekanntlich eintritt, sobald die ‘Hindernisse’ oder ‘Öffnungen’ nicht
mehr groß sind gegen die wirkliche, endliche Wellenlänge. . . . Dann gilt es,
eine ‘undulatorische Mechanik’ zu suchen – und der nächstliegende Weg
dazu ist wohl die wellentheoretische Ausgestaltung des Hamiltonschen Bildes.



Hamilton–Jacobi equation

Hamilton–Jacobi equation −→ guess a wave equation

In the vacuum case, one has

16πGGabcd
δS

δhab

δS

δhcd
−

√
h

16πG
( (3)R− 2Λ) = 0 ,

Da
δS

δhab
= 0

(Peres 1962)

Find wave equation which yields the Hamilton–Jacobi equation
in the semiclassical limit

WKB approximation:

Ψ[hab] = C[hab] exp

(

i

~
S[hab]

)



Quantum equations

In the vacuum case, one has

ĤΨ ≡
(

−2κ~2Gabcd
δ2

δhabδhcd
− (2κ)−1

√
h
(

(3)R− 2Λ
)

)

Ψ = 0,

κ = 8πG/c4

Wheeler–DeWitt equation

D̂aΨ ≡ −2∇b
~

i

δΨ

δhab
= 0

quantum diffeomorphism (momentum) constraint

Whether these equations hold at the most fundamental level or
not, they should approximately be valid away from the Planck
scale (if quantum theory is universally valid)



Problem of time

◮ no external time present; spacetime has disappeared!

◮ local intrinsic time can be defined through local
hyperbolic structure of Wheeler–DeWitt equation
(‘wave equation’)

◮ related problem: Hilbert-space problem –
which inner product, if any, to choose between wave
functionals?

◮ Schrödinger inner product?
◮ Klein–Gordon inner product?

◮ Problem of observables



Semiclassical approximation

Ansatz:
|Ψ[hab]〉 = C[hab]e

im2

P
S[hab]|ψ[hab]〉

(bra and ket notation refers to non-gravitational fields)

One evaluates |ψ[hab]〉 along a solution of the classical Einstein
equations, hab(x, t), corresponding to a solution, S[hab], of the
Hamilton–Jacobi equations; this solution is obtained from

ḣab = NGabcd

δS

δhcd
+ 2D(aNb)



∂

∂t
|ψ(t)〉 =

∫

d3x ḣab(x, t)
δ

δhab(x)
|ψ[hab]〉

At order m0
P, one finds a functional Schrödinger equation for

quantized matter fields in the chosen external classical
gravitational field:

i~
∂

∂t
|ψ(t)〉 = Ĥm|ψ(t)〉

Ĥm ≡
∫

d3x
{

N(x)Ĥm
⊥(x) +Na(x)Ĥm

a (x)
}

Ĥm: matter-field Hamiltonian in the Schrödinger picture,
parametrically depending on (generally non-static) metric
coefficients of the curved space–time background;

WKB time t controls the dynamics in this approximation



Criteria for quantum avoidance of singularities

No general agreement!

Sufficient criteria in quantum geometrodynamics:
◮ Vanishing of the wave function at the point of the classical

singularity (dating back to DeWitt 1967)
◮ Spreading of wave packets when approaching the region

of the classical singularity

concerning the second criterium:
only in the semiclassical regime (narrow wave packets following
the classical trajectories) do we have an approximate notion of
geodesics; only in this regime can we thus apply the classical
singularity theorems.



Ψ → 0 is a sufficient, but not a necessary criterium for
singularity avoidance!

Example in quantum mechanics: solution of the Dirac equation
for the ground state of hydrogen-like atoms:

ψ0(r) ∝ (2mZαr)
√
1−Z2α2−1e−mZαr r→0−→ ∞ ,

but
∫

dr r2|ψ0|2 <∞!

Example in quantum cosmology: Wheeler–DeWitt equation for
a Friedmann universe with a massless scalar field: simplest
solution is ∝ K0(a

2/2)
a→0−→ c ln a, but

∫

dadφ
√

|G||ψ(a, φ)|2 may
be finite.



Quantum Cosmology

Closed Friedmann–Lemaı̂tre universe with scale factor a,
containing a homogeneous scalar field φ with potential V (φ)
(two-dimensional minisuperspace)

ds2 = −N2(t)dt2 + a2(t)dΩ2
3

The Wheeler–DeWitt equation reads with a suitable choice of
factor ordering (with units 2G/3π = 1)

1

2

(

~
2

a2
∂

∂a

(

a
∂

∂a

)

− ~
2

a3
∂2

∂φ2
− a+

Λa3

3
+ 2a3V (φ)

)

ψ(a, φ) = 0

In the following: brief review of models (for more details, see Manuel
Krämer’s talk)



Quantum phantom cosmology

Classical model: Friedmann universe with scale factor a(t)
containing a scalar field with negative kinetic term (‘phantom’):
develops a big-rip singularity
(ρ and p diverge as a goes to infinity at a finite time)

Quantum model: Wave-packet solutions of the Wheeler–DeWitt
equation disperse in the region of the classical big-rip
singularity: time and the classical evolution come to an end;
only a stationary quantum state is left

Exhibition of quantum effects at large scales!

(Da̧browski, C. K., Sandhöfer 2006)



Big-brake cosmology: Classical model

Equation of state p = A/ρ, A > 0, for a Friedmann universe with
scale factor a(t) and scalar field φ(t) with potential (24πG = 1)

V (φ) = V0

(

sinh (|φ|)− 1

sinh (|φ|)

)

; V0 =
√

A/4

develops pressure singularity (only ä(t) becomes singular)

◮ total lifetime: t0 ≈ 7× 102 1
√

V0

[

g

cm3

]

s

◮ lifetime much bigger than current age of our Universe for

V0 ≪ 2.6 × 10−30 g

cm3

(is not a model for dark energy)
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configuration space.



Normalizable solutions of the Wheeler–DeWitt equation vanish
at the classical singularity
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similar result for the corresponding loop quantum cosmology

(Kamenshchik, C. K., Sandhöfer 2007)



Other type-III singularities

Consider a generalized Chaplygin gas:

p = − A

ρβ

e.g. big-freeze singularity (type III): both H and Ḣ blow up
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(Bouhmadi-López, C. K., Sandhöfer, Moniz 2009)



Important boundary condition: wave function go to zero in the
classically forbidden region, Ψ α→−∞−→ 0

Class of solutions then reads

Ψk(α, φ) ∝
√

|φ|Jν(k|φ|)
[

b1e
i
√

6k
κ

α + b2e
−i

√

6k
κ

α
]

(with ν as a function of α)

Obeys DeWitt’s boundary condition at the singularity:

Ψk(0, 0) = 0

(holds also for the other cases)



Type IV singularities

Very mild singularity: Only derivatives of the curvature
invariants diverge, not the invariants themselves; energy
density and pressure go to zero at the singularity

Type IV singularities are avoided only for particular solutions of
the Wheeler–DeWitt equation

(Bouhmadi-López, C. K., Krämer 2014)



Little Rip

◮ Is an abrupt event rather than a singularity;
◮ can result from equation of state p = −ρ−A

√
ρ, realizable

by a phantom scalar field;
◮ corresponds to a Big Rip sent to t→ ∞;
◮ structure in the universe would be ripped apart in a finite

cosmic time;
◮ can be avoided in quantum cosmology, ψ a→∞−→ 0.

(Albarran et al. 2016)



Supersymmetric quantum cosmological billiards

D = 11 supergravity: near spacelike singularity,
cosmological billiard description based on the Kac–Moody
group E10 and discussion of Wheeler–DeWitt equation

◮ Ψ → 0 near the singularity
◮ Ψ is generically complex and oscillating

(Kleinschmidt, Koehn, Nicolai 2009)



Criteria in loop quantum cosmology

◮ difference equation can lead to a deterministic
evolution of wave packets across the singularity;

◮ occurrence of a bounce in the effective dynamics;
◮ boundedness of the expectation value of the operator

corresponding to the inverse scale factor

(see other talks at this conference)



On the avoidance of black-hole singularities

Null dust shells
A quantum theory for a lightlike shell leading to a singularity-free
situation can be rigorously constructed; this is a consequence of the
unitary dynamics.

(P. Hájı́ček 2001; P. Hájı́ček and C.K. 2001)
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Figure: Penrose diagramme for the outgoing shell in the classical
theory. The shell is at U = u.



Initial state (wave packet) at t = 0:

ψκλ(0, p) =
(2λ)κ+1/2

√

(2κ)!
pκ+1/2e−λp

(λ and κ are free positive parameters)

Exact state for later times:

Ψκλ(t, r) =
1√
2π

κ!(2λ)κ+1/2

√

(2κ)!

[

i

(λ+ it+ ir)κ+1
− i

(λ+ it− ir)κ+1

]

fulfills
lim
r→0

Ψκλ(t, r) = 0

No singularity! The ingoing quantum shell develops into a
superposition of ingoing and outgoing shell if the region is
reached where in the classical theory a singularity would form.



Summary

At least for certain models, and under some
conditions, quantum geometrodynamics
predicts the avoidance of classical singularities.
It is not clear how generic this is.
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