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Space-time structure

Easy to avoid divergences by introducing discreteness/bounded
functions, in particular in minisuperspace models.

— (Consistent with covariance? If not, how can one avoid
low-energy problems? [Polchinski: arXiv:1106.6346]

— How exactly are singularity theorems evaded?
Example: “Bounce” in some models of loop quantum
cosmology without violating energy conditions.

Many open questions at different levels.
— |. Lessons from quantum mechanics.
— |l. Lessons from quantum field theory.
— |ll. Lessons from Dirac.
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Reduced action

SEH[g] = 167TG/d4 v/ —detg R

— el dt Na? < - + © - +£2>
a

e N2a N2a?2 aN3
3Vo aa’
S1lH & ( N o )

Coordinate volume Vy = [ d*x of some finite spatial region.

Canonical variables ¢ and

3V0 aq

Pa= TGN

Lagrange multiplier N, px = 0.
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Hamiltonian formulation of isotropic models

Hamiltonian constraint in canonical variables

27TG pc% SV()
3Vo a 8rG

C = a + Vol matter = 0

Deparameterized Wheeler—DeWitt equation with dust

prve,T) = S5V T) + e e )

for ¢ = a3/2. (Constant Hyatter = pr CONjugate to 7'.)

Physical Hilbert space L?(R, dg).

Evolution in 7" with Hamiltonian p: relational observables.
[Dirac: Can. J. Math. 2 (1950) 129; Blyth, Isham: PRD 11 (1975) 768]
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Questions

— Quantum corrections depend on arbitrary Vj.

Is quantum cosmology coordinate dependent?
— Does choice of T" as time affect predictions?
— How do we choose initial states for T-evolution?

— (Classical constraint strongly restricted by reduction from
covariant theory.

Restrictions on quantum corrections in minisuperspace
model?
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Loop quantum cosmology

Isotropic connection Al = ¢d7,, E? = pé} with ¢ = va, |p| = o
Friedmann equation (flat space)

modified by using “holonomies”

2 sin(fcéﬁ) 2 (1——522 )

p| Ip| P

If ¢ ~ ¢p, corrections ¢3c?/|p| ~ p/pp.

Taken in isolation, holonomy modifications imply a “bounce” of
Isotropic models:

sin(le/+/|p|)? 887G
~2102 — g3 P
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l. Lessons from quantum mechanics

Questions:
— Higher-curvature/higher-derivative contributions?

— Dynamical quantum effects? (Fluctuations, ...)
— @Generic quantum behavior?

Detailed analysis possible in solvable (harmonic) model:
sourced by free massless scalar (flat space, A = 0).

Py X |apg| o |ep| o< [HV|

with H = a/a and V o a?.
Holonomy-modified (¢ constant):

pg x ImJ| , J:=Vexp(ilH) , {J,V}oxlJ

sl(2,R) algebra generated by (V, J, J).

Space-time structure — p. 7



e
e

Space-time structure — p. 8




PENNSTATE

' General models

— Perturbation theory around harmonic model: Quantum
dynamics approximated within non-solvable model.

— Quantum back-reaction of fluctuations and higher moments
on expectation values. (Equivalent to low-energy effective
action in standard systems.)

— Have to know state to estimate moments. Problem of states.

Relation to space-time structure:

— Adiabatic approximation (slow moments): higher time
derivatives. Expected if related to higher-curvature terms.

— (Corrections should then be relevant near “bounce.”
Holonomy modification and higher-curvature corrections
add terms of same order p/pp.

— Not clear whether “bounce” is generic.
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Effective shortcut

Simple effective equations in loop quantum cosmology:
— Analyze exact solutions of solvable quantum model.

A

Expectation value (V') follows modified Friedmann equation.

— Numerical studies of some related models with
semiclassical initial states.

— Call modified Friedmann equation an effective equation in
all models.

But: “Bounce” density depends on type of initial state, such as
Gaussian in (H,V') or (¢, pg). (Problem of states.)
[Diener, Gupt, Singh: arXiv:1310.4795]

Solvable model: Semiclassical state at large volume stays
semiclassical.
General models: States spread out, change form.
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Il. Lessons from quantum-field theory

Wheeler—DeWitt equation

3G
50 (q.T) = — 952U (q. T
pr¥(q,T) v, Pa (¢, T) +

3kVy
(G

¢**V(q,T)

or related version.

Quantum corrections depend on arbitrary coordinate volume V4.

Minisuperspace approximation possible in self-interacting scalar
field theory.

— Relates 1 to infrared scale (not a cut-off).

— Minisuperspace models inconclusive about magnitude of
guantum corrections.

Space-time structure — p. 11



PENNSTATE

Model minisuperspace model

[with S Brahma: arXiv:1509.00640]

Lagrangian L = [ d3x (%& — 3|Vo|* - W(¢)) reduced to

Lmini — VO (%¢2 _ W(¢>)

with Vp = [ d®z, ¢ spatially constant.

Momentum p = 9 Lini /00 = Voo

Hamiltonian
2

lp
Hmini:__ VoW
2T + VoW (o)

quantized to
1A2

A p A
oy TV (9)

Space-time structure — p. 12



PENNSTATE

Effective Hamiltonian

Heff — <ﬁmini> — %+V W(<¢>)

A@?) = %Awp)
A(gp) = ViOA<p2>—vow”<<<£>>A<¢2>
A@p?) = —2VuW" () A(¢p)

Zeroth-order adiabatic, saturate uncertainty relation:

1 h
2 Vor/ W ((8))

Ao(dp) =0, Ag(¢?) = Ao(p?) = 5V ()
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Effective potential

Verr(9) = Hettl s ,<q3>:¢

= VoW (9) + Z—%Ac)( P) -+ Vo () 20(6?)

= VW (6) + i/
— %Weﬁ(¢)

Vp-dependent quantum correction in
Weff(¢) — ‘|— Wﬁ\/ //
0

Can make quantum corrections small by choosing large V4.
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Effective quantum-field theory

Coleman—Weinberg potential: [S Coleman, E Weinberg: PRD 7 (1973) 1888]

4 1
Weg () = W (o) + %@ﬁ/ ((217:;4 log (1 + V’[’/k(gg))

From moments or k°-integration: [with S Brahma: arXiv:1411.3636]

Wer() = W(o) + 5 [ 255 (VIR +w7(0) ~ 171

Infrared-contribution: Integration over |k| < kpax = 27r/V1/3

2
Wet(9) = W(6) + 1oz Kb VIV7(8) = W(9) + o/ W75)

In qualitative agreement with minisuperspace effective potential.
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Minisuperspace approximation

Quantum corrections depend on 1} via infrared scale kp,ax Of
field theory:

Averaging with larger 1}, leaves fewer modes, smaller k..

Small quantum corrections for large Vi or small k..
But minisuperspace truncation becomes less accurate.
Quantum corrections ignored if V5 — oo.

Minisuperspace approximation by expansion of square root in
K2 o/ W () o< W ()~ 1V /2,

— Need some information about full theory for expansion.

— Covariance in minisuperspace models?
Fixed infrared scale breaks local Poincaré transformations.
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lll. Lessons from Dirac

— Lagrangian density and measure in

d*z /| det g| (R

may be subject to quantum corrections.

Slgl = 167TG

— Quantum-field theory on curved space-time different from
quantum gravity.

— Covariance in canonical quantum gravity:
Quantum version of Dirac’s hypersurface deformations.
Anomaly problem.
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QFT vs. QG

Perturbative inhomogeneity in h[A] := A(z)%. A(x) = A+ 6A(x).

Quantum effects in background dynamics by A — ¢~ 1sin(¢A).
— Classical: h[A,6A] = A? + 2A6A(x) + dA(x)?
— QFT on modified space-time:

h? T4, 0A) = £ 2sin(LA)? + 245 A(x) 4 0 A(z)?
[Agullo, Ashtekar, Nelson]

— Effective quantum gravity:
h?C A, 6A] = £ 2sin(LA)? + Fy(A)6A(z) + Go(A)SA(z)? with
limy_,g Fp(A) = 24 and limy_,o G¢(A) = 1.

Subject to covariance conditions.
F,/A and G, of same magnitude as (¢A) 2 sin(¢A)?.

[MB, Hossain, Kagan, Shankaranarayanan; Barrau, Cailleteau, Grain, Mielczarek;

Wilson—Ewing]
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Covariance: Hypersurface deformations
Na

Generators D|N?] (tangential deformations along N%(x))
and H|N| (normal deformations by N(z)) obey

[DIN?|,D[M*]] = —DI[Ly»N?
[H[N],D[M")] = —H[LypN]
[H[N1], H[N2]] = DI[q®(N10,Ny — N2y N1 )]

with induced metric ¢, on spatial slice. (Lie algebroid.)
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Generally covariant gauge theory

— Hypersurface-deformation brackets generalize Poincaré
algebra, local version.

— Covariance in canonical quantum gravity:
Representation of brackets by operators D, H, § with

{DIN%],D[M"]} = —D|[Ly»N?
{H[N],D[M’]} = —H[LypN]
{H[N1], H[N2]} = D[¢®(N10,Ny — NoOpN;)]

as classical limit.

“Off-shell” property.
Stronger than anomaly-free reformulated system.

Examples: {H + D, H + D} = 0 [Gambini, Pullin]
{H,H} = {D'" D"} [Tomlin, Varadarajan]
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B

Scalar field ¢(z), momentum p(x), one spatial dimension.

HIN = [ @ (1) - {00~ 300" ) . Dlul= [ dowor

Spatial diffeomorphisms:

0w = {¢,D[w]} = —(wo)" , duwp = {p, Dw]} = —wp’

H -bracket:
{H[N], HIM]} = D[5(d*f/dp®)(N'M — NM"),

Lorentzian-type hypersurface deformations for f(p) = p.
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Sighature change

“Holonomy” modifications, f(p) = pgsin®(p/po):

1
§d2f/dp2 = cos(2p/po)
can be negative. At maximum of f(p):

{H[N], HM]} = D[-(N'M — NM")]

Euclidean signature:

Axr = —0Ay from commutator of infinitesimal rotation by 6 and a
spatial shift by Ay.

Opposite sign for infinitesimal boost: Az = vAt.
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Consistent deformation

{H|N]|, D|w]} does not close in the scalar model,
but does so in some gravity versions.

— No gauge transformations broken.

— No effective line element on standard manifold:
dx® In
dszﬁ = G,pdz®da?
do not transform by deformed gauge transformations that
change q..

Field redefinition to standard q,;, possible as long as 3 does
not change sign. With signature change: New model of
non-classical space-time.

— Evaluate theory using canonical observables of deformed
gauge theory.
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Holonomies and space-time

[Reyes; Barrau, Cailleteau, Grain, Mielczarek]

All known consistent models (spherical symmetry, cosmological
perturbations): K? —; f(K) modifies bracket

{H[N1], H[Ns]} = D[Bq™(N10yNy — N2Op N1 )]

with
B(K) = lde(K)/dK2 = cos(2/K)

for f(K) = /~2sin*(/K).

— (Covariant: Consistent gauge structure, but deformed.

— Not undone by quantum back-reaction or higher time
derivatives. Distinct from higher-curvature corrections.

— Signature change: 5(K) < 0 around maximum of f(K).
“Bounce” indeterministic.
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Structure functions

Systems with several constraints C;: [C7,Cy] = fE&Ck.

— Effective constraints C7 01 = <§51@1> with 551 polynomial in
basic operators.

— Effective constraint algebra by quantum Poisson brackets.
— No quantum corrections in structure functions: [arXiv:1407.4444]

{Cr1,Crn} = ((:))Crep + - -

Consistent with higher-curvature effective actions in gravity.

Holonomy modifications in o change f}f,
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Related resulis

— Closely related behavior in spherically symmetric models
and cosmological perturbations.
[with Barrau, Calcagni, Grain, Kagan: arXiv:1404.1018]

— Qperator version in spherical symmetry. [Brahma: arXiv:1411.3661]

— Different operator versions in 2 + 1 dimensional models,
based on reformulations of constraint algebra.
[Perez, Pranzetti; Henderson, Laddha, Tomlin, Varadarajan]

— Partially Abelianized constraints: [Gambini, Pullin]
After holonomy modifications, can reconstruct
hypersurface-deformation brackets only if deformed.
[with Brahma, Reyes: arXiv:1507.00329]

— Obstructions to anomaly freedom in models with local
physical degrees of freedom. [with Brahma: arXiv:1507.00679]

Not much is known about full dynamics of loop quantum gravity.
Modified space-time structures generic.
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Tricomi problem and cosmic boom
[with Mielczarek: arXiv:1503.09154]

——— + B(H)Au = 0: Characteristic C' connected to arc A.

— Need future data: No deterministic evolution. Poles generic.

— Phenomenology not viable in cyclic interpretation.
[Bolliet, Barrau, Grain, Schander: arXiv:1510.08766]
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Information loss

Non-singular black-hole model:
Evolve through classical singularity by
quantum evolution of homogeneous interior.

No event horizon. [Ashtekar, MB 2006]

Anomaly-free space-time structure:

High-curvature region Euclidean.

Arbitrary boundary values affect
future space-time.

Event horizon H and Cauchy horizon C.

No-heir theorem? [arXiv:1409.3157]
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