Jakub Gizbert-Studnicki

in collaboration with

Jan Ambjørn, Daniel Coumbe, Andrzej Görlich and Jerzy Jurkiewicz

Phase structure of Causal Dynamical Triangulations model in 4D

Singularities of general relativity and their quantum fate

29th June 2016

Gravity as a QFT is perturbatively nonrenormalizable in d > 2 dimensions

- ♦ But it could be renormalizable in a nonperturbative regime
 - ♦ assymptotic safety idea (S. Weinberg)
 - renormalization group flow can lead to a non-Gaussian UV fixed point (M. Reuter et al.)
- Lattice formulation would allow to study non-perturbative gravity
 - $\diamond~$ we need a dynamical lattice (DT)
 - UV fixed point should be associated with a 2nd order phase transition
 - one should be able to reproduce semi-classical gravity (IR limit)
- \diamond Causality is an important ingredient

♦ Causal DT (J. Amjørn, J. Jurkiewicz, R. Loll)

- ♦ Gravity as a QFT is perturbatively nonrenormalizable in d > 2 dimensions
- - ♦ assymptotic safety idea (S. Weinberg)
 - renormalization group flow can lead to a non-Gaussian UV fixed point (M. Reuter et al.)
- Lattice formulation would allow to study non-perturbative gravity
 - $\diamond~$ we need a dynamical lattice (DT)
 - UV fixed point should be associated with a 2nd order phase transition
 - one should be able to reproduce semi-classical gravity (IR limit)
- Causality is an important ingredient
 Causal DT (J. Amjørn, J. Jurkiewicz, R. Loll)

- ♦ But it could be renormalizable in a nonperturbative regime
 - \diamond assymptotic safety idea (S. Weinberg)
 - renormalization group flow can lead to a non-Gaussian UV fixed point (M. Reuter et al.)
- Lattice formulation would allow to study non-perturbative gravity
 - ♦ we need a dynamical lattice (DT)
 - UV fixed point should be associated with a 2nd order phase transition
 - one should be able to reproduce semi-classical gravity (IR limit)

-1-

Causality is an important ingredient
 Causal DT (J. Amjørn, J. Jurkiewicz, R. Loll)

- \Leftrightarrow Gravity as a QFT is perturbatively nonrenormalizable in d > 2 dimensions
- \diamond But it could be renormalizable in a nonperturbative regime
 - \diamond assymptotic safety idea (S. Weinberg)
 - \diamond renormalization group flow can lead to a non-Gaussian UV fixed point (M. Reuter et al.)
- \diamond Lattice formulation would allow to study non-perturbative gravity
 - ♦ we need a dynamical lattice (DT)
 - ♦ UV fixed point should be associated with a 2nd order phase transition
 - one should be able to reproduce semi-classicg <code>ˈɡ<code>ɾavity</code> (IR limit)</code>

♦ Causal DT (J. Amjørn, J. Jurkiewicz, R. Loll)

-1-

Outline

 $\diamond CDT$

- \diamond Phase structure
- \diamond Phase transitions
- ♦Transfer matrix method
- \diamond Phase structure revisited
- \diamond Phase transitions revisited
- *⇔Signature change*

 \diamond Conclusions

Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral

-3-

- Classical mechanics: single trajectory of a particle resulting from E-L equations (Hamilton's principle)
- Quantum mechanics: all trajectories (paths) contribute to transition amplitude (weight/phase factor depends on the action)
- Path integral is defined by a discretization of time (regularization)

Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral

-3-

- Classical mechanics: single trajectory of a particle resulting from E-L equations (Hamilton's principle)
- Quantum mechanics: all trajectories (paths) contribute to transition amplitude (weight/phase factor depends on the action)
- Path integral is defined by a discretization of time (regularization)

Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral

-3-

- Classical mechanics: single trajectory of a particle resulting from E-L equations (Hamilton's principle)
- Quantum mechanics: all trajectories (paths) contribute to transition amplitude (weight/phase factor depends on the action)
- Path integral is defined by a discretization of time (regularization)

- Einstein's General Relativity: gravity defined through spacetime geometry
- Smooth geometry can be approximated with arbitrary precission (discretized) by multidimensional simplices (triangulation)
- Local curvature is encoded in deficit angle

- Einstein's General Relativity: gravity defined through spacetime geometry
- Smooth geometry can be approximated with arbitrary precission (discretized) by multidimensional simplices (triangulation)

- Einstein's General Relativity: gravity defined through spacetime geometry
- Smooth geometry can be approximated with arbitrary precission (discretized) by multidimensional simplices (triangulation)
- Local curvature is encoded in deficit angle

time

-5-

Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral (4.1)

- The path integral trajectory of CDT = spacetime geometry regularized by a triangulation (2 types of 4-simplices)
- Transition amplitude depends on all admissible trajectories (non-perturbative approach)
- Causality constraint (global hyperbolicity) ⇒ spacetime topology is fixed (time x space: S¹xS³) and cannot change

{3,2} space

Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral

- The path integral trajectory of CDT = spacetime geometry regularized by a triangulation (2 types of 4-simplices)
- Transition amplitude depends on all admissible trajectories (non-perturbative approach)
- Causality constraint (global hyperbolicity) ⇒ spacetime topology is fixed (time x space: S¹xS³) and cannot change

Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral

- The path integral trajectory of CDT = spacetime geometry regularized by a triangulation (2 types of 4-simplices)
- Transition amplitude depends on all admissible trajectories (non-perturbative approach)
- Causality constraint (global hyperbolicity) ⇒ spacetime topology is fixed (time x space: S¹xS³) and cannot change

Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral

- The path integral trajectory of CDT = spacetime geometry regularized by a triangulation (2 types of 4-simplices)
- Transition amplitude depends on all admissible trajectories (non-perturbative approach)
- Causality constraint (global hyperbolicity) ⇒ spacetime topology is fixed (time x space: S¹xS³) and cannot change

Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral

- The path integral trajectory of CDT = spacetime geometry regularized by a triangulation (2 types of 4-simplices)
- Transition amplitude depends on all admissible trajectories (non-perturbative approach)

Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral

- The path integral trajectory of CDT = spacetime geometry regularized by a triangulation (2 types of 4-simplices)
- Transition amplitude depends on all admissible trajectories (non-perturbative approach)
- Causality constraint (global hyperbolicity) ⇒ spacetime topology is fixed (time x space: S¹xT³) and cannot change

Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral

-6-

We will consider pure gravity model
 (G) with positive cosmological
 Constant (Λ)

$$S_{HE} = \frac{1}{16\pi G} \int d^4 x \sqrt{-g} \left(R - 2\Lambda \right)$$

- CDT is formulated in a coordinate free way
- \diamond Three coupling constants: k_0 , K_4 , Δ
- After Wick's rotation: "random" geometry system
- ♦ Background geometry emerges dynamically: interplay between bare action (S_R) and entropy

$$Z = \int_{trajectories} D[g_{\mu\nu}] \exp(iS_{HE}[g_{\mu\nu}])$$

Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral

-6-

- We will consider pure gravity model
 (G) with positive cosmological
 Constant (Λ)
- ♦ CDT is formulated in a coordinate free way

$$S_{HE} = \frac{1}{16\pi G} \int d^4 x \sqrt{-g(R-2\Lambda)}$$

$$S_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0 \right)$$

1

- \diamond Three coupling constants: k_0 , K_4 , Δ
- After Wick's rotation: "random" geometry system
- ♦ Background geometry emerges dynamically: interplay between bare action (S_R) and entropy

$$Z = \sum_{T} \exp(iS_{R}[T])$$

Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral

-6-

- We will consider pure gravity model
 (G) with positive cosmological
 Constant (Λ)
- CDT is formulated in a coordinate free way
- \diamond Three coupling constants: k_0, K_4, Δ
- After Wick's rotation: "random" geometry system
- Background geometry emerges dynamically: interplay between bare action (S_R) and entropy

$$S_{HE} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_{R} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda\right)$$

Causal Dynamical Triangulations (CDT) is a Quantum Gravity model based on the path integral

-6-

- We will consider pure gravity model
 (G) with positive cosmological
 Constant (Λ)
- CDT is formulated in a coordinate free way
- \diamond Three coupling constants: k_0 , K_4 , Δ
- After Wick's rotation: "random" geometry system
- ♦ Background geometry emerges dynamically: interplay between bare action (S_R) and entropy

$$S_{HE} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-g} \left(R - 2\Lambda \right)$$

$$S_{R} = -k_{0}N_{0} + K_{4}N_{4} + \Delta \left(N_{4}^{(4,1)} - 6N_{0} \right)$$

$$M_{1/G} \qquad \Lambda \qquad \alpha \ (l_{t}^{2} = -\alpha l_{s}^{2})$$

$$Z = \sum \exp((-\Omega \int T_{t}))$$

$$Z = \sum_{T} \exp(-S_{R}[T])$$

- We will consider pure gravity model
 (G) with positive cosmological
 Constant (Λ)
- CDT is formulated in a coordinate free way
- \diamond Three coupling constants: k_0 , K_4 , Δ
- After Wick's rotation: "random" geometry system
- ♦ Background geometry emerges dynamically: interplay between bare action (S_R) and entropy

$$S_{HE} = \frac{1}{16\pi G} \int d^4 x \sqrt{-g} \left(R - 2\Lambda\right)$$

$$S_R = -k_0 N_0 + K_4 N_4 + \Delta \left(N_4^{(4,1)} - 6N_0\right)$$

$$M = \frac{1}{1/G} \qquad \Lambda \qquad \alpha \quad (l_t^2 = -\alpha l_s^2)$$

$$Z = \sum_T \exp(-S_R[T])$$

$$S_e = \ln \Omega$$

- ♦ The observable: 3-volume of spatial layers (foliation leaves of the global proper time): $V_3(t) \propto n_t \equiv N_{(4,1)}(t)$
- Initially three phases (A, B, C) of various geometry were discovered
- Phase C (de Sitter phase) has good semi-classical properties (IR limit)
 - \diamond Hausdorff dim.: 4 , spectral dim.: 2 \Rightarrow 4
 - ♦ Background geommetry is consistent with a 4-dim sphere ⇒ Euclidean de Sitter universe (positive cosmol. const.)
 - This is clasically obtained for a homogenous and isotropic metric
 - For which the GR action takes a form of the minisuperspace action

- Initially three phases (A, B, C) of various geometry were discovered
- Phase C (de Sitter phase) has good semi-classical properties (IR limit)
 - \diamond Hausdorff dim.: 4 , spectral dim.: 2 \Rightarrow 4
 - ♦ Background geommetry is consistent
 with a 4-dim sphere ⇒ Euclidean de
 Sitter universe (positive cosmol. const.)
 - This is clasically obtained for a homogenous and isotropic metric
 - For which the GR action takes a form of the minisuperspace action

- Initially three phases (A, B, C) of various geometry were discovered
- Phase C (de Sitter phase) has good semi-classical properties (IR limit)
 - \diamond Hausdorff dim.: 4 , spectral dim.: 2 \Rightarrow 4
 - ♦ Background geommetry is consistent
 with a 4-dim sphere ⇒ Euclidean de
 Sitter universe (positive cosmol. const.)
 - This is clasically obtained for a homogenous and isotropic metric
 - For which the GR action takes a form of the minisuperspace action

- Initially three phases (A, B, C) of various geometry were discovered
- Phase C (de Sitter phase) has good semi-classical properties (IR limit)
 - \diamond Hausdorff dim.: 4 , spectral dim.: 2 \Rightarrow 4
 - ♦ Background geommetry is consistent
 with a 4-dim sphere ⇒ Euclidean de
 Sitter universe (positive cosmol. const.)
 - This is clasically obtained for a homogenous and isotropic metric
 - ♦ For which the GR action takes a form of the minisuperspace action

- Initially three phases (A, B, C) of various geometry were discovered
- Phase C (de Sitter phase) has good semi-classical properties (IR limit)
 - \diamond Hausdorff dim.: 4 , spectral dim.: 2 \Rightarrow 4
 - ♦ Background geommetry is consistent
 with a 4-dim sphere ⇒ Euclidean de
 Sitter universe (positive cosmol. const.)
 - This is clasically obtained for a homogenous and isotropic metric
 - For which the GR action takes a form of the minisuperspace action

- Initially three phases (A, B, C) of various geometry were discovered
- Phase C (de Sitter phase) has good semi-classical properties (IR limit)
 - \diamond Hausdorff dim.: 4 , spectral dim.: 2 \Rightarrow 4
 - ♦ Background geommetry is consistent with a 4-dim sphere ⇒ Euclidean de Sitter universe (positive cosmol. const.)
 - This is clasically obtained for a homogenous and isotropic metric
 - For which the GR action takes a form of the minisuperspace action

- Initially three phases (A, B, C) of various geometry were discovered
- Phase C (de Sitter phase) has good semi-classical properties (IR limit)
 - \diamond Hausdorff dim.: 4 , spectral dim.: 2 \Rightarrow 4
 - ♦ Background geommetry is consistent with a 4-dim sphere ⇒ Euclidean de Sitter universe (positive cosmol. const.)
 - This is clasically obtained for a homogenous and isotropic metric
 - For which the GR action takes a form of the minisuperspace action

- Initially three phases (A, B, C) of various geometry were discovered
- Phase C (de Sitter phase) has good semi-classical properties (IR limit)
 - \diamond Hausdorff dim.: 4, spectral dim.: 2 \Rightarrow 4
 - ♦ Background geommetry is consistent with a 4-dim sphere ⇒ Euclidean de Sitter universe (positive cosmol. const.)
 - This is clasically obtained for a homogenous and isotropic metric
 - For which the GR action takes a form of the minisuperspace action

- Initially three phases (A, B, C) of various geometry were discovered
- Phase C (de Sitter phase) has good semi-classical properties (IR limit)
 - \diamond Hausdorff dim.: 4 , spectral dim.: 2 \Rightarrow 4
 - ♦ Background geommetry is consistent with a 4-dim sphere ⇒ Euclidean de Sitter universe (positive cosmol. const.)
 - This is clasically obtained for a homogenous and isotropic metric
 - For which the GR action takes a form of the minisuperspace action

$$ds^{2} = dt^{2} + a^{2}(t)d\Omega_{3}^{2} \Longrightarrow V_{3}(t) \propto a^{3}(t)$$

$$V_{3}(t) = \frac{3}{4} V_{4} \frac{1}{A V_{4}^{1/4}} \cos^{3} \left(\frac{t - t_{0}}{A V_{4}^{1/4}} \right)$$

-7-

- Initially three phases (A, B, C) of various geometry were discovered
- Phase C (de Sitter phase) has good semi-classical properties (IR limit)
 - \diamond Hausdorff dim.: 4 , spectral dim.: 2 \Rightarrow 4
 - ♦ Background geommetry is consistent with a 4-dim sphere ⇒ Euclidean de Sitter universe (positive cosmol. const.)
 - This is clasically obtained for a homogenous and isotropic metric
 - For which the GR action takes a form of the minisuperspace action

$$ds^{2} = dt^{2} + a^{2}(t)d\Omega_{3}^{2} \Longrightarrow V_{3}(t) \propto a^{3}(t)$$

$$S = -\frac{1}{24\pi G} \int dt \left(\frac{V_3(t)^2}{V_3(t)} + \mu V_3(t)^{1/3} - \lambda V_3(t) \right)$$

-8-

♦ Phase C (de Sitter phase) continued

- $\Rightarrow The effective action for the <math>n_t$ observable ...
- … can be analyzed by looking at quantum fluctuations around the semiclassical solution
- The (inverse of) covariance matrix
 P = C⁻¹ provides information about
 second derivatives of the effective
 action
- The measured covariance matrix is consistent with MS action (with reversed overall sign) !

$$Z = \sum_{T} \exp(-S_{R}[T]) = \sum_{\{n_{t}\}} \sum_{T[\{n_{t}\}]} \exp(-S_{R}[T])$$

$$Z_{ef} = \sum_{\{n_t\}} \exp(-S_{ef}[\{n_t\}])$$

$$S = -\frac{1}{24\pi G} \int dt \left(\frac{V_3(t)^2}{V_3(t)} + \mu V_3(t)^{1/3} - \lambda V_3(t) \right)$$

-8.

♦ Phase C (de Sitter phase) continued

- $\Rightarrow The effective action for the <math>n_t$ observable ...
- ... can be analyzed by looking at quantum fluctuations around the semiclassical solution
- The (inverse of) covariance matrix
 P = C⁻¹ provides information about
 second derivatives of the effective
 action
- The measured covariance matrix is consistent with MS action (with reversed overall sign) !

$$n_{t} = \left\langle n_{t} \right\rangle + \delta n_{t} \qquad C_{tt'} \equiv \left\langle \delta n_{t} \delta n_{t'} \right\rangle$$

$$S = -\frac{1}{24\pi G} \int dt \left(\frac{V_3(t)^2}{V_3(t)} + \mu V_3(t)^{1/3} - \lambda V_3(t) \right)$$
Phase structure

-8.

♦ Phase C (de Sitter phase) continued

- \diamond The effective action for the n_t observable ...
- ... can be analyzed by looking at quantum fluctuations around the semiclassical solution
- The (inverse of) covariance matrix
 P = C⁻¹ provides information about
 second derivatives of the effective
 action
- The measured covariance matrix is consistent with MS action (with reversed overall sign) !

$$n_{t} = \left\langle n_{t} \right\rangle + \delta n_{t} \qquad C_{tt'} \equiv \left\langle \delta n_{t} \delta n_{t'} \right\rangle$$

$$S = -\frac{1}{24\pi G} \int dt \left(\frac{V_3(t)^2}{V_3(t)} + \mu V_3(t)^{1/3} - \lambda V_3(t) \right)$$

Phase structure

-8-

♦ Phase C (de Sitter phase) continued

- \diamond The effective action for the n_t observable ...
- ... can be analyzed by looking at quantum fluctuations around the semiclassical solution
- The (inverse of) covariance matrix
 P = C⁻¹ provides information about
 second derivatives of the effective
 action
- The measured covariance matrix is consistent with MS action (with reversed overall sign) !

$$n_{t} = \left\langle n_{t} \right\rangle + \delta n_{t} \qquad C_{tt'} \equiv \left\langle \delta n_{t} \delta n_{t'} \right\rangle$$

-9-

- ♦ To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_4 , N_0 , ...)
- Here we look at OP conjugate to the varied coupling constant
- Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transitions
- ♦ But one must be careful and check $N_4 \rightarrow \infty \text{ limit}$
- There exists a 2-nd order transition
 perspective UV limit ???

-9-

- ♦ To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_4 , N_0 , ...)
- Here we look at OP conjugate to the varied coupling constant
- Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transitions
- ♦ But one must be careful and check $N_4 \rightarrow \infty \text{ limit}$
- \diamond There exists a 2-nd order transition
 - ♦ perspective UV limit ???

- ♦ To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_4 , N_0 , ...)
- ♦ Here we look at OP conjugate to the varied coupling constant
- (Pseudo)critical point is signaled by max. of susceptibility
- Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transitions
- ♦ But one must be careful and check $N_4 \rightarrow \infty \text{ limit}$

15000

5000

300

200

- \diamond To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_4 , N_0 , ...)
- \diamond Here we look at OP conjugate to the \triangleleft varied coupling constant
- \diamond (Pseudo)critical point is signaled by max. of susceptibility
- \diamond Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transitions
- \Rightarrow But one must be careful and check $N_{A} \rightarrow \infty$ limit
- \diamond There exists a 2-nd order transition \diamond perspective UV limit ??? _9.

-9-

- ♦ To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_4 , N_0 , ...)

- Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transitions
- ♦ But one must be careful and check $N_4 \rightarrow \infty$ limit
- There exists a 2-nd order transition
 \$\[\phi \text{ perspective UV limit ???}\]

- ♦ To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_4 , N_0 , ...)

- Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transitions
- ♦ But one must be careful and check $N_4 \rightarrow \infty$ limit

-9.

- ♦ To analyze phase transitions one needs to define a suitable order parameter OP (e.g. N_4 , N_0 , ...)

- Two-states jumping of OP (double peak structure of measured histograms) may signal a 1st order transitions
- ♦ But one must be careful and check $N_4 \rightarrow \infty \text{ limit}$
- There exists a 2-nd order transition
 Perspective UV limit ???

- ♦ CDT has by definition a transfer matrix parametrized by 3-dimensional spatial triangulations T₃
- ♦ Local form of the effective action in Phase C suggests that a description by effective transfer matrix parametrized by spatial volume n_t is also viable
- Measurement of the transfer matrix = direct measurement of the effective Lagrangian

$$Z = \sum_{\{T_3\}} \langle T_3 \mid M^T \mid T_3 \rangle = tr M^T$$

- ♦ CDT has by definition a transfer matrix parametrized by 3-dimensional spatial triangulations T₃
- ♦ Local form of the effective action in Phase C suggests that a description by effective transfer matrix parametrized by spatial volume n_t is also viable
- Measurement of the transfer matrix = direct measurement of the effective Lagrangian

$$Z = \sum_{\{T_3\}} \langle T_3 \mid M^T \mid T_3 \rangle = tr M^T$$

- \diamond CDT has by definition a transfer matrix parametrized by 3-dimensional spatial triangulations T_3
- Measurement of the transfer matrix = direct measurement of the effective Lagrangian

$$\begin{split} S_{ef} &= \frac{1}{\Gamma} \sum_{t} \left(\frac{\left(n_{t+1} - n_{t} \right)^{2}}{\left(n_{t} + n_{t+1} \right)^{2}} + \tilde{\mu} n_{t}^{1/3} - \tilde{\lambda} n_{t} \right) \\ S_{ef} &= \sum_{t} L_{ef} \left[n_{t}, n_{t+1} \right] \\ Z_{ef} &= \sum_{\{n_{t}\}} \left\langle n_{t} \mid M_{ef}^{T} \mid n_{t} \right\rangle = tr M_{ef}^{T} \end{split}$$

- \diamond CDT has by definition o transfer matrix parametrized by 3-dimensional spatial triangulations T₃
- $\Rightarrow \text{ Measurement of the transfer matrix} = \begin{cases} n_t \\ n_t \end{cases}$ $= \begin{cases} n_t \\ n_t \end{cases}$

$$S_{ef} = \frac{1}{\Gamma} \sum_{t} \left(\frac{\left(n_{t+1} - n_{t}\right)^{2}}{\left(n_{t} + n_{t+1}\right)} + \tilde{\mu} n_{t}^{1/3} - \tilde{\lambda} n_{t} \right)$$

$$S_{ef} = \sum_{t} L_{ef}[n_{t}, n_{t+1}]$$

$$Z_{ef} = \sum_{\{n_t\}} \left\langle n_t \mid M_{ef}^T \mid n_t \right\rangle = tr M_{ef}^T$$

\diamond The transfer matrix method enables one to measure the effective action directly

- deep in Phase C is consistent with the minisuperspace action!
 - ♦ Gaussian kinetic term & MS potential
 - \diamond The effective transfer matrix description replicates full-CDT data
- \diamond But when we are are close to the BC phase transition
 - \diamond the kinetic part measured for small volumes resembles MS behaviour
 - \diamond for sufficiently large volumes one observes a bifurcation of the kinetic part

-11

The transfer matrix method enables one to measure the effective action directly

- ♦ The effective transfer matrix measured $L_c = \frac{1}{\Gamma}$ deep in Phase C is consistent with the minisuperspace action!
 - ♦ Gaussian kinetic term & MS potential
 - The effective transfer matrix description replicates full-CDT data
- - the kinetic part measured for small volumes resembles MS behaviour
 - for sufficiently large volumes one observes a bifurcation of the kinetic part

- deep in Phase C is consistent with the minisuperspace action!
 - ♦ Gaussian kinetic term & MS potential
 - \diamond The effective transfer matrix description replicates full-CDT data
- \diamond But when we are are close to the BC phase transition
 - \diamond the kinetic part measured for small volumes resembles MS behaviour
 - \diamond for sufficiently large volumes one observes a bifurcation of the kinetic part

The transfer matrix method enables one to measure the effective action directly [(----)²

- The effective transfer matrix measured deep in Phase C is consistent with the minisuperspace action!
 - \diamond Gaussian kinetic term & MS potential
 - The effective transfer matrix description replicates full-CDT data
- - the kinetic part measured for small volumes resembles MS behaviour
 - for sufficiently large volumes one observes a bifurcation of the kinetic part

$$L_{C} = \frac{1}{\Gamma} \left[\frac{\left(n-m\right)^{2}}{n+m} + \mu \left(\frac{n+m}{2}\right)^{1/3} - \lambda \left(\frac{n+m}{2}\right) \right]$$

The transfer matrix method enables one to measure the effective action directly 10

- The effective transfer matrix measured deep in Phase C is consistent with the minisuperspace action!
 - \diamond Gaussian kinetic term & MS potential
 - The effective transfer matrix description replicates full-CDT data
- But when we are are close to the BC phase transition
 - the kinetic part measured for small volumes resembles MS behaviour
 - for sufficiently large volumes one observes a bifurcation of the kinetic part

$$L_{C} = \frac{1}{\Gamma} \left[\frac{\left(n-m\right)^{2}}{n+m} + \mu \left(\frac{n+m}{2}\right)^{1/3} - \lambda \left(\frac{n+m}{2}\right) \right]$$

The transfer matrix method enables one to measure the effective action directly

- The effective transfer matrix measured deep in Phase C is consistent with the minisuperspace action!
 - \diamond Gaussian kinetic term & MS potential
 - The effective transfer matrix description replicates full-CDT data
- But when we are are close to the BC phase transition
 - the kinetic part measured for small volumes resembles MS behaviour
 - for sufficiently large volumes one observes a bifurcation of the kinetic part

$$\langle n | M_B | m \rangle = N[n+m] \exp\left(-\frac{(m-n)^2}{\Gamma(n+m)}\right)$$

$\Rightarrow The transfer matrix method enables one to measure the effective action directly <math display="block">\left[\left(\begin{array}{c} (m-n-c[n+m])^2 \end{array} \right)^2 \right]$

- $\Rightarrow The effective transfer matrix measured$ deep in Phase C is consistent with theminisuperspace action! $<math display="block">\begin{cases} n | M_{B} | m \rangle = N[n+m] \\ minisured \\ minisuperspace \\ minisuper$
 - \diamond Gaussian kinetic term & MS potential
 - The effective transfer matrix description replicates full-CDT data
- But when we are are close to the BC phase transition
 - the kinetic part measured for small volumes resembles MS behaviour
 - for sufficiently large volumes one observes a bifurcation of the kinetic part

$\Rightarrow The transfer matrix method enables one to measure the effective action directly <math display="block">\left[\begin{array}{c} (m-n+c[n+m])^2 \end{array} \right]$

- $\Rightarrow The effective transfer matrix measured$ deep in Phase C is consistent with the $minisuperspace action! <math display="block"> = N[n+m] \left[\exp \left(\frac{n |M_B| m}{m} \right) + N[n+m] \right] \left[\exp \left(\frac{n |M_B| m}{m} \right) + N[n+m] \right] \left[\exp \left(\frac{n |M_B| m}{m} \right) + N[n+m] \right] \right]$
 - \diamond Gaussian kinetic term & MS potential
 - The effective transfer matrix description replicates full-CDT data
- But when we are are close to the BC phase transition
 - the kinetic part measured for small volumes resembles MS behaviour
 - for sufficiently large volumes one observes a bifurcation of the kinetic part

The new phase separating phases B & C is related to a bifurcation of the effective action ..

The new phase separating phases B & C is related to a bifurcation of the effective action ..

- Average volume profile in the new phase resembles the profile observed in Phase C ...
- … which is well explained by the bifurcation of the transfer matrix kinetic term

The new phase separating phases B & C is related to a bifurcation of the effective action ..

- Average volume profile in the new phase resembles the profile observed in Phase C ...
- … which is well explained by the bifurcation of the transfer matrix kinetic term

The new phase separating phases B & C is related to a *bifurcation* of the effective action ..

-12-

- \diamond Average volume profile in the new phase resembles the profile observed in Phase C ...
- \diamond ... but the profile is shrinking in time direction ...
- \diamond ... which is well explained by the *bifurcation* of the transfer matrix kinetic term

-13-

♦ Infinite Hausdorff dimension?

- Spectral dimension > 4 and growing (to infinity ?) with growing volume
- This suggests high connectivity between the building blocks
- 4-volume is concentrated in short geodesic distance
- Such volume clusters appear every second time slice and are linked by "singular" vertices

♦ Infinite Hausdorff dimension?

- Spectral dimension > 4 and growing (to infinity ?) with growing volume
- This suggests high connectivity between the building blocks
- 4-volume is concentrated in short geodesic distance
- Such volume clusters appear every second time slice and are linked by "singular" vertices

- - \diamond Infinite Hausdorff dimension?
 - Spectral dimension > 4 and growing (to infinity ?) with growing volume
 - This suggests high connectivity between the building blocks

 - Such volume clusters appear every second time slice and are linked by "singular" vertices

- - \diamond Infinite Hausdorff dimension?
 - Spectral dimension > 4 and growing (to infinity ?) with growing volume
 - This suggests high connectivity between the building blocks
 - 4-volume is concentrated in short geodesic distance
 - Such volume clusters appear every second time slice and are linked by "singular" vertices

- - \diamond Infinite Hausdorff dimension?
 - Spectral dimension > 4 and growing (to infinity ?) with growing volume
 - This suggests high connectivity between the building blocks
 - 4-volume is concentrated in short geodesic distance
 - Such volume clusters appear every second time slice and are linked by *"singular" vertices*

Spatial (3-dimentional) geometries differ between odd and even t

- \diamond average spatial curvature scalar
- \diamond average extent of the universe
- This is caused by geometric structures surrounding "singular" vertices
 - ♦ each such a vertex is shared by a compact cluster of spatial volume (tetrahedra)
 - whose boundary has topology of a 2-sphere (Euler characteristic = 2)
 - \diamond and this structure "evolves" in time

-14

0.6

- Spatial (3-dimentional) geometries differ between odd and even t
 - $\Rightarrow \text{ average spatial curvature scalar } \overline{R}_{(3)} = \frac{\int d^3x \sqrt{g_{(3)}R_{(3)}}}{c^3 \sqrt{g_{(3)}R_{(3)}}}$
 - \diamond average extent of the universe
- - ♦ whose boundary has topology of a 2-sph.
 (Euler characteristic = 2)
 - \diamond and this structure "evolves" in time
- ♦ Do we observe a quantum BH ???

 \diamond ... resulting from geometry considerably different than inside Phase C

- between odd and even t
 - \diamond average spatial curvature scalar
 - \Rightarrow average extent of the universe $\langle r \rangle = \frac{\sum rV_3(r)}{V}$
- \diamond This is caused by geometric structures surrounding "singular" vertices
 - \diamond each such a vertex is shared by a compa cluster of spatial volume (tetrahedra)
 - \diamond whose boundary has topology of a 2-sphere (Euler characteristic = 2)
 - \diamond and this structure "evolves" in time

- Spatial (3-dimentional) geometries differ between odd and even t
 - \diamond average spatial curvature scalar
 - \diamond average extent of the universe
- This is caused by geometric structures surrounding "singular" vertices
 - ♦ each such a vertex is shared by a compact cluster of spatial volume (tetrahedra)
 - whose boundary has topology of a 2-spher (Euler characteristic = 2)
 - \diamond and this structure "evolves" in time

- Spatial (3-dimentional) geometries differ between odd and even t
 - \diamond average spatial curvature scalar
 - \diamond average extent of the universe
- This is caused by geometric structures surrounding "singular" vertices
 - each such a vertex is shared by a compact cluster of spatial volume (tetrahedra)
 - whose boundary has topology of a 2-sphere (Euler characteristic = 2)
 - \diamond and this structure "evolves" in time

A ... resulting from geometry considerably different than
 inside Phase C
 ...

- Spatial (3-dimentional) geometries differ between odd and even t
 - \diamond average spatial curvature scalar
 - \diamond average extent of the universe
- This is caused by geometric structures surrounding "singular" vertices

 - whose boundary has topology of a 2-sphere (Euler characteristic = 2)
 - \diamond and this structure "evolves" in time

Phase structure revisited

- Spatial (3-dimentional) geometries differ between odd and even t
 - \diamond average spatial curvature scalar
 - \diamond average extent of the universe
- This is caused by geometric structures surrounding "singular" vertices

 - whose boundary has topology of a 2-sphere (Euler characteristic = 2)
 - $\diamond\,$ and this structure "evolves" in time

 \diamond Do we observe a quantum BH ???

Phase structure revisited

- Spatial (3-dimentional) geometries differ between odd and even t
 - \diamond average spatial curvature scalar
 - \diamond average extent of the universe
- This is caused by geometric structures surrounding "singular" vertices
 - each such a vertex is shared by a compact cluster of spatial volume (tetrahedra)
 - whose boundary has topology of a 2-sphere
 (Euler characteristic = 2)

♦ and this structure "evolves" in time
♦ Do we observe a quantum BH ???

- To analyze phase transitions one needs to define a suitable order parameter OP
- \diamond (Pseudo)critical point is characterized by max in susceptibility X_{OP}
- At the transition point the OP jumps between two metastable states
- But the two states converge with increasing lattice volume
- Position of the (pseudo)critical point is moving with the total volume
- ♦ Critical exponent ($v = 3.0 \pm 0.3$) suggests
 2nd order transition

- To analyze phase transitions one needs to define a suitable order parameter OP
- \diamond (Pseudo)critical point is characterized by max in susceptibility X_{OP}
- At the transition point the OP jumps between two metastable states
- But the two states converge with increasing lattice volume
- Position of the (pseudo)critical point is moving with the total volume
- ♦ Critical exponent ($v = 3.0 \pm 0.3$) suggests
 2nd order transition

- To analyze phase transitions one needs to define a suitable order parameter OP
- \diamond (Pseudo)critical point is characterized by max in susceptibility X_{OP}
- At the transition point the OP jumps between two metastable states
- But the two states converge with increasing lattice volume
- Position of the (pseudo)critical point is moving with the total volume
- ♦ Critical exponent ($v = 3.0 \pm 0.3$) suggests
 2nd order transition

- To analyze phase transitions one needs to define a suitable order parameter OP
- \diamond (Pseudo)critical point is characterized by max in susceptibility X_{OP}
- At the transition point the OP jumps between two metastable states
- But the two states converge with increasing lattice volume
- Position of the (pseudo)critical point is moving with the total volume
- ♦ Critical exponent ($v = 3.0 \pm 0.3$) suggests
 2nd order transition

- To analyze phase transitions one needs to define a suitable order parameter OP
- \diamond (Pseudo)critical point is characterized by max in susceptibility X_{OP}
- At the transition point the OP jumps between two metastable states
- But the two states converge with increasing lattice volume
- Position of the (pseudo)critical point is moving with the total volume
- ♦ Critical exponent ($v = 3.0 \pm 0.3$) suggests 2nd order transition -15-

- To analyze phase transitions one needs to define a suitable order parameter OP
- \diamond (Pseudo)critical point is characterized by max in susceptibility X_{OP}
- At the transition point the OP jumps between two metastable states
- But the two states converge with increasing lattice volume
- Position of the (pseudo)critical point is moving with the total volume
- ♦ Critical exponent ($v = 3.0 \pm 0.3$) suggests 2nd order transition
 -15-

- To analyze phase transitions one needs to define a suitable order parameter OP
- \diamond (Pseudo)critical point is characterized by max in susceptibility X_{OP}
- At the transition point the OP jumps between two metastable states
- But the two states converge with increasing lattice volume
- Position of the (pseudo)critical point is moving with the total volume
- $\Rightarrow Critical exponent (v = 3.0 \pm 0.3) suggests$ 2nd order transition

Sifurcation of the effective action near phase transition can be interpretted as an effective signature change

Solution of the effective action near phase transition can be interpretted as an effective signature change

- The transfer matrix bifurcates at the new phase transition
- ♦ The phase transition is related to: $c_0 \rightarrow 0$ and $s_b \rightarrow \infty$ limit
- ♦ For large latice volumes ($n+m \rightarrow \infty$) one can expand in powers of $2c_0(n-m)/\Gamma << 1$
- ♦ The form of the effective Lagrangian can be viewed as an effective Wick rotation of the metric (t → it) compared to Phase C

Solution of the effective action near phase transition can be interpretted as an effective signature change

- The transfer matrix bifurcates at the new phase transition
- ♦ The phase transition is related to: $c_0 \rightarrow 0$ and $s_b \rightarrow \infty$ limit
- ♦ For large latice volumes ($n+m \rightarrow \infty$) one can expand in powers of $2c_0(n-m)/\Gamma << 1$
- ♦ The form of the effective Lagrangian can be viewed as an effective Wick rotation of the metric (t → it) compared to Phase C

$$\left\langle n \mid M_{B} \mid m \right\rangle = N[n+m] \left[\exp \left(-\frac{\left(m-n-\left[c_{0}(n+m-s_{b})\right]_{+}\right)^{2}}{\Gamma(n+m)} \right) + \exp \left(-\frac{\left(m-n+\left[c_{0}(n+m-s_{b})\right]_{+}\right)^{2}}{\Gamma(n+m)} \right) \right] -16 - \left(-\frac{\left(m-n+\left[c_{0}(n+m-s_{b})\right]_{+}\right)^{2}}{\Gamma(n+m)} \right) \right]$$

- Solution of the effective action near phase transition can be interpretted as an effective signature change
 - The transfer matrix bifurcates at the new phase transition
 - ♦ The phase transition is related to: $c_0 \rightarrow 0$ and $s_b \rightarrow \infty$ limit
 - ↔ For large latice volumes (n+m → ∞) one can expand in powers of $2c_0(n-m)/Γ << 1$

$$\left\langle n \mid M_{B} \mid m \right\rangle = N[n+m] \left[\exp \left(-\frac{\left(m-n-\left[c_{0}\left(n+m-s_{b}\right)\right]_{+}\right)^{2}}{\Gamma(n+m)} \right) + \exp \left(-\frac{\left(m-n+\left[c_{0}\left(n+m-s_{b}\right)\right]_{+}\right)^{2}}{\Gamma(n+m)} \right) \right] -16 - \left(-\frac{\left(m-n+\left[c_{0}\left(n+m-s_{b}\right)\right]_{+}\right)^{2}}{\Gamma(n+m)} \right) + \left(-\frac{\left(m-n+\left[c_{0}\left(n+m-s_{b}\right)\right]_{+}\right)^{2}}{\Gamma(n+m)} \right) -16 - \left(-\frac{\left(m-n+\left[c_{0}\left(n+m-s_{b}\right)\right)}{\Gamma(n+m)} \right) -16 - \left(-\frac{\left(m-n+\left[c_{0}\left(n+m-s_{b}\right)\right]_{+}\right)^{2}}{\Gamma(n+m)} \right) -16 - \left(-\frac{\left(m-n+\left[c_{0}\left(n+m-s_{b}\right)\right]_{+}\right) -16 - \left(-\frac{\left(m-n+\left[c_{0}\left(n+m-s_{b}\right)\right]_{+}\right)$$

- Solution of the effective action near phase transition can be interpretted as an effective signature change
 - The transfer matrix bifurcates at the new phase transition
 - ♦ The phase transition is related to: $c_0 \rightarrow 0$ and $s_b \rightarrow \infty$ limit
 - ♦ For large latice volumes ($n+m \rightarrow \infty$) one can expand in powers of $2c_0(n-m)/\Gamma << 1$
 - ♦ The form of the effective Lagrangian can be viewed as an effective Wick rotation of the metric (t → it) compared to Phase C

$$\left\langle n \,|\, M_{B} \,|\, m \right\rangle = N[n+m] \exp\left[-\frac{c_{0}^{2}}{\Gamma}(n+m)\right] \exp\left[-\left(1-\frac{2c_{0}^{2}(n+m)^{2}}{\Gamma}\right)\frac{1}{\Gamma}\frac{\left(m-n\right)^{2}}{(n+m)} - \frac{4}{3}\left(\frac{c_{0}(n-m)}{\Gamma}\right)^{4} + \dots\right] -16 - \frac{1}{2} \left(\frac{1-\frac{2c_{0}^{2}(n+m)^{2}}{\Gamma}}{\Gamma}\right) + \frac{1}{2} \left(\frac{1-\frac{2c_{0}^{2}(n+m)^{2}}{\Gamma}\right) + \frac{1}{2} \left(\frac{1-\frac{2c_{0}$$

- Solution of the effective action near phase transition can be interpretted as an effective signature change
 - The transfer matrix bifurcates at the new phase transition
 - ♦ The phase transition is related to: $c_0 \rightarrow 0$ and $s_b \rightarrow \infty$ limit
 - ♦ For large latice volumes ($n+m \rightarrow \infty$) one can expand in powers of $2c_0(n-m)/\Gamma << 1$
 - ♦ The form of the effective Lagrangian can be viewed as an effective Wick rotation of the metric (t → it) compared to $L_B = \left(1 - \frac{2c_0^2(n+m)^2}{\Gamma}\right) \frac{1}{\Gamma}$ Phase C

$$\left\langle n \,|\, M_{_{B}} \,|\, m \right\rangle = N[n+m] \exp\left[-\frac{c_{_{0}}^{^{2}}}{\Gamma}(n+m)\right] \exp\left[-\left(1-\frac{2c_{_{0}}^{^{2}}(n+m)^{^{2}}}{\Gamma}\right)\frac{1}{\Gamma}\frac{\left(m-n\right)^{^{2}}}{(n+m)} - \frac{4}{3}\left(\frac{c_{_{0}}(n-m)}{\Gamma}\right)^{^{4}} + \dots\right] -16^{-16}$$

+ potential[n+m]

Output the effective action near phase transition can be interpretted as an effective signature change

0.6

0.4

0.2

0

-0.2

А

druple poin

5

4

 $L_{c} = \frac{1}{\Gamma} \frac{\left(n-m\right)^{2}}{n+m} + potential[n+m]$

В

- \diamond The transfer matrix bifurcates at the new phase transition
- \diamond The phase transition is related to: $c_0 \rightarrow 0$ and $s_h \rightarrow \infty$ limit
- \diamond For large latice volumes ($n+m \rightarrow \infty$) one can expand in powers of $2c_0(n-m)/\Gamma \ll 1$
- ♦ The form of the effective Lagrangian can be viewed as an effective Wick rotation of the metric $(t \rightarrow it)$ compared to $L_{B} = \left(1 - \frac{2c_{0}^{2}(n+m)^{2}}{\Gamma}\right) \frac{1}{\Gamma} \frac{(n-m)^{2}}{n+m} + potential[n+m]$ Phase C

Conclusions

Using the transfer matrix method a new D (bifurcation) phase
 was discovered
 JHEP1406(2014)034

- The geometry inside the new phase is very non-trivial and much different than inside the C (de Sitter) phase JHEP1508(2015)033
- The transition seems to be 2nd order JHEP1602(2016)144
- New phase transition may be related to signature change JHEP1508(2015)033

Prospects

 \diamond Different topology of spatial slices (S³ \Rightarrow T³)

♦ Inclusion of matter (massless scalar fields)

Thank You !

