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²  Gravity	as	a	QFT	is	perturba6vely	non-
renormalizable	in	d	>	2	dimensions		

²  But	it	could	be	renormalizable	in	a	non-
perturba6ve	regime	
²  assympto6c	safety	idea	(S.	Weinberg)	
²  renormaliza6on	group	flow	can	lead	to	a	non-

Gaussian	UV	fixed	point	(M.	Reuter	et	al.)	

²  La^ce	formula6on	would	allow	to	
study	non-perturba6ve	gravity	
²  we	need	a	dynamical	la^ce	(DT)	
²  UV	fixed	point	should	be	associated	with	a	2nd	

order	phase	transi6on	
²  one	should	be	able	to	reproduce	semi-classical	

gravity	(IR	limit)		

²  Causality	is	an	important	ingredient		
²  Causal	DT	(J.	Amjørn,	J.	Jurkiewicz,	R.	Loll)		
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Gravity	model	based	on	the	path	integral	

	 ² We	will	consider	pure	gravity	model	
(G)	with	posi6ve	cosmological	
constant	(Λ)	

²  CDT	is	formulated	in	a	coordinate	
free	way	

²  Three	coupling	constants:	k0	,	K4	,	Δ	
²  Aker	Wick’s	rota6on:	„random”	

geometry	system		
²  Background	geometry	emerges	

dynamically:	interplay	between	
bare	ac6on	(SR)	and	entropy	

Z = D[gµν ]exp(iSHE[gµν ])
trajectories
∫
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²  The	observable:		3-volume	of	spa6al		
layers	(folia6on	leaves	of	the	global	
proper	6me):	V3(t)	∝	nt	≡	N(4,1)(t)	

²  Ini6ally	three	phases	(A,	B,	C)	of	
various	geometry	were	discovered	

²  Phase	C	(de	Sioer	phase)	has	good	
semi-classical	proper6es	(IR	limit)	
²  Hausdorff	dim.:	4	,	spectral	dim.:	2	⇒	4	
²  Background	geommetry	is	consistent	

with	a	4-dim	sphere	⇒	Euclidean	de	
SiKer	universe	(posi0ve	cosmol.	const.)	

²  This	is	clasically		obtained		for	a	
homogenous	and	isotropic		metric		

²  For	which	the	GR	ac6on	takes	a	form	of	
the	minisuperspace	ac6on	
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²  Ini6ally	three	phases	(A,	B,	C)	of	
various	geometry	were	discovered	

²  Phase	C	(de	Sioer	phase)	has	good	
semi-classical	proper6es	(IR	limit)	
²  Hausdorff	dim.:	4	,	spectral	dim.:	2	⇒	4	
²  Background	geommetry	is	consistent	

with	a	4-dim	sphere	⇒	Euclidean	de	
SiKer	universe	(posi0ve	cosmol.	const.)	

²  This	is	clasically		obtained		for	a	
homogenous	and	isotropic		metric		

²  For	which	the	GR	ac6on	takes	a	form	of	
the	minisuperspace	ac6on	
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Phase	structure	
²  Phase	C	(de	Sioer	phase)		con6nued	

²  The	effec6ve	ac6on	for	the	nt	
observable	…		

²  ...	can	be	analyzed	by	looking	at	
quantum	fluctua6ons	around	the	
semiclassical	solu6on	

²  The	(inverse	of)	covariance	matrix		
P =C-1	provides	informa6on	about	
second	deriva6ves	of	the	effec6ve	
ac6on	

²  The	measured	covariance	matrix	is	
consistent	with	MS	ac6on	(with	
reversed	overall	sign)	!		

Z = exp(−SR[T ])
T
∑ = exp(−SR[T ])

T [{nt}]
∑

{nt}
∑

Zef = exp(−Sef [{nt}])
{nt}
∑
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Phase	transi6ons	
²  To	analyze	phase	transi6ons	one	

needs	to	define	a	suitable	order	
parameter	OP	(e.g.	N4 , N0 , …)	

²  Here	we	look	at	OP	conjugate	to	the	
varied	coupling	constant	

²  (Pseudo)cri6cal	point	is	signaled	by	
max.	of	suscep6bility		

²  Two-states	jumping	of	OP	(double	
peak	structure	of	measured	
histograms)		may	signal	a	1st	order	
transi6ons	

²  But	one	must	be	careful	and	check	
N4 → ∞ limit		

²  There	exists	a	2-nd	order	transi6on	
²  perspec6ve	UV	limit	???	

2nd	order	

1st			order	

2nd	order	
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²  CDT	has	by	defini6on	a	transfer	matrix	
parametrized	by	3-dimensional	spa6al		
triangula6ons	T3	

²  Local	form	of	the	effec6ve	ac6on	in	
Phase	C	suggests	that	a	descrip6on	by	
effec6ve	transfer	matrix	parametrized		
by	spa6al	volume	nt		is	also	viable	

² Measurement	of	the	transfer	matrix	=	
direct	measurement	of	the	effec6ve	
Lagrangian	

Z = T3 |M
T |T3

{T3}
∑ = trM T

-10-	

Transfer	matrix	method	
² The	transfer	matrix	method	enables	one	to	measure	the	
effec6ve	ac6on	directly	
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²  The	effec6ve	transfer	matrix	measured	
deep	in	Phase	C	is	consistent	with	the	
minisuperspace	ac6on!	
²  Gaussian	kine6c	term	&	MS	poten6al	
²  The	effec6ve	transfer	matrix	descrip6on	

replicates	full-CDT		data	

²  But	when	we	are	are	close	to	the	BC	
phase	transi6on		
²  the	kine6c	part	measured	for	small	volumes	

resembles	MS	behaviour	
²  for	sufficiently	large	volumes	one	observes	a	

bifurca6on	of	the	kine6c	part	

Transfer	matrix	method	
² The	transfer	matrix	method	enables	one	to	measure	the	
effec6ve	ac6on	directly	
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„singular”	ver6ces	
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²  To	analyze	phase	transi6ons	one	needs	
to	define	a	suitable	order	parameter	OP	

²  (Pseudo)cri6cal	point	is	characterized	by	
max	in	suscep6bility	XOP 

²  At	the	transi6on	point	the	OP	jumps	
between	two	metastable	states		

²  But	the	two	states	converge	with	
increasing	la^ce	volume	

²  Posi6on	of	the		(pseudo)cri6cal	point	is	
moving	with	the	total	volume	

²  Cri6cal	exponent	(ν = 3.0 ± 0.3)	suggests	
2nd	order	transi6on	

OP0 = conj(Δ) = N4 + N (4,1) −6N0

OP2 = max[O(v(t)]−max[O(v(t +1)]
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²  For	large	la6ce	volumes	(	n+m → ∞ )	one	
can	expand	in	powers	of		2c0(n-m)/Γ << 1  

²  The	form	of	the	effec6ve	Lagrangian	can	
be	viewed	as	an	effec6ve	Wick	rota6on	
of	the	metric (	t → it )	compared	to		
Phase	C	
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Conclusions	
² Using	the	transfer	matrix	method	a	new	D	(bifurca6on)	phase	

was	discovered		
JHEP1406(2014)034	

² The	geometry	inside	the	new	phase	is	very	non-trivial	and	
much	different		than	inside	the	C	(de	Sioer)	phase		
JHEP1508(2015)033	

² The	transi6on	seems	to	be	2nd	order		
JHEP1602(2016)144	

² 	New	phase	transi6on	may	be	related	to	signature	change	
JHEP1508(2015)033	
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Prospects	
² Different	topology	of	spa6al	slices	(S3								T3)	
² Inclusion	of	maoer	(massless	scalar	fields)	
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