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• full Wheeler–DeWitt equation is mathematically difficult to handle

➡ quantization of a symmetry-reduced model of the universe

• consider a spatially flat homogeneous and isotropic universe

with a minimally coupled scalar field       with potential 

• infinitely many degrees of freedom of “superspace” are reduced to two:

➔  scale factor        and scalar field        ➔   minisuperspace

➡ Wheeler–DeWitt equation:

• clearly avoids mathematical problems of the functional WDW equation

The Wheeler–DeWitt equation in quantum cosmology
2

� V (�)

2 := 8⇡G

a �

ds2 = � dt2 + a2(t) d⌦2
3

~2
2

✓
2

6a2
@

@a

✓
a

@

@a

◆
� 1

a3
@2

@�2

◆
 (a,�) + a3 V (�) (a,�) = 0



• to simplify the equation set:

• evaluate this equation for a cosmological model of your choice

‣ choose a potential

‣ give boundary
conditions

‣ example:
cyclic model

 

‣ apply Born–Oppenheimer approximation:

➡  wave function of the Universe

Solving the Wheeler–DeWitt equation
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The factor ordering has been chosen to be of the Laplace–Beltrami form,
which has the advantage that it guarantees covariance in minisuperspace.

It is evident that equations such as (26) do not possess the mathematical
problems of the full functional equation (7). One can thus focus attention on
physical applications. One important application is the imposition of bound-
ary conditions. Popular proposals are the no-boundary condition [19] and the
tunneling condition [54]. The no-boundary proposal makes essential use of
the connection between covariant and canonical quantum gravity discussed in
Section 2.6: it is defined conceptually by a Euclidean path integral, but also
relies on solving a minisuperspace Wheeler–DeWitt equation such as (26).
Other important applications include the discussion of wave packets, the va-
lidity of the semiclassical approximation, the origin of classical behaviour and
the arrow of time, and the possible quantum avoidance of classical singular-
ities [2,16].

Before picking out one particular model, I want to emphasize one im-
portant conceptual point which is relevant for the problem of time discussed
above, see Figure 2.

Fig. 2 The classical and the quantum theory of gravity exhibit drastically different
notions of determinism [2].

Consider a two-dimensional minisuperspace model with the variables a
and φ as above. The figure on the left shows the classical trajectory in config-
uration space for a universe which is expanding and recollapsing. Classically,
one can give initial conditions, for example, on the left end of the trajectory
for small a and then determine the whole trajectory. In this sense, the recol-
lapsing part of the trajectory is the deterministic successor of the expanding
part. One could, of course, also start from the right end of the trajectory
because there is no distinguished direction; but the important point is that
a trajectory exists. Not so in the quantum theory where both the trajectory
and the time parameter t are absent! If one wants to find a solution of the
Wheeler–DeWitt equation which describes a wave packet following the clas-
sical trajectory, one has to specify two packets at the would-be ends of the
classical trajectory, see the right figure. The reason is that (26) is a hyper-
bolic equation with respect to intrinsic time a, and the natural formulation
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• most prominent singularity:  Big Bang

• depending on what kind of matter/energy is present in the universe,
a variety of future singularities can occur:

‣ Type I – “Big Rip”:  for                    :

‣ Type II – “Big Brake”:  for                    :

‣ Type III – “Big Freeze”:  for                    :

‣ Type IV – (“Big Separation”):
                   for                    :                                                                          ,
                                               2nd and higher time derivatives of       diverge
Type V:  divergence of the barotropic index

➡ Can these singularities be resolved in quantum cosmology?

Classical singularities in cosmology
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Nojiri, Odintsov and Tsujikawa,
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• universe filled with ideal fluid,  equation of state:

‣ conventional:                   ,   Chaplygin gas:

• convert this to a scalar field      with potential

➡ Wheeler–DeWitt equation:

• use Born–Oppenheimer approximation:  

• require       to satisfy:

➡ gravitational part:

Construction of a quantum-cosmological model 
5

P = f(⇢)

P = w⇢ P = � A

⇢

⇢
!
=

1

2
�̇2 + V (�) P

!
=

1

2
�̇2 � V (�)

� V (�)

~2
2

✓
2

6

@2

@↵2
� @2

@�2

◆
 (↵,�) + a60 e

6↵ V (�) (↵,�) = 0

 (↵,�) = '(↵,�)C(↵)

' �~2
2

@2'

@�2
+ a60 e

6↵V (�)' = E(↵)'

@C

@↵

@'

@↵
+ C

@2'

@↵2
+

✓
2

6

@2C

@↵2
+ 2E(↵)C

◆
' = 0



Normalizable solutions of the Wheeler–DeWitt equation vanish
at the classical singularity
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similar result for the corresponding loop quantum cosmology

(Kamenshchik, C. K., Sandhöfer 2007)

• expansion of the universe comes to a halt in the future,                    :

‣ can be described by an anti-Chaplygin gas:

‣ potential for     :

‣ WDW equation:

• can be solved analytically after using 
Born–Oppenheimer approximation

➡  normalizable solutions vanish at the
 classical singularities
 (Big Brake and Big Bang)

Example 1:  Big Brake
6

~2
2

✓
2

6

@2

@↵2
� @2

@�2

◆
 (↵,�)� Ṽ0
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Normalizable solutions of the Wheeler–DeWitt equation vanish
at the classical singularity
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similar result for the corresponding loop quantum cosmology

(Kamenshchik, C. K., Sandhöfer 2007)

Example 1:  Big Brake
7

Kamenshchik, Kiefer and Sandhöfer,
Phys. Rev. D 76, 064032 (2007).�

-15

-10

-5

 0

 5

 10

 15

 0  2  4  6  8  10
a

φ

Figure: Classical trajectory in
configuration space.
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• from observations (SN Type Ia):  expansion of universe is accelerating

• one way to model this acceleration:   dark energy  ➔  negative pressure

• observationally even                    cannot be excluded

‣ phantom field, violates the null energy condition

‣ induces Big Rip singularity:                                                            for 

‣ WDW equation becomes elliptic

‣ wave-packet solutions disperse at the classical singularity

➡ time & classical evolution come to an end, stationary quantum state left

Example 2:  Big Rip
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Dąbrowski, Kiefer and Sandhöfer, Phys. Rev. D 74, 044022 (2006).
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• expansion of the universe comes to a halt in the future,                    :

‣ can be described by a generalized anti-Chaplygin gas:

‣ type IV singularity for:                               for                           ,   where

• double-well potential  (➔ tunnelling?)

• quantum analysis:

➡  not exactly a type IV singularity,
 but  “close enough”
 (form of potential does not change)

Example 3:  Type IV singularity
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Bouhmadi-López, Kiefer and M.K., Phys. Rev. D 89, 064016 (2014).
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FIG. 1. Kinetic energy of the scalar field (left) and dependence of the field on the logarithmic scale factor α = ln(a/amax)
(right). In the left Figure, the value β = −

√

2/3 is chosen. The singularity is at φ = 0, where a = amax.
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FIG. 2. The potential defined in Eq. (11) as a function of the scalar field for the value β = −

√

2/3 (we have chosen this value
for β to make sure that it cannot be written as 1/(2p)− 1/2, where p is an integer). It has the form of a double-well potential
well known from quantum mechanics.

where V1 = |A|
1

1+β /2, cf. [21]. The potential is displayed in Fig. 2 for a typical value of β.
Notice that near amax (φ = 0) the potential is negative and finite. This is not surprising, since in a type IV

singularity both the energy density and the pressure are finite. We emphasize that the potential (11) is of the form
of a double-well potential and is regular everywhere. This is in stark contrast to the cases discussed in [18, 20, 21]
and is connected with the soft nature of the type IV singularity. It will have direct consequences for the study of the
quantum theory below.
Close to the type IV singularity, the potential can be approximated as
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(√
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)− 2β
1+β

, (12)

cf. Eq. (16) in [21]. In the limiting case β = −1/2, this corresponds to an inverted harmonic oscillator.
At small scale factor (or large value of the scalar field), the potential can be approximated by the exponential form
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2
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. (13)

Such a potential occurs also in the cases of the big rip with a phantom field [18] and the big bang with an anti-
Chaplygin gas [20]. In the latter case, it was shown that the big-bang singularity is avoided in the quantum theory
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• after Born–Oppenheimer decomposition                                                 ,
matter part of the WDW equation reads

➡ can be solved in terms of confluent Heun functions

• regular at the origin                                        , increase as power for large

• left side symmetric; right side antisymmetric ➔  vanishes at

• gravitational part              does not spoil this result

➡ only a subset of wave functions                  vanishes at

➡ from the structure of the double-well potential, one can conclude that
this result is also valid for                          , i.e. in the case of a type IV sing.

Example 3:  Type IV singularity
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• analysis can be repeated for a phantom field

➡  leads to a periodic potential:

‣ evolution of the universe goes 
through a type IV singularity

‣ asymptotically de Sitter

➡ again, singularity resolution only 
for a subset of the wave functions

Example 3bis:  Type IV singularity – phantom field
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FIG. 3. The kinetic energy of the scalar field (top) and the
dependence of the field on the logarithmic scale factor α =
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−
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2/3 is used. The singularity is at φ = 0, where a = amin.

The scalar field potential can be written as
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[
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where V−1 = A
1

1+β /2 and 0 < (
√
3/2)κ|1 + β||φ| ≤ π/2,

cf. Eq. (21) in [21]. Notice that near amin (φ = 0), the
potential is positive and finite, in contrast to the cases
discussed in [21]. This is, again, not surprising, as in
a type IV singularity both the energy density and the
pressure are finite. The potential (23) is, in contrast to
the case of the standard field, periodic in φ. The shape of
the potential in terms of the scalar field is shown in Fig. 4.
In the expanding branch, the evolution starts from the
singularity located at φ = 0, then the scalar field rolls
up the potential and asymptotically reaches the top of
the potential, which is located at

√
3(β + 1)κφ/2 = π/2,

while a → ∞. Classically, the various parts (extensions

of the part shown in Fig. 4; i.e., for example, outside the
maxima of the potential marked with two vertical lines)
correspond to different classical solutions. This may have
consequences in the quantum theory.
Close to the singularity, the potential can be approxi-

mated by

V (φ) ≃ V−1

(√
3

2
κ|1 + β||φ|

)− 2β
1+β

. (24)

We now turn to the quantum versions of these models.
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FIG. 4. The potential defined in Eq. (23) as a function of
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√
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this value for β to make sure that it cannot be written as
1/(2p)−1/2, where p is an integer). The potential is periodic,
but the model we have discussed here corresponds to the range
of values of the scalar field that cover two consecutive maxima
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III. QUANTUM ANALYSIS

In this section, we investigate the question whether
the classical type IV singularity can be avoided in the
quantum theory or not. In treating the Wheeler–DeWitt
equation, we apply the methods used in the earlier papers
[18, 20, 21]. We also want to emphasize that the quantum
cosmology of a GCG was first discussed in [33]. In our
case, we have for the wave function Ψ (α,φ) a Wheeler–
DeWitt equation of the form
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where a0 corresponds to the location of the singular-
ity, which is a0 = amax for the model of Sec. II.A and
a0 = amin for the model in Sec. II.B. Here, we have used
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‣ How are classical singularities resolved in quantum-cosmological models?

‣ Big Rip (I): wave packets disperse at the classical singularity

‣ Big Brake (II):   normalizable solutions vanish at Big Brake and Big Bang

‣ Big Freeze (III):   boundary condition:
 let wave function vanish in classically forbidden region
 ➔  wave function vanishes also at the singularity

‣ Type IV: only a subset of solutions vanishes at the singularity

‣ Little Rip: wave function vanishes for late times
Big Rip for 

➡   Is a generalization of these results possible?
12
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