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perturbative regime

<> assymptotic safety idea (S. Weinberg)
<> renormalization group flow can lead to a non-
Gaussian UV fixed point (M. Reuter et al.) 06 |
< Lattice formulation would allow to
study non-perturbative gravity 02 |
<> we need a dynamical lattice (DT) . /)1
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CDT

<> Causal Dynamical Triangulations (CDT) is a Quantum
Gravity model based on the path integral

<> Einstein’s General Relativity:
gravity defined through
spacetime geometry

<> Smooth geometry can be
approximated with arbitrary
precission (discretized) by
multidimensional simplices
(triangulation)

<> Local curvature is encoded in
deficit angle
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<> Causal Dynamical Triangulations (CDT) is a Quantum
Gravity model based on the path integral

< The path integral trajectory of
CDT = spacetime geometry E
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<> Causal Dynamical Triangulations (CDT) is a Quantum
Gravity model based on the path integral

<> We will consider pure gravity model 1 \
(G) with positive cosmological Sup = de X+/—-& (R — 2A)

constant (/) I

<> CDT is formulated in a coordinate y
free way SR=—kON0+K4N4+A(N§’)—6NO)
: T r T
< Three coupling constants: k,, K,, A 1/G A o (12=-al?)

<~ After Wick’s rotation: ,random”

geometry system Z = EeXp(_SR[T )
T
<> Background geometry emerges |
dynamically: interplay between S =InQ

e

bare action (S;) and entropy
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<> The observable: 3-volume of spatial
layers (foliation leaves of the global
proper time): V(t) « n,= N, ,(t)
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Phase structure

<> The observable: 3-volume of spatial
layers (foliation leaves of the global

proper time): V5(t) o n,= N4 1(t) i

L J Measured data
<> Initially three phases (A, B, C) of > L
various geometry were discovered cono B
<> Phase C (de Sitter phase) has good 4000 / \
semi-classical properties (IR limit) 2000]
<> Hausdorff dim.: 4, spectral dim.: 2 = 4 - .
<> Background geommetry is consistent e oS el
with a 4-dim sphere = Euclidean de stalk blob stalk
Sitter universe (positive cosmol. const.)
<> This is clasically obtained for a ds’ =dt’ + az(t)dgi =V (1) « a’(t)
homogenous and isotropic metric -
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Phase structure

<> The observable: 3-volume of spatial
layers (foliation leaves of the global

proper time): V5(t) o n,= N4 1(t) )

< Initially three phases (A, B, C) of o ' Mdl
various geometry were discovered ool e
<> Phase C (de Sitter phase) has good 4000 / \
semi-classical properties (IR limit) 2000]
<> Hausdorff dim.: 4, spectral dim.: 2 = 4 ’

<> Background geommetry is consistent N - S
with a 4-dim sphere = Euclidean de
Sitter universe (positive cosmol. const.)

<> This is clasically obtained for a ds’ =dt’ + az(t)dgi =V (1) « a’(t)
homogenous and isotropic metric o
<> For which the GR action takes a form of .
. . . 2
the minisuperspace action G 1 s Vi(t) A £ A1)

247G V.(t)
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Phase structure

<> Phase C (de Sitter phase) continued = .
<> The effective action for the n
observable ... t Z= Eexp( -3 [T]) 2 E exp(-S [T])\
{n, W{n,}]
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Phase structure

<> Phase C (de Sitter phase) continued

<~ The effective action for the n,

observable ... n

,=(n)+on, C,=(non,)

<> ... can be analyzed by looking at
quantum fluctuations around the
semiclassical solution
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Phase structure

<> Phase C (de Sitter phase) continued
<~ The effective action for the n,

observable ... n, = <nt> +on,  C,= <5nt5nt’>
<> ... can be analyzed by looking at D
quantum fluctuations around the
semiclassical solution .
<> The (inverse of) covariance matrix ot ,.ﬁ%;ﬁffg%~?..
P =C"! provides information about " = :"ij;::;‘:ﬁn
second derivatives of the effective " =]
action
2
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Phase structure

<> Phase C (de Sitter phase) continued

<~ The effective action for the n, B
observable ... n, = <nt> +0n, C, = <5nt5nr’>

<> ... can be analyzed by looking at
quantum fluctuations around the

semiclassical solution .

<> The (inverse of) covariance matrix o) e
P =C"! provides information about e ﬁ:::?:fﬁ‘ =
second derivatives of the effective "N = =
action

<> The measured covariance matrix is

consistent with MS action (with 2
: / 1 (nz+1 _nt) ~ 13 5
reversed overall sign) | S = _E +an'® - An
9 T ~| (n,+n,_) ! !
2
[ o LI wv (1) = AV, (1)
247G 20



Phase transitions

<> To analyze phase transitions one " | | | T |
needs to define a suitable order p e R
parameter OP (e.g. N,, N,, ...) 04l C
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<> Here we look at OP conjugate to the
varied coupling constant

A
2nd order
G+t

0

<> (Pseudo)critical point is signaled by v v
max. of susceptibility PP S St

<> Two-states jumping of OP (double .
peak structure of measured
histograms) may signal a 1st order
transitions

<> But one must be careful and check
N, — oo limit
<> There exists a 2-nd order transition

< perspective UV limit ??? 9.
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<> To analyze phase transitions one
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Phase transition
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<> To analyze phase transitions one
needs to define a suitable order 06

parameter OP (e.g. N,, N,, ...) 04l
< Here we look at OP conjugate to the = |
varied coupling constant e~
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<> CDT has by definition a transfer matrix i (nm _ nt)z o h
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Transfer matrix method

<> The transfer matrix method enables one to measure the
effective action directly

<> CDT has by definition o transfer matrix |

parametrized by 3-dimensional spatial S« =T 2{ (n,+n.,)
triangulations T,

+0n,” — An

2
(nt+l _nt) ~ 13 7
t

<> Local form of the effective action in S = E Lf[nt’nt 1
Phase C suggests that a description by ‘
effective transfer matrix parametrized RN
by spatial volume n, is also viable Zf = <n | M 7} | n >= trM 7}
e t e t e
<> Measurement of the transfer matrix = U
direct measurement of the eﬁ‘ecﬁve/ =" T=s ~ .
. \
Lagrangian (\ <nt M| nt+1> o exp(—Lef[nt,nm])/x

\~~ -
__-————__—
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Transfer matrix method
< The transfer matrix method enables one to measure the
effective action directly (o)
<> The effective transfer matrix measured *c=4|~ - +’“‘(n;m) _)L(n;m)]
deep in Phase C is consistent with the

minisuperspace action! e \

1

| Triple point

-11-



Transfer matrix method

<> The transfer matrix method enables one to measure the
effective action directly Pl TN
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<~ The effective transfer matrix measured “Lc ’L\f
deep in Phase C is consistent with the hy 1
minisuperspace action!

<> Gaussian kinetic term & MS potential
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Transfer matrix method
<> The transfer matrix method enables one to measure the
effective action directly rmp” N PN
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<> The effective transfer matrix measured *c =%
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minisuperspace action! \
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Transfer matrix method

<> The transfer matrix method enables one to measure the

effective action directly :
' _ 1 (7’1 - m) n+m n+m
<> The effective transfer matrix measured ‘c=1 u -4

deep in Phase C is consistent with the
minisuperspace action!
<> Gaussian kinetic term & MS potential

n+m

<> The effective transfer matrix description
replicates full-CDT data

NTERELEPUEREEE
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phase transition
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Phase structure revisited
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bifurcation of the effective action ..
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Phase structure revisited

<> The new phase separating phases B & C is related to a

bifurcation of the effective action ..

<> Average volume profile in the new
phase resembles the profile observed
in Phase C ...

<> ... but the profile is shrinking in time
direction ...
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Phase structure revisited

< The new phase separating phases B & C is related to a
bifurcation of the effective action ..

0.6 +

< Average volume profile in the new N _
phase resembles the profile observed 4 b

0.2

in Ph ase C oo Biflll‘(‘atii)l?'""u\w

0

<> ... but the profile is shrinking in time
direction ...

<> ... which is well explained by the
bifurcation of the transfer matrix
kinetic term

<n|MB\m>=N[n+m] I“tn+m)

-12-
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Phase structure revisited

<>... resulting from geometry considerably different than
inside Phase C
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(to infinity ?) with growing volume | S
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Phase structure revisited

<>... resulting from geometry considerably different than
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Phase structure revisited

<>... resulting from geometry considerably different than

inside Phase C

< Infinite Hausdorff dimension? .

<> Spectral dimension >4 and growing <
(to infinity ?) with growing volume N

<> This suggests high connectivity ol "
between the building blocks

<> 4-volume is concentrated in *;‘T\
short geodesic distance | N

<> Such volume clusters appear every ?
second time slice and are linked by ?
,Singular” vertices . e
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Phase structure revisited
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inside Phase C
<> Spatial (3-dimentional) geometries differ ~ _
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<>... resulting from geometry considerably different than
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<> Spatial (3-dimentional) geometries differ
between odd and even t
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< average spatial curvature scalar R, = J oD D Wi: N
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Phase structure revisited

<>... resulting from geometry considerably different than
inside Phase C
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<> Spatial (3-dimentional) geometries differ
between odd and even t
<> average spatial curvature scalar E
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<> average extent of the universe <” > =
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inside Phase C
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<> Spatial (3-dimentional) geometries differ
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between odd and even t . A
<> average spatial curvature scalar a Bft \
<> average extent of the universe | 0

<> This is caused by geometric structures
surrounding “singular” vertices

<> each such a vertex is shared by a compact
cluster of spatial volume (tetrahedra)

<> whose boundary has topology of a 2-sphere
(Euler characteristic = 2)

< and this structure “evolves” in time
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Phase transitions revisited

< The new phase transition seems to be 2nd order

<> To analyze phase transitions one needs 2 ‘"\}C\ N |
to define a suitable order parameter OP Bt |
B g Quadruple potnt

O}’Oga)conj(A) =N,+N

45 0

OP, = méi[O(&fr)]—fﬂax[dfé(z+1)]\
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0.6

<> To analyze phase transitions one needs <
to define a suitable order parameter OP

OP, =

max[O(v(1)] - max[O(v(#*+ 1)]
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<> (Pseudo)critical point is characterized by
max in susceptibility X p
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Phase transitions revisited

< The new phase transition seems to be 2nd order

<> To analyze phase transitions one needs 2 ‘"\}C\ N |
to define a suitable order parameter OP Bt |
<> (Pseudo)critical point is characterized by o e

max in susceptibility X, p
<> At the transition point the OP jumps
between two metastable states

L » : - MC time
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= OP,
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Phase transitions revisited

< The new phase transition seems to be 2nd order

<> To analyze phase transitions one needs 2 ‘"\}C\ N |
to define a suitable order parameter OP Bt |
<> (Pseudo)critical point is characterized by g

max in susceptibility X, p
<> At the transition point the OP jumps
between two metastable states

PDF Ng=40k , A=0.22

o Ny=80k, A=0.30

<~ But the two states converge with
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increasing lattice volume
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< The new phase transition seems to be 2nd order

<> To analyze phase transitions one needs
to define a suitable order parameter OP

<> (Pseudo)critical point is characterized by
max in susceptibility X, p

<> At the transition point the OP jumps
between two metastable states

<> But the two states converge with
increasing lattice volume

<> Position of the (pseudo)critical point is
moving with the total volume
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Phase transitions revisited

< The new phase transition seems to be 2nd order

<> To analyze phase transitions one needs
to define a suitable order parameter OP

<> (Pseudo)critical point is characterized by
max in susceptibility X, p

<> At the transition point the OP jumps
between two metastable states

<> But the two states converge with
increasing lattice volume

<> Position of the (pseudo)critical point is
moving with the total volume

<> Critical exponent (v = 3.0 + (.3) suggests

2nd order transition s
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Signature change

<> Bifurcation of the effective action near phase transition
can be interpretted as an effective signature change

0.8 T
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Signature change

<> Bifurcation of the effective action near phase transition
can be interpretted as an effective signature change

<> The transfer matrix bifurcates at the new
phase transition
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phase transition
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phase transition
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<> Bifurcation of the effective action near phase transition
can be interpretted as an effective signature change

<> The transfer matrix bifurcates at the new
phase transition
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<> The form of the effective Lagrangian can ) =%( ) + potential[n +m]
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be viewed as an effective Wick rotation ,«~ = 7~ )
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Phase C -
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Conclusions

<> Using the transfer matrix method a new D (bifurcation) phase

was discovered
JHEP1406(2014)034

<> The geometry inside the new phase is very non-trivial and

much different than inside the C (de Sitter) phase
JHEP1508(2015)033

< The transition seems to be 2nd order
JHEP1602(2016)144

<> New phase transition may be related to signature change

JHEP1508(2015)033
Prospects
<~ Different topology of spatial slices (S> W T3)

<> Inclusion of matter (massless scalar fields)
-17-
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