Jakub Gizbert-Studnicki

in collaboration with
Jan Ambjørn, Daniel Coumbe, Andrzej Görlich and Jerzy Jurkiewicz

Phase structure of Causal Dynamical Triangulations model in 4D

Singularities of general relativity and their quantum fate

29th June 2016

UNIWERSYTET
JAGIELLOŃSKI
\triangleleft Gravity as a QFT is perturbatively nonrenormalizable in $d>2$ dimensions
\triangleleft But it could be renormalizable in a nonperturbative regime
\diamond assymptotic safety idea (S. Weinberg)
\diamond renormalization group flow can lead to a nonGaussian UV fixed point (M. Reuter et al.)
\& Lattice formulation would allow to study non-perturbative gravity
\diamond we need a dynamical lattice (DT)
\diamond UV fixed point should be associated with a 2nd order phase transition
\diamond one should be able to reproduce semi-classical gravity (IR limit)
\& Causality is an important ingredient
\diamond Causal DT (J. Amjørn, J. Jurkiewicz, R. Loll)
\triangleleft Gravity as a QFT is perturbatively nonrenormalizable in $d>2$ dimensions
\diamond But it could be renormalizable in a nonperturbative regime
४ assymptotic safety idea (S. Weinberg)
\diamond renormalization group flow can lead to a nonGaussian UV fixed point (M. Reuter et al.)
\diamond Lattice formulation would allow to study non-perturbative gravity
\triangleleft we need a dynamical lattice (DT)
\triangleleft UV fixed point should be associated with a 2nd order phase transition
\triangleleft one should be able to reproduce semi-classical gravity (IR limit)
४ Causality is an important ingredient
২ Causal DT (J. Amjørn, J. Jurkiewicz, R. Loll)

\triangleleft Gravity as a QFT is perturbatively nonrenormalizable in $d>2$ dimensions
\diamond But it could be renormalizable in a non-
 perturbative regime
४ assymptotic safety idea (S. Weinberg)
\diamond renormalization group flow can lead to a nonGaussian UV fixed point (M. Reuter et al.)
২ Lattice formulation would allow to study non-perturbative gravity
\diamond we need a dynamical lattice (DT)
\triangleleft UV fixed point should be associated with a 2nd order phase transition
« one should be able to reproduce semi-classical gravity (IR limit)
४ Causality is an important ingredient
২ Causal DT (J. Amjørn, J. Jurkiewicz, R. Loll)

\triangleleft Gravity as a QFT is perturbatively nonrenormalizable in $d>2$ dimensions
\diamond But it could be renormalizable in a non-
 perturbative regime
২ assymptotic safety idea (S. Weinberg)
\diamond renormalization group flow can lead to a nonGaussian UV fixed point (M. Reuter et al.)
\diamond Lattice formulation would allow to study nön-perturbative grāity $\stackrel{\text { we need a dynamical lattice (DT) }}{ }$
\triangleleft UV fixed point should be associated with a 2nd order phase transition

४ one should be able to reproduce semi-classicgl - gkavity (IR limit)
\& Causality is an important ingredient
২ Causal DT (J. Amjørn, J. Jurkiewicz, R. Loll)

Outline

$\diamond C D T$
\diamond Phase structure
\diamond Phase transitions
\diamond Transfer matrix method
\triangleleft Phase structure revisited
\diamond Phase transitions revisited
\diamond Signature change
\diamond Conclusions

CDT

২Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral

CDT

\triangleleft Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral
¿ Classical mechanics: single trajectory of a particle resulting from E-L equations (Hamilton's principle)
४ Quantum mechanics: all trajectories (paths) contribute to transition amplitude (weight/phase factor depends on the action)
\triangleleft Path integral is defined by a discretization of time (regularization)

CDT

\diamond Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral
\diamond Classical mechanics: single trajectory of a particle resulting from E-L equations (Hamilton's principle)
\triangleleft Quantum mechanics: all trajectories (paths) contribute to transition amplitude (weight/phase factor depends on the action)
४ Path integral is defined by a discretization of time (regularization)

CDT

\diamond Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral
\diamond Classical mechanics: single trajectory of a particle resulting from E-L equations (Hamilton's principle)
\triangleleft Quantum mechanics: all trajectories (paths) contribute to transition amplitude (weight/phase factor depends on the action)
\diamond Path integral is defined by a discretization of time (regularization)

CDT

\diamond Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral
> Einstein's General Relativity: gravity defined through spacetime geometry
\& Smooth geometry can be approximated with arbitrary precission (discretized) by multidimensional simplices (triangulation)
\diamond Local curvature is encoded in deficit angle

CDT

४Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral
\diamond Einstein's General Relativity: gravity defined through spacetime geometry
\diamond Smooth geometry can be approximated with arbitrary precission (discretized) by multidimensional simplices (triangulation)
২ Local curvature is encoded in deficit angle

CDT

\triangleleft Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral

४ Einstein's General Relativity: gravity defined through spacetime geometry
\diamond Smooth geometry can be approximated with arbitrary precission (discretized) by multidimensional simplices (triangulation)
\diamond Local curvature is encoded in
 deficit angle

CDT

\triangleleft Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral
\diamond The path integral trajectory of CDT = spacetime geometry regularized by a triangulation (2 types of 4-simplices)
২ Transition amplitude depends on all admissible trajectories (non-perturbative approach)
૪ Causality constraint (global hyperbolicity) \Rightarrow spacetime topology is fixed (time x space: $S^{1} \times S^{3}$) and cannot change

CDT

Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral
\triangleleft The path integral trajectory of CDT = spacetime geometry regularized by a triangulation (2 types of 4-simplices)
\diamond Transition amplitude depends on all admissible trajectories (non-perturbative approach)
४ Causality constraint (global hyperbolicity) \Rightarrow spacetime
topology is fixed (time x space: $S^{1} \times S^{3}$) and cannot change

CDT

Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral
\diamond The path integral trajectory of CDT = spacetime geometry regularized by a triangulation (2 types of 4-simplices)
\diamond Transition amplitude depends on all admissible trajectories (non-perturbative approach)
४ Causality constraint (global hyperbolicity) \Rightarrow spacetime
topology is fixed (time x space: $S^{1} \times S^{3}$) and cannot change

CDT

\triangleleft Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral
\diamond The path integral trajectory of CDT = spacetime geometry regularized by a triangulation (2 types of 4-simplices)
\diamond Transition amplitude depends on all admissible trajectories (non-perturbative approach)
४ Causality constraint (global hyperbolicity) \Rightarrow spacetime
topology is fixed (time x space: $S^{1} \times S^{3}$) and cannot change

CDT

২Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral
\diamond The path integral trajectory of CDT = spacetime geometry regularized by a triangulation (2 types of 4-simplices)
Transition amplitude depends on all admissible trajectories (non-perturbative approach)
\checkmark Causality constraint (global hyperbolicity) \Rightarrow spacetime topology is fixed (time x space: $S^{1} x S^{3}$) and cannot change

CDT

২Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral
\diamond The path integral trajectory of CDT = spacetime geometry regularized by a triangulation (2 types of 4-simplices)
\diamond Transition amplitude depends on all admissible trajectories (non-perturbative approach)
\checkmark Causality constraint (global hyperbolicity) \Rightarrow spacetime topology is fixed (time x space: $S^{1} x T^{3}$) and cannot change

CDT

\diamond Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral
\diamond We will consider pure gravity model (G) with positive cosmological $\quad S_{H E}=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}(R-2 \Lambda)$ constant (\wedge)

$$
S_{H E}=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}(R-2 \Lambda)
$$

\triangleleft CDT is formulated in a coordinate free way
\diamond Three coupling constants: k_{0}, k_{4}, Δ
४ After Wick's rotation: „random" geometry system

$$
Z=\int_{\text {trajectories }} D\left[g_{\mu \nu}\right] \exp \left(i S_{H E}\left[g_{\mu \nu}\right]\right)
$$

\diamond Background geometry emerges dynamically: interplay between bare action $\left(S_{R}\right)$ and entropy

CDT

Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral
\triangleleft We will consider pure gravity model (G) with positive cosmological constant (\wedge)
$\triangleleft C D T$ is formulated in a coordinate free way

$$
S_{H E}=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}(R-2 \Lambda)
$$

$$
S_{R}=-k_{0}\left(N_{0}^{\prime} N_{1}^{1}+K_{4}\left(N_{4}^{\prime}\right)^{1}+\Delta\left(\bar{N}_{-4}^{(4, \overline{1})}=\overline{6} \bar{N}_{2}^{-}\right)\right)
$$

\& Three coupling constants: k_{0}, K_{4}, Δ
\diamond After Wick's rotation: „random" geometry system

$$
Z=\sum_{T} \exp \left(i S_{R}[T]\right)
$$

> ४ Background geometry emerges dynamically: interplay between bare action $\left(S_{R}\right)$ and entropy

CDT

Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral
\triangleleft We will consider pure gravity model (G) with positive cosmological $\quad S_{H E}=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}(R-2 \Lambda)$ constant (Λ)
\triangleleft CDT is formulated in a coordinate free way
\diamond Three coupling constants: k_{0}, K_{4}, Δ
\diamond After Wick's rotation: „random" geometry system

$$
Z=\sum_{T} \exp \left(i S_{R}[T]\right)
$$

Background geometry emerges
dynamically: interplay between bare action $\left(S_{R}\right)$ and entropy

CDT

\triangleleft Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral
\triangleleft We will consider pure gravity model (G) with positive cosmological $\quad S_{H E}=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}(R-2 \Lambda)$ constant (Λ)
$\diamond C D T$ is formulated in a coordinate free way
\diamond After Wick's rotation: „random" geometry system

$$
Z=\sum_{T} \exp \left(\mathcal{I}_{1} S_{R}[T]\right)
$$

४ Background geometry emerges dynamically: interplay between

 bare action $\left(S_{R}\right)$ and entropy
CDT

\diamond Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral
\triangleleft We will consider pure gravity model (G) with positive cosmological $\quad S_{H E}=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}(R-2 \Lambda)$ constant (Λ)
$\triangleleft C D T$ is formulated in a coordinate free way
\diamond After Wick's rotation: „random" geometry system
\triangleleft Background geometry emerges dynamically: interplay between

$$
Z=\sum_{T} \exp \left(-S_{R}[T]\right)
$$ bare action $\left(S_{R}\right)$ and entropy

Phase structure

\triangleleft The observable: 3-volume of spatial layers (foliation leaves of the global proper time): $V_{3}(t) \propto n_{t} \equiv N_{(4,1)}(t)$
\triangleleft Initially three phases (A, B, C) of various geometry were discovered
\triangleleft Phase C (de Sitter phase) has good semi-classical properties (IR limit)
\diamond Hausdorff dim.: 4 , spectral dim.: $2 \Rightarrow 4$
\diamond Background geommetry is consistent with a 4-dim sphere \Rightarrow Euclidean de Sitter universe (positive cosmol. const.)
\diamond This is clasically obtained for a homogenous and isotropic metric
\diamond For which the GR action takes a form of
 the minisuperspace action

Phase structure

\diamond The observable: 3-volume of spatial layers (foliation leaves of the global proper time): $V_{3}(t) \propto n_{t} \equiv N_{(4,1)}(t)$
\diamond Initially three phases (A, B, C) of various geometry were discovered
४ Phase C (de Sitter phase) has good semi-classical properties (IR limit)
৬ Hausdorff dim.: 4 , spectral dim.: $2 \Rightarrow 4$
\triangleleft Background geommetry is consistent with a 4-dim sphere \Rightarrow Euclidean de Sitter universe (positive cosmol. const.)
\triangleleft This is clasically obtained for a homogenous and isotropic metric

\diamond For which the GR action takes a form of the minisuperspace action

Phase structure

\triangleleft The observable: 3-volume of spatial layers (foliation leaves of the global proper time): $V_{3}(t) \propto n_{t} \equiv N_{(4,1)}(t)$
\diamond Initially three phases (A, B, C) of various geometry were discovered
४ Phase C (de Sitter phase) has good semi-classical properties (IR limit)
\diamond Hausdorff dim.: 4 , spectral dim.: $2 \Rightarrow 4$
\triangleleft Background geommetry is consistent with a 4-dim sphere \Rightarrow Euclidean de Sitter universe (positive cosmol. const.)
\triangleleft This is clasically obtained for a homogenous and isotropic metric

\triangleleft For which the GR action takes a form of the minisuperspace action

Phase structure

\diamond The observable: 3-volume of spatial layers (foliation leaves of the global proper time): $V_{3}(t) \propto n_{t} \equiv N_{(4,1)}(t)$
\diamond Initially three phases (A, B, C) of various geometry were discovered
४ Phase C (de Sitter phase) has good semi-classical properties (IR limit)
\triangleleft Hausdorff dim.: 4, spectral dim.: $2 \Rightarrow 4$
\triangleleft Background geommetry is consistent with a 4-dim sphere \Rightarrow Euclidean de Sitter universe (positive cosmol. const.)
\diamond This is clasically obtained for a homogenous and isotropic metric
\diamond For which the GR action takes a form of the minisuperspace action

Phase structure

\diamond The observable: 3-volume of spatial layers (foliation leaves of the global proper time): $V_{3}(t) \propto n_{t} \equiv N_{(4,1)}(t)$
\diamond Initially three phases (A, B, C) of various geometry were discovered
४ Phase C (de Sitter phase) has good semi-classical properties (IR limit)
\triangleleft Hausdorff dim.: 4, spectral dim.: $2 \Rightarrow 4$
\triangleleft Background geommetry is consistent with a 4-dim sphere \Rightarrow Euclidean de Sitter universe (positive cosmol. const.)
\triangleleft This is clasically obtained for a homogenous and isotropic metric

\triangleleft For which the GR action takes a form of the minisuperspace action

Phase structure

\triangleleft The observable: 3-volume of spatial layers (foliation leaves of the global proper time): $V_{3}(t) \propto n_{t} \equiv N_{(4,1)}(t)$
\diamond Initially three phases (A, B, C) of various geometry were discovered
\triangleleft Phase C (de Sitter phase) has good semi-classical properties (IR limit)
\triangleleft Hausdorff dim.: 4 , spectral dim.: $2 \Rightarrow 4$
\diamond Background geommetry is consistent with a 4-dim sphere \Rightarrow Euclidean de Sitter universe (positive cosmol. const.)

\diamond This is clasically obtained for a homogenous and isotropic metric
\& For which the GR action takes a form of the minisuperspace action

Phase structure

\triangleleft The observable: 3-volume of spatial layers (foliation leaves of the global proper time): $V_{3}(t) \propto n_{t} \equiv N_{(4,1)}(t)$
\diamond Initially three phases (A, B, C) of various geometry were discovered
\triangleleft Phase C (de Sitter phase) has good semi-classical properties (IR limit)
\diamond Hausdorff dim.: 4 , spectral dim.: $2 \Rightarrow 4$
\diamond Background geommetry is consistent with a 4-dim sphere \Rightarrow Euclidean de Sitter universe (positive cosmol. const.)

\triangleleft This is clasically obtained for a
homogenous and isotropic metric
\diamond For which the GR action takes a form of the minisuperspace action

Phase structure

\triangleleft The observable: 3-volume of spatial layers (foliation leaves of the global proper time): $V_{3}(t) \propto n_{t} \equiv N_{(4,1)}(t)$
\diamond Initially three phases (A, B, C) of various geometry were discovered
\diamond Phase C (de Sitter phase) has good semi-classical properties (IR limit)
\diamond Hausdorff dim.: 4 , spectral dim.: $2 \Rightarrow 4$
\diamond Background geommetry is consistent with a 4-dim sphere \Rightarrow Euclidean de Sitter universe (positive cosmol. const.)
\diamond This is clasically obtained for a homogenous and isotropic metric
\diamond For which the GR action takes a form of the minisuperspace action

$$
\begin{aligned}
\bar{n}_{t} \equiv\left\langle n_{t}\right\rangle & =\frac{3}{4} \tilde{V}_{4} \frac{1}{\tilde{A} \tilde{V}_{4}^{1 / 4}} \cos ^{3}\left(\frac{t-t_{0}}{\tilde{A} \tilde{V}_{4}^{1 / 4}}\right) \\
V_{3}(t) & =\frac{3}{4} V_{4} \frac{1}{A V_{4}^{1 / 4}} \cos ^{3}\left(\frac{t-t_{0}}{A V_{4}^{1 / 4}}\right)
\end{aligned}
$$

Phase structure

\triangleleft The observable: 3-volume of spatial layers (foliation leaves of the global proper time): $V_{3}(t) \propto n_{t} \equiv N_{(4,1)}(t)$
\diamond Initially three phases (A, B, C) of various geometry were discovered
\diamond Phase C (de Sitter phase) has good semi-classical properties (IR limit)
\diamond Hausdorff dim.: 4 , spectral dim.: $2 \Rightarrow 4$
\diamond Background geommetry is consistent with a 4-dim sphere \Rightarrow Euclidean de Sitter universe (positive cosmol. const.)
\diamond This is clasically obtained for a homogenous and isotropic metric
\triangleleft For which the GR action takes a form of the minisuperspace action

$$
\begin{gathered}
d s^{2}=d t^{2}+a^{2}(t) d \Omega_{3}^{2} \Rightarrow V_{3}(t) \propto a^{3}(t) \\
V_{3}(t)=\frac{3}{4} V_{4} \frac{1}{A V_{4}^{1 / 4}} \cos ^{3}\left(\frac{t-t_{0}}{A V_{4}^{1 / 4}}\right)
\end{gathered}
$$

Phase structure

\triangleleft The observable: 3-volume of spatial layers (foliation leaves of the global proper time): $V_{3}(t) \propto n_{t} \equiv N_{(4,1)}(t)$
\diamond Initially three phases (A, B, C) of various geometry were discovered
\diamond Phase C (de Sitter phase) has good semi-classical properties (IR limit)
\diamond Hausdorff dim.: 4 , spectral dim.: $2 \Rightarrow 4$
\diamond Background geommetry is consistent with a 4-dim sphere \Rightarrow Euclidean de Sitter universe (positive cosmol. const.)
\diamond This is clasically obtained for a homogenous and isotropic metric
\diamond For which the GR action takes a form of the minisuperspace action

$$
d s^{2}=d t^{2}+a^{2}(t) d \Omega_{3}^{2} \Rightarrow V_{3}(t) \propto a^{3}(t)
$$

$$
S=-\frac{1}{24 \pi G} \int d t\left(\frac{\dot{V}_{3}(t)^{2}}{V_{3}(t)}+\mu V_{3}(t)^{1 / 3}-\lambda V_{3}(t)\right)
$$

Phase structure

\triangleleft Phase C (de Sitter phase) continued
\diamond The effective action for the n_{t} observable ...
४ ... can be analyzed by looking at quantum fluctuations around the semiclassical solution
\triangleleft The (inverse of) covariance matrix $P=C^{-1}$ provides information about second derivatives of the effective action
\diamond The measured covariance matrix is consistent with MS action (with reversed overall sign)!

$$
\begin{aligned}
& \text { ed } \\
& \begin{array}{l}
Z=\sum_{T} \exp \left(-S_{R}[T]\right)=\sum_{\left\{n_{t}\right\} T\left[\left\{n_{n}\right\}\right]}^{\prime} \sum_{2}^{\prime} \exp \left(-S_{R}[T]\right) \\
Z_{e f}=\sum_{\left\{n_{t}\right\}} \exp \left(-S_{e f}\left[\left\{n_{t}\right\}\right]\right)
\end{array}
\end{aligned}
$$

$$
S=-\frac{1}{24 \pi G} \int d t\left(\frac{\dot{V}_{3}(t)^{2}}{V_{3}(t)}+\mu V_{3}(t)^{1 / 3}-\lambda V_{3}(t)\right)
$$

Phase structure

\diamond Phase C (de Sitter phase) continued
\diamond The effective action for the n_{t} observable ...
\diamond... can be analyzed by looking at quantum fluctuations around the semiclassical solution
\diamond The (inverse of) covariance matrix $P=C^{-1}$ provides information about second derivatives of the effective action
\diamond The measured covariance matrix is

$$
n_{t}=\left\langle n_{t}\right\rangle+\delta n_{t} \quad C_{t t^{\prime}} \equiv\left\langle\delta n_{t} \delta n_{t^{\prime}}\right\rangle
$$

consistent with MS action (with
reversed overall sign)!

$$
S=-\frac{1}{24 \pi G} \int d t\left(\frac{\dot{V}_{3}(t)^{2}}{V_{3}(t)}+\mu V_{3}(t)^{1 / 3}-\lambda V_{3}(t)\right)
$$

Phase structure

\diamond Phase C (de Sitter phase) continued
\diamond The effective action for the n_{t} observable ...
\diamond... can be analyzed by looking at quantum fluctuations around the semiclassical solution
\diamond The (inverse of) covariance matrix $P=C^{-1}$ provides information about second derivatives of the effective action
\diamond The measured covariance matrix is

$$
n_{t}=\left\langle n_{t}\right\rangle+\delta n_{t} \quad C_{t t^{\prime}} \equiv\left\langle\delta n_{t} \delta n_{t^{\prime}}\right\rangle
$$

consistent with MS action (with
reversed overall sign)!

$$
S=-\frac{1}{24 \pi G} \int d t\left(\frac{\dot{V}_{3}(t)^{2}}{V_{3}(t)}+\mu V_{3}(t)^{1 / 3}-\lambda V_{3}(t)\right)
$$

Phase structure

\diamond Phase C (de Sitter phase) continued
\diamond The effective action for the n_{t} observable ...
\diamond... can be analyzed by looking at quantum fluctuations around the semiclassical solution
\diamond The (inverse of) covariance matrix $P=C^{-1}$ provides information about second derivatives of the effective action
\diamond The measured covariance matrix is consistent with MS action (with reversed overall sign)!

$$
n_{t}=\left\langle n_{t}\right\rangle+\delta n_{t} \quad C_{t t^{\prime}} \equiv\left\langle\delta n_{t} \delta n_{t^{\prime}}\right\rangle
$$

$$
\begin{gathered}
S_{e f}=\frac{1}{\Gamma} \sum_{t}\left(\frac{\left(n_{t+1}-n_{t}\right)^{2}}{\left(n_{t}+n_{t+1}\right)}+\tilde{\mu} n_{t}^{1 / 3}-\tilde{\lambda} n_{t}\right) \\
S=-\frac{1}{24 \pi G} \int d t\left(\frac{\dot{V}_{3}(t)^{2}}{V_{3}(t)}+\mu V_{3}(t)^{1 / 3}-\lambda V_{3}(t)\right)
\end{gathered}
$$

Phase transitions

\diamond To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_{4}, N_{0}, \ldots)
\triangleleft Here we look at OP conjugate to the varied coupling constant
২ (Pseudo)critical point is signaled by max. of susceptibility
\diamond Two-states jumping of OP (double
 peak structure of measured histograms) may signal a 1st order transitions
\triangleleft But one must be careful and check $N_{4} \rightarrow \infty$ limit
২ There exists a 2-nd order transition
\diamond perspective UV limit ???

Phase transitions

\diamond To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_{4}, N_{0}, ...)
\diamond Here we look at OP conjugate to the varied coupling constant
४ (Pseudo)critical point is signaled by max. of susceptibility
\diamond Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order

$$
S_{R}=-k N_{0}^{\prime}+K_{4} N_{4}+\Delta\left({ }^{\left(N_{4}^{\prime} N_{4}^{(4,1)}-6 N_{0,1}^{\prime}\right.}\right)
$$ transitions

\checkmark But one must be careful and check $N_{4} \rightarrow \infty$ limit
\triangleleft There exists a 2-nd order transition

Phase transitions

\diamond To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_{4}, N_{0}, ...)
\diamond Here we look at OP conjugate to the varied coupling constant
২ (Pseudo)critical point is signaled by max. of susceptibility
> Two-states jumping of OP (double peak structure of measured

$$
\mathrm{X}_{O P}=\left\langle O P^{2}\right\rangle-\langle O P\rangle^{2}
$$ histograms) may signal a 1st order transitions

\triangleleft But one must be careful and check $N_{4} \rightarrow \infty$ limit
\triangleleft There exists a 2-nd order transition

Phase transitions

\diamond To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_{4}, N_{0}, ...)
\diamond Here we look at OP conjugate to the varied coupling constant
\diamond (Pseudo)critical point is signaled by max. of susceptibility
\diamond Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transitions
\triangleleft But one must be careful and check $N_{4} \rightarrow \infty$ limit
$>$ There exists a 2-nd order transition \diamond perspective UV limit ???

Phase transitions

\diamond To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_{4}, N_{0}, ...)
\diamond Here we look at OP conjugate to the varied coupling constant
\diamond (Pseudo)critical point is signaled by max. of susceptibility
২ Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transitions
\diamond But one must be careful and check ${ }^{\text {mis. }}$ $N_{4} \rightarrow \infty$ limit
४ There exists a 2-nd order transition

Phase transitions

\diamond To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_{4}, N_{0}, ...)
\diamond Here we look at OP conjugate to the varied coupling constant
\diamond (Pseudo)critical point is signaled by max. of susceptibility
২ Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transitions
\triangleleft But one must be careful and check $N_{4} \rightarrow \infty$ limit
\rightarrow There exists a 2-nd order transition

Phase transitions

\diamond To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_{4}, N_{0}, ...)
\diamond Here we look at OP conjugate to the varied coupling constant
> (Pseudo)critical point is signaled by max. of susceptibility
\diamond Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transitions
\triangleleft But one must be careful and check $N_{4} \rightarrow \infty$ limit
\triangleleft There exists a 2-nd order transitions
\diamond perspective UV limit ???

Transfer matrix method

\diamond The transfer matrix method enables one to measure the effective action directly
\triangleleft CDT has by definition a transfer matrix parametrized by 3-dimensional spatial triangulations T_{3}
४ Local form of the effective action in Phase C suggests that a description by effective transfer matrix parametrized by spatial volume n_{t} is also viable
« Measurement of the transfer matrix $=$ direct measurement of the effective Lagrangian

$$
Z=\sum_{\left\{T_{3}\right\}}\left\langle T_{3}\right| M^{T}\left|T_{3}\right\rangle=\operatorname{tr} M^{T}
$$

Transfer matrix method

\diamond The transfer matrix method enables one to measure the effective action directly
\diamond CDT has by definition a transfer matrix parametrized by 3-dimensional spatial triangulations T_{3}
২ Local form of the effective action in Phase C suggests that a description by effective transfer matrix parametrized by spatial volume n_{t} is also viable
« Measurement of the transfer matrix $=$ direct measurement of the effective Lagrangian

$$
Z=\sum_{\left\{T_{3}\right\}}\left\langle T_{3}\right| M^{T}\left|T_{3}\right\rangle=\operatorname{tr} M^{T}
$$

Transfer matrix method

\diamond The transfer matrix method enables one to measure the effective action directly
$\triangleleft C D T$ has by definition a transfer matrix parametrized by 3-dimensional spatial triangulations T_{3}
\diamond Local form of the effective action in Phase C suggests that a description by effective transfer matrix parametrized by spatial volume n_{t} is also viable
४ Measurement of the transfer matrix $=$

$$
\begin{gathered}
S_{e f}=\frac{1}{\Gamma} \sum \sum_{t}\left(\frac{\left(n_{t+1}-n_{t}\right)^{2}}{\left(n_{t}+n_{t+1}\right)}+\tilde{\mu} n_{t}^{1 / 3}-\tilde{\lambda}_{n t}\right) \\
S_{e f}=\sum_{t} L_{e f}\left[n_{t}, n_{t+1}\right] \\
Z_{e f}=\sum_{\left\{n_{t}\right\}}\left\langle n_{t}\right| M_{e f}^{T}\left|n_{t}\right\rangle=t r M_{e f}^{T}
\end{gathered}
$$ direct measurement of the effective Lagrangian

Transfer matrix method

\diamond The transfer matrix method enables one to measure the effective action directly
$\diamond C D T$ has by definition o transfer matrix parametrized by 3-dimensional spatial triangulations T_{3}

$$
\begin{aligned}
& i x \\
& \text { al } \quad S_{e f}=\frac{1}{\Gamma} \sum_{t}\left(\frac{\left(n_{t+1}-n_{t}\right)^{2}}{\left(n_{t}+n_{t+1}\right)}+\tilde{\mu} n_{t}^{1 / 3}-\tilde{\lambda} n_{t}\right) \\
& S_{e f}=\sum_{t} L_{e f}\left[n_{t}, n_{t+1}\right] \\
& d \\
& \\
& = \\
& =Z_{e f}=\sum_{\left\{n_{t}\right\}}\left\langle n_{t}\right| M_{e f}^{T}\left|n_{t}\right\rangle=t r M_{e f}^{T} \\
& -\cdots-\cdots \\
& \left\langle n_{t}\right| M_{e f}\left|n_{t+1}\right\rangle \propto \exp \left(-L_{e f}\left[n_{t}, n_{t+1}\right]\right)
\end{aligned}
$$

\diamond Local form of the effective action in Phase C suggests that a description by effective transfer matrix parametrized by spatial volume n_{t} is also viable
\triangleleft Measurement of the transfer matrix $=$ direct measurement of the effective Lagrangian

Transfer matrix method

\diamond The transfer matrix method enables one to measure the effective action directly
\diamond The effective transfer matrix measured $L_{c}=\frac{1}{\Gamma}\left[\frac{(n-m)^{2}}{n+m}+\mu\left(\frac{n+m}{2}\right)^{1 / 3}-\lambda\left(\frac{n+m}{2}\right)\right]$ deep in Phase C is consistent with the minisuperspace action!
\diamond Gaussian kinetic term \& MS potential
\diamond The effective transfer matrix description replicates full-CDT data
\triangleleft But when we are are close to the $B C$ phase transition
\diamond the kinetic part measured for small volumes resembles MS behaviour
\diamond for sufficiently large volumes one observes a bifurcation of the kinetic part

Transfer matrix method

\diamond The transfer matrix method enables one to measure the effective action directly
\diamond The effective transfer matrix measured deep in Phase C is consistent with the minisuperspace action!
\diamond Gaussian kinetic term \& MS potential
\triangleleft The effective transfer matrix description replicates full-CDT data
\diamond But when we are are close to the BC phase transition
\diamond the kinetic part measured for small volumes resembles MS behaviour
\triangleleft for sufficiently large volumes one observes a bifurcation of the kinetic part

Transfer matrix method

\diamond The transfer matrix method enables one to measure the effective action directly minisuperspace action!
G Gaussian kinetic term \& MS potential
४ The effective transfer matrix description replicates full-CDT data
\triangleleft But when we are are close to the $B C$ phase transition
\diamond the kinetic part measured for small volumes resembles MS behaviour
\triangleleft for sufficiently large volumes one observes a bifurcation of the kinetic part

Transfer matrix method

\diamond The transfer matrix method enables one to measure the effective action directly
\& The effective transfer matrix measured $L_{c}=\frac{1}{\Gamma}\left[\frac{(n-m)^{2}}{n+m}+\mu\left(\frac{n+m}{2}\right)^{1 / 3}-\lambda\left(\frac{n+m}{2}\right)\right]$ deep in Phase C is consistent with the minisuperspace action!
\diamond Gaussian kinetic term \& MS potential
\diamond The effective transfer matrix description replicates full-CDT data
\triangleleft But when we are are close to the $B C$ phase transition
\diamond the kinetic part measured for small volumes resembles MS behaviour
« for sufficiently large volumes one observes a bifurcation of the kinetic part

Transfer matrix method

\diamond The transfer matrix method enables one to measure the effective action directly
\diamond The effective transfer matrix measured $L_{c}=\frac{1}{\Gamma}\left[\frac{(n-m)^{2}}{n+m}+\mu\left(\frac{n+m}{2}\right)^{1 / 3}-\lambda\left(\frac{n+m}{2}\right)\right]$
deep in Phase C is consistent with the minisuperspace action!
\diamond Gaussian kinetic term \& MS potential
\diamond The effective transfer matrix description replicates full-CDT data
\triangleleft But when we are are close to the $B C$ phase transition
\triangleleft the kinetic part measured for small volumes resembles MS behaviour
« for sufficiently large volumes one observes a bifurcation of the kinetic part

Transfer matrix method

\diamond The transfer matrix method enables one to measure the effective action directly
\diamond The effective transfer matrix measured deep in Phase C is consistent with the minisuperspace action!
\diamond Gaussian kinetic term \& MS potential
\diamond The effective transfer matrix description replicates full-CDT data
\diamond But when we are are close to the $B C$ phase transition
\diamond the kinetic part measured for small volumes resembles MS behaviour
« for sufficiently large volumes one observes a bifurcation of the kinetic part

Transfer matrix method

\diamond The transfer matrix method enables one to preasure the effective action directly
\diamond The effective transfer matrix measured deep in Phase C is consistent with the minisuperspace action!
\diamond Gaussian kinetic term \& MS potential
\diamond The effective transfer matrix description replicates full-CDT data
\triangleleft But when we are are close to the $B C$ phase transition
\diamond the kinetic part measured for small volumes resembles MS behaviour
\diamond for sufficiently large volumes one observes a bifurcation of the kinetic part

Transfer matrix method

\diamond The transfer matrix method enables one to measure the effective action directly
\diamond The effective transfer matrix measured deep in Phase C is consistent with the minisuperspace action!
\diamond Gaussian kinetic term \& MS potential
\diamond The effective transfer matrix description replicates full-CDT data
\diamond But when we are are close to the $B C$ phase transition
\diamond the kinetic part measured for small volumes resembles MS behaviour
\diamond for sufficiently large volumes one observes a bifurcation of the kinetic part

Phase structure revisited

\diamond The new phase separating phases $B \& C$ is related to a bifurcation of the effective action ..

Phase structure revisited

\diamond The new phase separating phases $B \& C$ is related to a bifurcation of the effective action ..
\diamond Average volume profile in the new phase resembles the profile observed in Phase C ...
... but the profile is shrinking in time direction ...
$>$... which is well explained by the
bifurcation of the transfer matrix
$>$... which is well explained by the
bifurcation of the transfer matrix kinetic term

Phase structure revisited

\diamond The new phase separating phases $B \& C$ is related to a bifurcation of the effective action ..
\diamond Average volume profile in the new phase resembles the profile observed in Phase C ...
\diamond... but the profile is shrinking in time direction ...

... which is well explained by the
 bifurcation of the transfer matrix kinetic term

Phase structure revisited

\diamond The new phase separating phases $B \& C$ is related to a bifurcation of the effective action ..
\diamond Average volume profile in the new phase resembles the profile observed in Phase C ...
\diamond... but the profile is shrinking in time direction ...
\diamond... which is well explained by the
bifurcation of the transfer matrix
\diamond... which is well explained by the
bifurcation of the transfer matrix kinetic term

$$
\langle n| M_{B}|m\rangle=N[n+m]\left[\exp \left(-\frac{\left(m-n-\left[\hat{c_{0}}\left(n+m-s_{b}\right)\right]_{+}\right)^{2}}{\Gamma(n+m)}\right)+\exp \left(-\frac{\left(m-n+\left[c_{0}\left(n+m-s_{b}\right)\right]_{+}\right)^{2}}{\Gamma(n+m)}\right)\right]
$$

Phase structure revisited

४ ... resulting from geometry considerably different than inside Phase C
\diamond Infinite Hausdorff dimension?
\triangleleft Spectral dimension >4 and growing (to infinity ?) with growing volume
४ This suggests high connectivity between the building blocks
४ 4-volume is concentrated in short geodesic distance
४ Such volume clusters appear every second time slice and are linked by „singular" vertices

Phase structure revisited

४ ... resulting from geometry considerably different than inside Phase C
\triangleleft Infinite Hausdorff dimension?
\triangleleft Spectral dimension >4 and growing (to infinity ?) with growing volume
४ This suggests high connectivity between the building blocks
> 4-volume is concentrated in short geodesic distance
\checkmark Such volume clusters appear every second time slice and are linked by
 „singular" vertices

Phase structure revisited

४ ... resulting from geometry considerably different than inside Phase C
\checkmark Infinite Hausdorff dimension?
\diamond Spectral dimension >4 and growing (to infinity ?) with growing volume
४ This suggests high connectivity between the building blocks
২ 4-volume is concentrated in short geodesic distance
\diamond Such volume clusters appear every second time slice and are linked by „singular" vertices

Phase structure revisited

४ ... resulting from geometry considerably different than inside Phase C
\diamond Infinite Hausdorff dimension?
\diamond Spectral dimension >4 and growing (to infinity ?) with growing volume
> This suggests high connectivity between the building blocks
\& 4-volume is concentrated in
short geodesic distance
\checkmark Such volume clusters appear every second time slice and are linked by „singular" vertices

Phase structure revisited

४ ... resulting from geometry considerably different than inside Phase C
\diamond Infinite Hausdorff dimension?
\diamond Spectral dimension >4 and growing (to infinity ?) with growing volume
\diamond This suggests high connectivity between the building blocks
$\diamond 4$-volume is concentrated in short geodesic distance
\checkmark Such volume clusters appear every second time slice and are linked by „singular" vertices

Phase structure revisited

४ ... resulting from geometry considerably different than inside Phase C

২ Spatial (3-dimentional) geometries differ between odd and even t
\diamond average spatial curvature scalar
\diamond average extent of the universe
\diamond This is caused by geometric structures
 surrounding "singular" vertices
\diamond each such a vertex is shared by a compact cluster of spatial volume (tetrahedra)
\diamond whose boundary has topology of a 2-sphere (Euler characteristic = 2)
\diamond and this structure "evolves" in time
\diamond Do we observe a quantum BH ???

Phase structure revisited

«... resulting from geometry considerably different than inside Phase C

২ Spatial (3-dimentional) geometries differ between odd and even t
\diamond average spatial curvature scalar $\bar{R}_{(3)}=\frac{\int d^{3} x \sqrt{g_{(3)}} R_{(3)}}{\int d^{3} x \sqrt{g_{(3)}}}$ 有 average extent of the universe
 surrounding "singular" vertices
\diamond each such a vertex is shared by a compac cluster of spatial volume (tetrahedra)
\diamond whose boundary has topology of a 2-sph (Euler characteristic = 2)
$>$ and this structure "evolves" in time
» Do we observe a quantum BH ???

Phase structure revisited

४ ... resulting from geometry considerably different than inside Phase C

২ Spatial (3-dimentional) geometries differ between odd and even t
\triangleleft average spatial curvature scalar
\diamond average extent of the universe $\langle r\rangle=\frac{\sum_{r V_{3}}(r)}{V_{3}}$
ヶ This is caused by geometric structuregv. surrounding "singular" vertices
\checkmark each such a vertex is shared by a compaed cluster of spatial volume (tetrahedra)
\triangleleft whose boundary has topology of a (Euler characteristic = 2)
\& and this structure "evolves" in time
\diamond Do we observe a quantum BH ???

Phase structure revisited

४ ... resulting from geometry considerably different than inside Phase C

২ Spatial (3-dimentional) geometries differ between odd and even t
« average spatial curvature scalar
\diamond average extent of the universe
\diamond This is caused by geometric structures
 surrounding "singular" vertices

```
\diamond each such a vertex is shared by a compact
    cluster of spatial volume (tetrahedra)
\diamond whose boundary has topology of a 2-spher
    (Euler characteristic = 2)
\diamond and this structure "evolves" in time
```


\diamond Do we observe a quantum $B H$???

Phase structure revisited

४ ... resulting from geometry considerably different than inside Phase C

২ Spatial (3-dimentional) geometries differ between odd and even t
« average spatial curvature scalar
\diamond average extent of the universe
\diamond This is caused by geometric structures surrounding "singular" vertices
\diamond each such a vertex is shared by a compact cluster of spatial volume (tetrahedra)
\diamond whose boundary has topology of a 2-sphere (Euler characteristic = 2)
\diamond and this structure "evolves" in time

\triangleleft Do we observe a quantum $B H$???

Phase structure revisited

« ... resulting from geometry considerably different than inside Phase C

২ Spatial (3-dimentional) geometries differ between odd and even t

২ average spatial curvature scalar
\diamond average extent of the universe
\diamond This is caused by geometric structures surrounding "singular" vertices
\diamond each such a vertex is shared by a compact cluster of spatial volume (tetrahedra)
\diamond whose boundary has topology of a 2-sphere (Euler characteristic = 2)

४ and this structure "evolves" in time

\diamond Do we observe a quantum BH ???

Phase structure revisited

४ ... resulting from geometry considerably different than inside Phase C

২ Spatial (3-dimentional) geometries differ between odd and even t
« average spatial curvature scalar
\diamond average extent of the universe
\diamond This is caused by geometric structures
 surrounding "singular" vertices
\diamond each such a vertex is shared by a compact cluster of spatial volume (tetrahedra)
\diamond whose boundary has topology of a 2-sphere (Euler characteristic = 2)
\diamond and this structure "evolves" in time

\diamond Do we observe a quantum BH ???

Phase structure revisited

\diamond... resulting from geometry considerably different than inside Phase C
\diamond Spatial (3-dimentional) geometries differ between odd and even t
« average spatial curvature scalar
\triangleleft average extent of the universe
\diamond This is caused'b̄̄ $\bar{g} \bar{e} o \overline{m e t r i e ~ s t r u c t u r e s ~}$
 subroúnding "singular" vertices
/) each such a vertex is shared by a compaceै cluster of spatial volume (tetrahedra)
\diamond whose boundary has topology of a 2-spheje (Euler characteristic = 2)
\diamond and this structure "evolves" in time"

\triangleleft Do we obsèrvè à quāñtū̀ BH ???

Phase transitions revisited

\diamond The new phase transition seems to be 2nd order
\diamond To analyze phase transitions one needs to define a suitable order parameter OP
४ (Pseudo)critical point is characterized by max in susceptibility $X_{O P}$
\triangleleft At the transition point the OP jumps between two metastable states
\triangleleft But the two states converge with increasing lattice volume
\triangleleft Position of the (pseudo)critical point is moving with the total volume
\triangleleft Critical exponent $(v=3.0 \pm 0.3)$ suggests 2nd order transition

Phase transitions revisited

\diamond The new phase transition seems to be 2nd order
\diamond To analyze phase transitions one needs to define a suitable order parameter OP
४ (Pseudo)critical point is characterized by max in susceptibility $X_{O P}$
\checkmark At the transition point the OP jumps between two metastable states
\triangleleft But the two states converge with increasing lattice volume
\triangleleft Position of the (pseudo)critical point is moving with the total volume
\triangleleft Critical exponent $(v=3.0 \pm 0.3)$ suggests 2nd order transition

Phase transitions revisited

\diamond The new phase transition seems to be 2nd order
\diamond To analyze phase transitions one needs to define a suitable order parameter OP
४ (Pseudo)critical point is characterized by max in susceptibility $X_{O P}$
\triangleleft At the transition point the OP jumps between two metastable states
\triangleleft But the two states converge with increasing lattice volume
\checkmark Position of the (pseudo)critical point is moving with the total volume
\triangleleft Critical exponent $(v=3.0 \pm 0.3)$ suggests 2nd order transition

Phase transitions revisited

\diamond The new phase transition seems to be 2nd order
\diamond To analyze phase transitions one needs to define a suitable order parameter OP
\diamond (Pseudo)critical point is characterized by max in susceptibility $X_{O P}$
\triangleleft At the transition point the OP jumps between two metastable states
\triangleleft But the two states converge with increasing lattice volume
\checkmark Position of the (pseudo)critical point is moving with the total volume
\triangleleft Critical exponent $(v=3.0 \pm 0.3)$ suggests 2nd order transition

Phase transitions revisited

\diamond The new phase transition seems to be 2nd order
\diamond To analyze phase transitions one needs to define a suitable order parameter OP

४ (Pseudo)critical point is characterized by max in susceptibility $X_{O P}$

\triangleleft At the transition point the OP jumps between two metastable states
\diamond But the two states converge with increasing lattice volume
\triangleleft Position of the (pseudo)critical point is moving with the total volume

\triangleleft Critical exponent ($v=3.0 \pm 0.3$) suggests 2nd order transition

Phase transitions revisited

\diamond The new phase transition seems to be 2nd order
\diamond To analyze phase transitions one needs to define a suitable order parameter OP
(Pseudo)critical point is characterized by max in susceptibility $X_{O P}$
\triangleleft At the transition point the OP jumps between two metastable states
\triangleleft But the two states converge with increasing lattice volume
\diamond Position of the (pseudo)critical point is moving with the total volume
\triangleleft Critical exponent ($v=3.0 \pm 0.3$) suggests 2nd order transition

Phase transitions revisited

\diamond The new phase transition seems to be 2nd order
\diamond To analyze phase transitions one needs to define a suitable order parameter OP
(Pseudo)critical point is characterized by max in susceptibility $X_{O P}$
\triangleleft At the transition point the OP jumps between two metastable states
\triangleleft But the two states converge with increasing lattice volume
\diamond Position of the (pseudo)critical point is moving with the total volume
\diamond Critical exponent ($v=3.0 \pm 0.3$) suggests 2nd order transition

Signature change

\diamond Bifurcation of the effective action near phase transition can be interpretted as an effective signature change

Signature change

\triangleleft Bifurcation of the effective action near phase transition can be interpretted as an effective signature change
\diamond The transfer matrix bifurcates at the new phase transition
২ The phase transition is related to: $c_{0} \rightarrow 0$ and $s_{b} \rightarrow \infty$ limit
\checkmark For large latice volumes $(n+m \rightarrow \infty)$ one
 can expand in powers of $2 c_{0}(n-m) / \Gamma \ll 1$

$$
\langle n| M_{C}|m\rangle=N[n+m] \exp \left(-\frac{(m-n)^{2}}{\Gamma(n+m)}\right)
$$ be viewed as an effective Wick rotation of the metric ($t \rightarrow i t$) compared to Phase C

Signature change

\triangleleft Bifurcation of the effective action near phase transition can be interpretted as an effective signature change
\diamond The transfer matrix bifurcates at the new phase transition
\triangleleft The phase transition is related to: $c_{0} \rightarrow 0$ and $s_{b} \rightarrow \infty$ limit
\triangleleft For large latice volumes $(n+m \rightarrow \infty)$ one
 can expand in powers of $2 c_{0}(n-m) / \Gamma \ll 1$
\diamond The form of the effective Lagrangian can be viewed as an effective Wick rotation
of the metric ($t \rightarrow$ it) compared to
Phase C

$$
\langle n| M_{B}|m\rangle=N[n+m]\left[\exp \left(-\frac{\left(m-n-\left[c_{0}\left(n+m-s_{b}\right)\right]_{+}\right)^{2}}{\Gamma(n+m)}\right)+\exp \left(-\frac{\left(m-n+\left[c_{0}\left(n+m-s_{b}\right)\right]_{+}\right)^{2}}{\Gamma(n+m)}\right)\right]
$$

Signature change

\triangleleft Bifurcation of the effective action near phase transition can be interpretted as an effective signature change
\diamond The transfer matrix bifurcates at the new phase transition
\diamond The phase transition is related to: $c_{0} \rightarrow 0$ and $s_{b} \rightarrow \infty$ limit
\triangleleft For large latice volumes $(n+m \rightarrow \infty)$ one

can expand in powers of $2 c_{0}(n-m) / \Gamma \ll 1$
\diamond The form of the effective Lagrangian can be viewed as an effective Wick rotation
of the metric ($t \rightarrow$ it) compared to
Phase C

$$
\langle n| M_{B}|m\rangle=N[n+m]\left[\exp \left(-\frac{\left(m-n-\left[\hat{c_{0}}\left(n+m+\hat{s_{b}} \boldsymbol{v}\right)\right]_{+}\right)^{2}}{\Gamma(n+m)}\right)+\exp \left(-\frac{\left(m-n+\left[\hat{c_{0}}\left(n+m-\hat{s_{b}} \mathbf{v}\right)\right]_{+}\right)^{2}}{\Gamma(n+m)}\right)\right]
$$

Signature change

\triangleleft Bifurcation of the effective action near phase transition can be interpretted as an effective signature change
\checkmark The transfer matrix bifurcates at the new phase transition
\diamond The phase transition is related to: $c_{0} \rightarrow 0$ and $s_{b} \rightarrow \infty$ limit
\checkmark For large latice volumes $(n+m \rightarrow \infty)$ one
 can expand in powers of $2 c_{0}(n-m) / \Gamma \ll 1$
\& The form of the effective Lagrangian can be viewed as an effective Wick rotation
of the metric ($t \rightarrow i t$) compared to
Phase C

$$
\langle n| M_{B}|m\rangle=N[n+m] \exp \left[-\frac{c_{0}^{2}}{\Gamma}(n+m)\right] \exp \left[-\left(1-\frac{2 c_{0}^{2}(n+m)^{2}}{\Gamma}\right) \frac{1}{\Gamma} \frac{(m-n)^{2}}{(n+m)}-\frac{4}{3}\left(\frac{c_{0}(n-m)}{\Gamma}\right)^{4}+\ldots\right]
$$

Signature change

\triangleleft Bifurcation of the effective action near phase transition can be interpretted as an effective signature change
\diamond The transfer matrix bifurcates at the new phase transition
\diamond The phase transition is related to: $c_{0} \rightarrow 0$ and $s_{b} \rightarrow \infty$ limit
\triangleleft For large latice volumes $(n+m \rightarrow \infty)$ one
 can expand in powers of $2 c_{0}(n-m) / \Gamma \ll 1$
\diamond The form of the effective Lagrangian can be viewed as an effective Wick rotation of the metric $(t \rightarrow$ it $)$ compared to $L_{B}=\left(1-\frac{2 c_{0}^{2}(n+m)^{2}}{\Gamma}\right) \frac{1}{\Gamma} \frac{(n-m)^{2}}{n+m}+$ potential $[n+m]$
Phase C

$$
\langle n| M_{B}|m\rangle=N[n+m] \exp \left[-\frac{c_{0}^{2}}{\Gamma}(n+m)\right] \exp \left[-\left(1-\frac{2 c_{0}^{2}(n+m)^{2}}{\Gamma}\right) \frac{1}{\Gamma} \frac{(m-n)^{2}}{(n+m)}-\frac{4}{3}\left(\frac{\left.c_{0}\right\rangle-(m)}{\Gamma}\right)^{4}+\ldots\right]
$$

Signature change

\triangleleft Bifurcation of the effective action near phase transition can be interpretted as an effective signature change
\diamond The transfer matrix bifurcates at the new phase transition
\diamond The phase transition is related to: $c_{0} \rightarrow 0$ and $s_{b} \rightarrow \infty$ limit
\checkmark For large latice volumes $(n+m \rightarrow \infty)$ one
 can expand in powers of $2 c_{0}(n-m) / \Gamma \ll 1$
\diamond The form of the effective Lagrangian can $\quad L_{c}=\frac{1}{\Gamma} \frac{(n-m)^{2}}{n+m}+$ potential[$\left.n+m\right]$ be viewed as an effective Wick rotation of the metric $(t \rightarrow i t)$ compared to $L_{B}=\left(1-\frac{2 c_{0}^{2}(n+m)^{2}}{\Gamma}\right) \frac{1}{\Gamma} \frac{(n-m)^{2}}{n+m}+$ potential[n+m]
Phase C

$$
\langle n| M_{B}|m\rangle=N[n+m] \exp \left[-\frac{c_{0}^{2}}{\Gamma}(n+m)\right] \exp \left[-\left(1-\frac{2 c_{0}^{2}(n+m)^{2}}{\Gamma}\right) \frac{1}{\Gamma} \frac{(m-n)^{2}}{(n+m)}-\frac{4}{3}\left(\frac{\left.c_{0}\right\rangle-(m)}{\Gamma}\right)^{4}+\ldots\right]
$$

Conclusions

\diamond Using the transfer matrix method a new D (bifurcation) phase was discovered JHEP1406(2014)034
\diamond The geometry inside the new phase is very non-trivial and much different than inside the C (de Sitter) phase JHEP1508(2015)033
\diamond The transition seems to be 2nd order JHEP1602(2016)144
\diamond New phase transition may be related to signature change JHEP1508(2015)033
Prospects
\diamond Different topology of spatial slices $\left(S^{3} \Rightarrow T^{3}\right)$
\diamond Inclusion of matter (massless scalar fields)

Thank You!

UNIWERSYTET
JAGIELLOŃSKI

