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The Penrose singularity theorem

Theorem (The 1965 Penrose singularity theorem)

If (V, g) contains a non-compact Cauchy hypersurface Σ and a
closed future-trapped surface, and if the null convergence condition
holds, then (V, g) is future null geodesically incomplete.



The classical Hawking-Penrose theorem

Theorem (Hawking and Penrose)

If the convergence, causality and generic conditions hold and if
there is one of the following:

a closed achronal set without edge,
a closed trapped surface,
a point with re-converging light cone

then the space-time is causal geodesically incomplete.
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What about co-dimensions 3, . . . , n− 1 — for instance, closed
spacelike curves?



Trapped submanifolds of arbitrary dimension?

We need a unification of the concept of trapping for arbitrary
co-dimension:

=⇒ The mean curvature vector ~H !
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Mathematical interlude: trapped submanifolds

Definition (Codimension-m embedded submanifold)

A submanifold is (ζ,Φ), where ζ is an (n−m)-dimensional
oriented manifold and Φ : ζ −→ V is an embedding.

Parametric equations: xµ = Φµ(λA).

µ, ν · · · = 1, . . . , n A,B, · · · = m+ 1, . . . , n

Tangent vectors: eµA = ∂Φµ

∂λA

First fundamental form: γ = Φ∗g is positive definite.

γAB = gµν(Φ)eµAe
ν
B

Thus, ζ is assumed to be spacelike.

Decomposing into tangent and normal parts we have

eρA∇ρe
µ
B = Γ

C
ABe

µ
C −K

µ
AB
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Notation: extrinsic curvature

Kµ
AB is called the shape tensor or second fundamental form vector

of ζ in V.

A second fundamental form of ζ in (V, g)

relative to any normal vector ~n is:

KAB(~n) ≡ nµKµ
AB .

These are 2-covariant symmetric tensor fields on ζ.

At each point on ζ there are m linearly independent normal
vectors.
If m > 1 all of these can be chosen to be null if desired.
Thus, there are m independent second fundamental forms.
If they correspond to (future) null normals, they are called
(future) null second fundamental forms.
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Mean curvature vector. Expansions

The mean curvature vector:

Hµ ≡ γABKµ
AB

Notice that Hµ is normal to ζ.

An expansion of ζ in (V, g)

relative to any normal vector ~n is:

θ(~n) ≡ nµHµ = γABKAB(~n).

As before, there are m independent expansions.
If they correspond to (future) null normals, they are called
(future) null expansions.
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Future-trapped subamanifolds: ~H is future on ζ

Definition (Trapped submanifold)

A spacelike submanifold ζ is said to be future trapped (f-trapped
from now on) if ~H is timelike and future-pointing everywhere on ζ,
and similarly for past trapped.

Equivalently
θ(~n) < 0 for every future pointing normal ~n.

~H Type of submanifold
timelike future f-trapped

causal and future weakly f-trapped
consistently null and future marginally f-trapped

consistently null marginally outer trapped
zero stationary or minimal
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The case of co-dimension 2

In the traditional case of surfaces in 4-dimensional spacetime,
or more generally in co-dimension 2 submanifolds, one can
choose two independent, future-pointing, null normal vector
fields kµ±.

One can add a normalization condition such as kµ+k
−
µ = −1

The corresponding null expansions can be denoted by
θ± := θ(~k±)

Then, the mean curvature vector reads

Hµ = −θ+kµ− − θ−k
µ
+

Hence, the traditional trapping conditon θ± < 0 is obviously
equivalent to Hµ being timelike and future.
Similarly, the marginally trapped case corresponds to (say)
θ+ = 0 and θ− < 0.
One thus recovers the traditional Penrose definitions.



The case of co-dimension 2

In the traditional case of surfaces in 4-dimensional spacetime,
or more generally in co-dimension 2 submanifolds, one can
choose two independent, future-pointing, null normal vector
fields kµ±.
One can add a normalization condition such as kµ+k

−
µ = −1

The corresponding null expansions can be denoted by
θ± := θ(~k±)

Then, the mean curvature vector reads

Hµ = −θ+kµ− − θ−k
µ
+

Hence, the traditional trapping conditon θ± < 0 is obviously
equivalent to Hµ being timelike and future.
Similarly, the marginally trapped case corresponds to (say)
θ+ = 0 and θ− < 0.
One thus recovers the traditional Penrose definitions.



The case of co-dimension 2

In the traditional case of surfaces in 4-dimensional spacetime,
or more generally in co-dimension 2 submanifolds, one can
choose two independent, future-pointing, null normal vector
fields kµ±.
One can add a normalization condition such as kµ+k

−
µ = −1

The corresponding null expansions can be denoted by
θ± := θ(~k±)

Then, the mean curvature vector reads

Hµ = −θ+kµ− − θ−k
µ
+

Hence, the traditional trapping conditon θ± < 0 is obviously
equivalent to Hµ being timelike and future.
Similarly, the marginally trapped case corresponds to (say)
θ+ = 0 and θ− < 0.
One thus recovers the traditional Penrose definitions.



The case of co-dimension 2

In the traditional case of surfaces in 4-dimensional spacetime,
or more generally in co-dimension 2 submanifolds, one can
choose two independent, future-pointing, null normal vector
fields kµ±.
One can add a normalization condition such as kµ+k

−
µ = −1

The corresponding null expansions can be denoted by
θ± := θ(~k±)

Then, the mean curvature vector reads

Hµ = −θ+kµ− − θ−k
µ
+

Hence, the traditional trapping conditon θ± < 0 is obviously
equivalent to Hµ being timelike and future.
Similarly, the marginally trapped case corresponds to (say)
θ+ = 0 and θ− < 0.
One thus recovers the traditional Penrose definitions.



The case of co-dimension 2

In the traditional case of surfaces in 4-dimensional spacetime,
or more generally in co-dimension 2 submanifolds, one can
choose two independent, future-pointing, null normal vector
fields kµ±.
One can add a normalization condition such as kµ+k

−
µ = −1

The corresponding null expansions can be denoted by
θ± := θ(~k±)

Then, the mean curvature vector reads

Hµ = −θ+kµ− − θ−k
µ
+

Hence, the traditional trapping conditon θ± < 0 is obviously
equivalent to Hµ being timelike and future.

Similarly, the marginally trapped case corresponds to (say)
θ+ = 0 and θ− < 0.
One thus recovers the traditional Penrose definitions.



The case of co-dimension 2

In the traditional case of surfaces in 4-dimensional spacetime,
or more generally in co-dimension 2 submanifolds, one can
choose two independent, future-pointing, null normal vector
fields kµ±.
One can add a normalization condition such as kµ+k

−
µ = −1

The corresponding null expansions can be denoted by
θ± := θ(~k±)

Then, the mean curvature vector reads

Hµ = −θ+kµ− − θ−k
µ
+

Hence, the traditional trapping conditon θ± < 0 is obviously
equivalent to Hµ being timelike and future.
Similarly, the marginally trapped case corresponds to (say)
θ+ = 0 and θ− < 0.

One thus recovers the traditional Penrose definitions.



The case of co-dimension 2

In the traditional case of surfaces in 4-dimensional spacetime,
or more generally in co-dimension 2 submanifolds, one can
choose two independent, future-pointing, null normal vector
fields kµ±.
One can add a normalization condition such as kµ+k

−
µ = −1

The corresponding null expansions can be denoted by
θ± := θ(~k±)

Then, the mean curvature vector reads

Hµ = −θ+kµ− − θ−k
µ
+

Hence, the traditional trapping conditon θ± < 0 is obviously
equivalent to Hµ being timelike and future.
Similarly, the marginally trapped case corresponds to (say)
θ+ = 0 and θ− < 0.
One thus recovers the traditional Penrose definitions.



Existence of focal points (Galloway & JMMS (2010))

Notation
nµ: future-pointing normal to the spacelike submanifold ζ,
γ: geodesic curve tangent to nµ at ζ
u: affine parameter along γ (u = 0 at ζ).
Nµ: geodesic vector field tangent to γ (Nµ|u=0 = nµ).
EµA: vector fields defined by parallelly propagating eµA along γ
(EµA|u=0 = eµA)
By construction gµνE

µ
AE

ν
B is independent of u, so that

gµνE
µ
AE

ν
B = gµνe

µ
Ae

ν
B = γAB

P νσ ≡ γABEνAEσB (at u = 0 this is the projector to ζ).

Note that NνP
νσ = 0 and Nµ∇µP νσ = 0 all along γ.



Notation on a picture

ζ
~n

γ

~N
~EA

~eA



Existence of focal points

Proposition

Let ζ be a spacelike submanifold of co-dimension m, and let nµ be
a future-pointing normal to ζ. If θ(~n) < 0 and the curvature tensor
satisfies the inequality

RµνρσN
µNρP νσ ≥ 0 (1)

along γ, then there is a point focal to ζ along γ at or before
u = (m− n)/θ(~n), provided γ is defined up to that point.

Instead of using a typical Raychaudhuri equation, in order to prove
this result one uses the energy index form.
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Remarks:

1 Spacelike hypersurfaces: m = 1, there is a unique timelike
orthogonal direction nµ. Then Pµν = gµν − (NρN

ρ)−1NµNν

and (1) reduces to
RµνN

µNν ≥ 0

(the timelike convergence condition along γ).

2 Spacelike ‘surfaces’: m = 2, there are two independent null
normals on ζ, say nµ and `µ. (Define Lµ parallelly propagating
`µ on γ). Then, Pµν = gµν − (NρL

ρ)−1(NµLν +NνLµ) and
again (1) reduces to

RµνN
µNν ≥ 0

(the null convergence condition along γ).
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The curvature condition

For co-dimension m > 2, the interpretation of condition (1) can be
given physically in terms of tidal forces, or geometrically in terms of
sectional curvatures.

Timelike unit normal nµ
Sectional curvature K(n, e) relative to the plane 〈~n,~e〉 (nµeµ = 0)

Rµνρσn
µeνnρeσ = K(n, e)(nρn

ρ)(eρe
ρ) = −K(n, e)(eρe

ρ)

Hence (1): the sum of the n−m sectional curvatures relative to a
set of independent and mutually orthogonal timelike planes aligned
with nµ is non-positive, and remains so along γ.

In physical terms, this is a statement about the attractiveness of
the gravitational field on average. The tidal force in directions

initially tangent to ζ is attractive on average.
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The curvature condition

Null normal nµ

For a null normal nµ one may consider analogously,

Rµνρσn
µeνnρeσ = −K(n, e)(eρe

ρ)

where nµeµ = 0, and K(n, e) is called the null sectional curvature
relative to the plane spanned by ~n and ~e.

Hence (1): the sum of the n−m null sectional curvatures relative
to a set of independent and mutually orthogonal null planes aligned
with nµ is non-positive, and remains so along γ.



The generalized Penrose singularity theorem

Recall: E+(ζ) ≡ J+(ζ)\I+(ζ)

Proposition (Intermediate result)

Let ζ be a closed f-trapped submanifold of co-dimension m > 1,
and assume that

RµνρσN
µNρP νσ ≥ 0 (1)

for any future-pointing null normal nµ. Then, either E+(ζ) is
compact, or the spacetime is future null geodesically incomplete, or
both.

Remark: The case with m = 1 is not included here because it is
trivial. If ζ is a spacelike hypersurface, then E+(ζ) ⊂ ζ —and
actually E+(ζ) = ζ if ζ is achronal—, and the compactness of
E+(ζ) follows readily without any further assumptions.
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The generalized Penrose singularity theorem

Theorem (Generalized Penrose singularity theorem)

If (V, g) contains a non-compact Cauchy hypersurface Σ and a
closed f-trapped submanifold ζ of arbitrary co-dimension, and if

RµνρσN
µNρP νσ ≥ 0 (1)

holds along every future-directed null geodesic emanating
orthogonally from ζ, then (V, g) is future null geodesically
incomplete.



Sketch of the proof:

If (V, g) were null geodesically complete E+(ζ) would be
compact due to the previous Proposition.

But the spacetime is globally hyperbolic so that

1 E+(ζ) = ∂J+(ζ) is the boundary of the future set J+(ζ) and
therefore a proper achronal boundary, which are known to be
imbedded submanifolds (without boundary); and

2 the manifold is the product V = R× Σ.

Then the canonical projection on Σ of the compact achronal
E+(ζ) would have to have a boundary, ergo the contradiction.
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1 E+(ζ) = ∂J+(ζ) is the boundary of the future set J+(ζ) and
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Then the canonical projection on Σ of the compact achronal
E+(ζ) would have to have a boundary, ergo the contradiction.



The Hawking-Penrose singularity theorem

Proposition (Intermediate result)

If (V, g) is strongly causal and there is a closed f-trapped
submanifold ζ of arbitrary co-dimension m > 1 such that

RµνρσN
µNρP νσ ≥ 0 (1)

holds along every null geodesic emanating orthogonally from ζ,
then either E+(E+(ζ) ∩ ζ) is compact, or the spacetime is null
geodesically incomplete, or both.



Generalized Hawking-Penrose singularity theorem

Theorem (Generalized Hawking-Penrose singularity theorem)

If the chronology, generic and convergence conditions hold and
there is a closed f-trapped submanifold ζ of arbitrary co-dimension
such that

RµνρσN
µNρP νσ ≥ 0 (1)

along every null geodesic emanating orthogonally from ζ then the
spacetime is causal geodesically incomplete.

Remarks:
Spacelike hypersurfaces m = 1: no null geodesics orthogonal
to ζ ergo no need to assume (1) (nor anything concerning ~H)
Spacelike ‘surfaces’ m = 2: Condition (1) is actually included
in the convergence condition.
Points m = n: The ‘same’ happens.

These three cases cover the original Hawking-Penrose theorem.
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Focal points with a milder curvature condition

The new curvature condition can in fact be weakened.

It is sufficient that it holds on the average in the following
sense.

Proposition

Let ζ be a spacelike submanifold of co-dimension m and nµ a
future-pointing normal to ζ. If, along γ (assumed to be future
complete) the curvature tensor satisfies,∫ ∞

0
RµνρσN

µNρP νσdu > θ(~n) ,

then there is a point focal to ζ along γ.

Observe that there is no restriction on the sign of θ(~n).
Note also that, unlike before, this proposition does not restrict
the location of the focal point, but this turns out to be
irrelevant to prove singularity theorems
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2nd generalized Penrose singularity theorem

Theorem

If (V, g) contains a non-compact Cauchy hypersurface Σ and a
closed submanifold ζ of arbitrary co-dimension, and if∫ a

0
RµνρσN

µNρP νσdu > θ(~n)

along each future inextensible null geodesic γ : [0, a)→ V
emanating orthogonally from ζ with initial tangent nµ, then (V, g)
is future null geodesically incomplete.

Thus, for example, even if ζ is only weakly or marginally f-trapped,
or minimal, the future null geodesic incompleteness still follows,
provided the inequality (1) is strict at least at one point on each
future directed null geodesic γ emanating orthogonally from ζ.



2nd generalized Penrose singularity theorem

Theorem

If (V, g) contains a non-compact Cauchy hypersurface Σ and a
closed submanifold ζ of arbitrary co-dimension, and if∫ a

0
RµνρσN

µNρP νσdu > θ(~n)

along each future inextensible null geodesic γ : [0, a)→ V
emanating orthogonally from ζ with initial tangent nµ, then (V, g)
is future null geodesically incomplete.

Thus, for example, even if ζ is only weakly or marginally f-trapped,
or minimal, the future null geodesic incompleteness still follows,
provided the inequality (1) is strict at least at one point on each
future directed null geodesic γ emanating orthogonally from ζ.



Selected applications

In the 4-dimensional case, the new possibility is the
existence of trapped circles. This may be relevant in
many situations of interest —such as, for instance,
cylindrical symmetry.

One can also use these results to prove past singularities on
asymptotically de Sitter cosmologies (Λ > 0)
without invoking the timelike convergence condition.
The condition (1) on tidal forces is satisfied strictly in the
FLRW models, as well as in sufficiently small perturbations of
those models.
A more obvious application of these theorems is, of course, to
higher dimensional spacetimes (e.g. string, Kaluza-Klein, etc.)
In dimension 11, say, there are now 10 different possibilities for
the boundary condition in the theorems
As a (provocative) example I will discuss the possible
instability of compact extra-dimensions.
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Example in 4D: cylindrical symmetry

If n = 4 the new theorems have applications to the cases with
closed trapped curves.

These are curves whose acceleration vector is timelike.
An obvious relevant example is the case of spacetimes with
whole cylindrical symmetry

ds2 = −A2dt2 +B2dρ2 + F 2dϕ2 + E2dz2,

where ∂ϕ, ∂z are spacelike commuting Killing vectors. The
coordinate ϕ is closed with standard periodicity 2π.
The cylinders with constant t and ρ are geometrically
preferred; however, they are not compact in general
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Example in 4D: cylindrical symmetry

Nevertheless, the spacelike curves with constant values of t, ρ
and z are certainly closed. Their mean curvature vector is
proportional to dF . Thus, the causal character of the gradient
of g(∂ϕ, ∂ϕ) characterizes the trapping of these closed circles.

Thereby, many results on incompleteness of geodesics can be
found.
Moreover, there arises a new hypersurface, defined as the set
of points where dF is null, which is a new type of horizon,
being a boundary separating the trapped from the untrapped
circles, and containing marginally trapped circles.



Example in 4D: cylindrical symmetry

Nevertheless, the spacelike curves with constant values of t, ρ
and z are certainly closed. Their mean curvature vector is
proportional to dF . Thus, the causal character of the gradient
of g(∂ϕ, ∂ϕ) characterizes the trapping of these closed circles.
Thereby, many results on incompleteness of geodesics can be
found.

Moreover, there arises a new hypersurface, defined as the set
of points where dF is null, which is a new type of horizon,
being a boundary separating the trapped from the untrapped
circles, and containing marginally trapped circles.



Example in 4D: cylindrical symmetry

Nevertheless, the spacelike curves with constant values of t, ρ
and z are certainly closed. Their mean curvature vector is
proportional to dF . Thus, the causal character of the gradient
of g(∂ϕ, ∂ϕ) characterizes the trapping of these closed circles.
Thereby, many results on incompleteness of geodesics can be
found.
Moreover, there arises a new hypersurface, defined as the set
of points where dF is null, which is a new type of horizon,
being a boundary separating the trapped from the untrapped
circles, and containing marginally trapped circles.



Application: asymptotically de Sitter cosmologies

Theorem
Let (V, g) have all null sectional curvatures non-positive. Suppose
Σ is a compact Cauchy hypersurface for (V, g) which is expanding
to the future in all directions, i.e., which has positive definite
second fundamental form with respect to the future pointing
normal. Then, if π1(Σ) has non-finite cardinality, (V, g) is past null
geodesically incomplete.

Remarks:

The timelike convergence condition is not assumed.
Observe that the timelike convergence condition does not in
general hold in spacetimes which satisfy the Einstein equations
with positive cosmological constant
On the other hand, our condition (1) on tidal forces is satisfied
strictly in the FLRW models, as well as in sufficiently small
perturbations of those models.
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Proof based on the existence of trapped circles

Since Σ is compact we can minimize arc length in the
appropriate free homotopy class to obtain a closed geodesic σ
in Σ.

Since Σ has negative definite second fundamental form with
respect to the past pointing unit normal, one easily verifies
that σ is a past-trapped circle in (V, g).
Then, the Penrose theorem can be applied. Since all the
Cauchy hypersurfaces of (V, g) are compact this does not
directly lead to geodesic incompleteness.
However, passing to a covering spacetime one can get the
result.
Of course, this theorem has a dual version to the future, if the
compact Cauchy hypersurface is contracting.
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Example: instability of spatial extra dimensions?

The classical instability of spatial extra-dimensions was
suggested by Penrose
[2003 On the instability of extra space dimensions, The Future
of Theoretical Physics and Cosmology, ed G W Gibbons et al]

He argues that singularities may develop within a tiny fraction
of a second.
His argument: take the typical (super-)string classical
spacetime V × Y with the product metric

ds2 = gabdx
adxb + γABdx

AdxB

where (Y, γAB) is a Calabi-Yau 6-dimensional manifold and
gab the metric of the large visible 4-dimensional spacetime.
He then splits V = R× V3 and considers the 7-dimensional
spacetime given by R× Y, with metric −dt2 ⊕ γAB.
He can then apply the Hawking-Penrose theorem using the
compact hypersurface given by any t =const. in this
7-dimensional spacetime.
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Instability of spatial extra dimensions?

However, those ad-hoc splittings and other problems can be
circumvected by using the new generalized Theorems.

It is enough that the compact extra-dimensional space, or any
of its compact less-dimensional subsets, satisfy the new
trapping condition
Even more, one can use the averaged, integrated condition,
without assuming that the compact submanifolds are trapped
One can esaily check that the Calabi-Yau submanifolds are
minimal, ergo θ(~n) = 0 for any normal nµ

Thus, one would only need that the condition∫ a
0 RµνρσN

µNρP νσdu > 0 held along the null geodesics
orthogonal to Y.
Actually, RµνρσNµNρP νσ = 0, but one sees that the slightest
perturbation will destroy this fine tuned equality, and lead to
geodesic incompleteness.
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Instability of spatial extra dimensions!

One can do better: choose any compact submanifold within
the Calabi-Yau part. Then the mean curvature vector coincides
with its mean curvature as a submanifold of Y , and thus
spacelike (untrapped) or zero (minimal).

But the function RµνρσNµNρP νσ becomes essentially
R̄ABCDN

ANCGBD, where

R̄ABCD is the Riemann tensor of the Calabi-Yau
GBD is the first fundamental form of the compact submanifold
NB is the part of the null normal living in the Calabi-Yau part

For instance, for a 5-dimensional submanifold the last term is
simply R̄ACNANC , and in principle one can choose
submanifolds such that the integrated condition is satisfied.
Hence, the basic argument of Penrose acquires a wider
applicability and requires less restrictions.
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