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Space-time structure

Easy to avoid divergences by introducing discreteness/bounded
functions, in particular in minisuperspace models.

→ Consistent with covariance? If not, how can one avoid
low-energy problems? [Polchinski: arXiv:1106.6346]

→ How exactly are singularity theorems evaded?
Example: “Bounce” in some models of loop quantum
cosmology without violating energy conditions.

Many open questions at different levels.

→ I. Lessons from quantum mechanics.

→ II. Lessons from quantum field theory.

→ III. Lessons from Dirac.
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Reduced action

SEH[g] =
1

16πG

∫
d4x
√

− det g R

=
3V0

8πG

∫
dt Na3

(
ä

N2a
+

ȧ2

N2a2
−

ȧṄ

aN3
+

k

a2

)

= −
3V0

8πG

∫
dt

(
aȧ2

N
− kaN

)

Coordinate volume V0 =
∫
d3x of some finite spatial region.

Canonical variables a and

pa = −
3V0

4πG

aȧ

N

Lagrange multiplier N , pN = 0.
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Hamiltonian formulation of isotropic models

Hamiltonian constraint in canonical variables

C = −
2πG

3V0

p2a
a

−
3V0

8πG
ka+ V0Hmatter = 0

Deparameterized Wheeler–DeWitt equation with dust

p̂TΨ(q, T ) =
3πG

2V0

p̂2qΨ(q, T ) +
3kV0

8πG
q2/3Ψ(q, T )

for q = a3/2. (Constant Hmatter = pT conjugate to T .)

Physical Hilbert space L2(R,dq).

Evolution in T with Hamiltonian p̂T : relational observables.
[Dirac: Can. J. Math. 2 (1950) 129; Blyth, Isham: PRD 11 (1975) 768]
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Questions

→ Quantum corrections depend on arbitrary V0.

Is quantum cosmology coordinate dependent?

→ Does choice of T as time affect predictions?

→ How do we choose initial states for T -evolution?

→ Classical constraint strongly restricted by reduction from
covariant theory.

Restrictions on quantum corrections in minisuperspace
model?
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Loop quantum cosmology

Isotropic connection Ai
a = cδia, Eb

j = pδbj with c = γȧ, |p| = a2

Friedmann equation (flat space)

−
c2

γ2|p|
+

8πG

3
ρ = 0

modified by using “holonomies”

c2

|p|
7→

sin(ℓc/
√

|p|)2

ℓ2
∼

c2

|p|

(
1−

1

3
ℓ2

c2

|p|
+ · · ·

)

If ℓ ∼ ℓP, corrections ℓ2Pc
2/|p| ∼ ρ/ρP.

Taken in isolation, holonomy modifications imply a “bounce” of
isotropic models:

sin(ℓc/
√

|p|)2

γ2ℓ2
=

8πG

3
ρ
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I. Lessons from quantum mechanics

Questions:

→ Higher-curvature/higher-derivative contributions?

→ Dynamical quantum effects? (Fluctuations, . . . )

→ Generic quantum behavior?

Detailed analysis possible in solvable (harmonic) model:
sourced by free massless scalar (flat space, Λ = 0).

pφ ∝ |apa| ∝ |cp| ∝ |HV |

with H = ȧ/a and V ∝ a3.
Holonomy-modified (ℓ constant):

pφ ∝ |ImJ | , J := V exp(iℓH) , {J, V } ∝ ℓJ

sl(2,R) algebra generated by (V, J, J̄).
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Bounce
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General models

→ Perturbation theory around harmonic model: Quantum
dynamics approximated within non-solvable model.

→ Quantum back-reaction of fluctuations and higher moments
on expectation values. (Equivalent to low-energy effective
action in standard systems.)

→ Have to know state to estimate moments. Problem of states.

Relation to space-time structure:

→ Adiabatic approximation (slow moments): higher time
derivatives. Expected if related to higher-curvature terms.

→ Corrections should then be relevant near “bounce.”
Holonomy modification and higher-curvature corrections
add terms of same order ρ/ρP.

→ Not clear whether “bounce” is generic.
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Effective shortcut

Simple effective equations in loop quantum cosmology:

→ Analyze exact solutions of solvable quantum model.

Expectation value 〈V̂ 〉 follows modified Friedmann equation.

→ Numerical studies of some related models with
semiclassical initial states.

→ Call modified Friedmann equation an effective equation in
all models.

But: “Bounce” density depends on type of initial state, such as
Gaussian in (H, V ) or (φ, pφ). (Problem of states.)

[Diener, Gupt, Singh: arXiv:1310.4795]

Solvable model: Semiclassical state at large volume stays
semiclassical.
General models: States spread out, change form.
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II. Lessons from quantum-field theory

Wheeler–DeWitt equation

p̂TΨ(q, T ) =
3πG

2V0

p̂2qΨ(q, T ) +
3kV0

8πG
q2/3Ψ(q, T )

or related version.

Quantum corrections depend on arbitrary coordinate volume V0.

Minisuperspace approximation possible in self-interacting scalar
field theory.

→ Relates V0 to infrared scale (not a cut-off).

→ Minisuperspace models inconclusive about magnitude of
quantum corrections.
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Model minisuperspace model

[with S Brahma: arXiv:1509.00640]

Lagrangian L =
∫
d3x

(
1
2
φ̇2 − 1

2
|∇φ|2 −W (φ)

)
reduced to

Lmini = V0

(
1

2
φ̇2 −W (φ)

)

with V0 =
∫
d3x, φ spatially constant.

Momentum p = ∂Lmini/∂φ̇ = V0φ̇.

Hamiltonian

Hmini =
1

2

p2

V0

+ V0W (φ)

quantized to

Ĥmini =
1

2

p̂2

V0

+ V0W (φ̂)
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Effective Hamiltonian

Heff = 〈Ĥmini〉 =
〈p̂〉2

2V0

+V0W (〈φ̂〉)+
∆(p2)

2V0

+
1

2
V0W

′′(〈φ̂〉)∆(φ2)+· · ·

generates equations of motion for fluctuations, covariance:

∆̇(φ2) =
2

V0

∆(φp)

∆̇(φp) =
1

V0

∆(p2)− V0W
′′(〈φ̂〉)∆(φ2)

∆̇(p2) = −2V0W
′′(〈φ̂〉)∆(φp)

Zeroth-order adiabatic, saturate uncertainty relation:

∆0(φp) = 0 , ∆0(φ
2) =

1

2

~

V0

√
W ′′(〈φ̂〉)

, ∆0(p
2) =

1

2
~V0

√
W ′′(〈φ̂〉)
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Effective potential

Veff(φ) = Heff |〈p̂〉=0,〈φ̂〉=φ

= V0W (φ) +
1

2V0

∆0(p
2) +

1

2
V0W

′′(φ)∆0(φ
2)

= V0W (φ) +
1

2
~

√
W ′′(φ)

= V0Weff(φ)

V0-dependent quantum correction in

Weff(φ) = W (φ) +
1

2V0

~

√
W ′′(φ)

Can make quantum corrections small by choosing large V0.
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Effective quantum-field theory

Coleman–Weinberg potential: [S Coleman, E Weinberg: PRD 7 (1973) 1888]

Weff(φ) = W (φ) +
1

2
i~

∫
d4k

(2π)4
log

(
1 +

W ′′(φ)

||k||2

)

From moments or k0-integration: [with S Brahma: arXiv:1411.3636]

Weff(φ) = W (φ) +
1

2
~

∫
d3k

(2π)3

(√
|~k|2 +W ′′(φ)− |~k|

)

Infrared-contribution: Integration over |~k| ≤ kmax = 2π/V
1/3
0

Weff(φ) ≈ W (φ) +
~

12π2
k3max

√
W ′′(φ) = W (φ) +

2π

3V0

~

√
W ′′(φ)

in qualitative agreement with minisuperspace effective potential.
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Minisuperspace approximation

Quantum corrections depend on V0 via infrared scale kmax of
field theory:
Averaging with larger V0 leaves fewer modes, smaller kmax.

Small quantum corrections for large V0 or small kmax.
But minisuperspace truncation becomes less accurate.
Quantum corrections ignored if V0 → ∞.

Minisuperspace approximation by expansion of square root in

k2max/W
′′(φ) ∝ W ′′(φ)−1V

−2/3
0 .

→ Need some information about full theory for expansion.

→ Covariance in minisuperspace models?
Fixed infrared scale breaks local Poincaré transformations.
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III. Lessons from Dirac

−→ Lagrangian density and measure in

S[g] =
1

16πG

∫
d4x

√
|det g| (R[g] + · · ·)

may be subject to quantum corrections.

−→ Quantum-field theory on curved space-time different from
quantum gravity.

−→ Covariance in canonical quantum gravity:
Quantum version of Dirac’s hypersurface deformations.
Anomaly problem.
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QFT vs. QG

Perturbative inhomogeneity in h[A] := A(x)2. A(x) = Ā+ δA(x).

Quantum effects in background dynamics by Ā −→ ℓ−1 sin(ℓĀ).

→ Classical: h[Ā, δA] = Ā2 + 2ĀδA(x) + δA(x)2

→ QFT on modified space-time:

hQFT
ℓ [Ā, δA] = ℓ−2 sin(ℓĀ)2 + 2ĀδA(x) + δA(x)2

[Agulló, Ashtekar, Nelson]

→ Effective quantum gravity:

hQG
ℓ [Ā, δA] = ℓ−2 sin(ℓĀ)2 + Fℓ(Ā)δA(x) +Gℓ(Ā)δA(x)2 with

limℓ→0 Fℓ(Ā) = 2Ā and limℓ→0Gℓ(Ā) = 1.

Subject to covariance conditions.

Fℓ/Ā and Gℓ of same magnitude as (ℓĀ)−2 sin(ℓĀ)2.
[MB, Hossain, Kagan, Shankaranarayanan; Barrau, Cailleteau, Grain, Mielczarek;

Wilson–Ewing]
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Covariance: Hypersurface deformations

N

N

N
N

N

2
2

1

1

a

Generators D[Na] (tangential deformations along Na(x))
and H[N ] (normal deformations by N(x)) obey

[D[Na],D[M b]] = −D[LMbNa]

[H[N ],D[M b]] = −H[LMbN ]

[H[N1],H[N2]] = D[qab(N1∂bN2 −N2∂bN1)]

with induced metric qab on spatial slice. (Lie algebroid.)
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Generally covariant gauge theory

→ Hypersurface-deformation brackets generalize Poincaré
algebra, local version.

→ Covariance in canonical quantum gravity:

Representation of brackets by operators D̂, Ĥ, q̂ with

{D[Na],D[M b]} = −D[LMbNa]

{H[N ],D[M b]} = −H[LMbN ]

{H[N1],H[N2]} = D[qab(N1∂bN2 −N2∂bN1)]

as classical limit.

“Off-shell” property.
Stronger than anomaly-free reformulated system.

Examples: {H +D,H +D} = 0 [Gambini, Pullin]

{H,H} = {D′,D′} [Tomlin, Varadarajan]
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Model

Scalar field φ(x), momentum p(x), one spatial dimension.

H[N ] =

∫
dxN

(
f(p)−

1

4
(φ′)2 −

1

2
φφ′′

)
, D[w] =

∫
dxwφp′

Spatial diffeomorphisms:

δwφ = {φ,D[w]} = −(wφ)′ , δwp = {p,D[w]} = −wp′

H-bracket:

{H[N ],H[M ]} = D[1
2
(d2f/dp2)(N ′M −NM ′)]

Lorentzian-type hypersurface deformations for f(p) = p2.
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Signature change

“Holonomy” modifications, f(p) = p20 sin
2(p/p0):

1

2
d2f/dp2 = cos(2p/p0)

can be negative. At maximum of f(p):

{H[N ],H[M ]} = D[−(N ′M −NM ′)]

Euclidean signature:

∆x = −θ∆y from commutator of infinitesimal rotation by θ and a
spatial shift by ∆y.

Opposite sign for infinitesimal boost: ∆x = v∆t.
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Consistent deformation

{H[N ],D[w]} does not close in the scalar model,
but does so in some gravity versions.

→ No gauge transformations broken.

→ No effective line element on standard manifold:
dxa in

ds2eff = q̃abdx
adxb

do not transform by deformed gauge transformations that
change q̃ab.

Field redefinition to standard qab possible as long as β does
not change sign. With signature change: New model of
non-classical space-time.

→ Evaluate theory using canonical observables of deformed
gauge theory.
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Holonomies and space-time

[Reyes; Barrau, Cailleteau, Grain, Mielczarek]

All known consistent models (spherical symmetry, cosmological

perturbations): K2 −→ f(K) modifies bracket

{H[N1],H[N2]} = D[βqab(N1∂bN2 −N2∂bN1)]

with

β(K) =
1

2
d2f(K)/dK2 = cos(2ℓK)

for f(K) = ℓ−2 sin2(ℓK).

→ Covariant: Consistent gauge structure, but deformed.

→ Not undone by quantum back-reaction or higher time
derivatives. Distinct from higher-curvature corrections.

→ Signature change: β(K) < 0 around maximum of f(K).
“Bounce” indeterministic.
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Structure functions

Systems with several constraints ĈI : [ĈI , ĈJ ] = f̂K
IJ ĈK .

→ Effective constraints CI,pol = 〈p̂olĈI〉 with p̂ol polynomial in

basic operators.

→ Effective constraint algebra by quantum Poisson brackets.

→ No quantum corrections in structure functions: [arXiv:1407.4444]

{CI,1, CJ,1} = fK
IJ (〈·〉)CK,1 + · · ·

Consistent with higher-curvature effective actions in gravity.

Holonomy modifications in ĈI change f̂K
IJ .
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Related results

→ Closely related behavior in spherically symmetric models
and cosmological perturbations.
[with Barrau, Calcagni, Grain, Kagan: arXiv:1404.1018]

→ Operator version in spherical symmetry. [Brahma: arXiv:1411.3661]

→ Different operator versions in 2 + 1 dimensional models,
based on reformulations of constraint algebra.
[Perez, Pranzetti; Henderson, Laddha, Tomlin, Varadarajan]

→ Partially Abelianized constraints: [Gambini, Pullin]

After holonomy modifications, can reconstruct
hypersurface-deformation brackets only if deformed.
[with Brahma, Reyes: arXiv:1507.00329]

→ Obstructions to anomaly freedom in models with local
physical degrees of freedom. [with Brahma: arXiv:1507.00679]

Not much is known about full dynamics of loop quantum gravity.
Modified space-time structures generic.
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Tricomi problem and cosmic boom

[with Mielczarek: arXiv:1503.09154]

−
∂2u

∂t2
+ β(H)∆u = 0: Characteristic C connected to arc A.

C

A

→ Need future data: No deterministic evolution. Poles generic.

→ Phenomenology not viable in cyclic interpretation.
[Bolliet, Barrau, Grain, Schander: arXiv:1510.08766]
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Information loss

C

H

Non-singular black-hole model:

Evolve through classical singularity by
quantum evolution of homogeneous interior.

No event horizon. [Ashtekar, MB 2006]

Anomaly-free space-time structure:

High-curvature region Euclidean.

Arbitrary boundary values affect
future space-time.

Event horizon H and Cauchy horizon C.

No-heir theorem? [arXiv:1409.3157]
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