Space-time structure and singularity resolution

Martin Bojowald

The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA

Space-time structure

Easy to avoid divergences by introducing discreteness/bounded functions, in particular in minisuperspace models.

- → Consistent with covariance? If not, how can one avoid low-energy problems? [Polchinski: arXiv:1106.6346]
- → How exactly are singularity theorems evaded? Example: "Bounce" in some models of loop quantum cosmology without violating energy conditions.

Many open questions at different levels.

- \rightarrow I. Lessons from quantum mechanics.
- \rightarrow II. Lessons from quantum field theory.
- → III. Lessons from Dirac.

S

$$\begin{split} \begin{split} & \mathcal{I}_{\rm EH}[g] = \frac{1}{16\pi G} \int {\rm d}^4 x \sqrt{-\det g} \, R \\ & = \frac{3V_0}{8\pi G} \int {\rm d}t \, N a^3 \left(\frac{\ddot{a}}{N^2 a} + \frac{\dot{a}^2}{N^2 a^2} - \frac{\dot{a}\dot{N}}{aN^3} + \frac{k}{a^2} \right) \\ & = -\frac{3V_0}{8\pi G} \int {\rm d}t \left(\frac{a\dot{a}^2}{N} - kaN \right) \end{split}$$

Coordinate volume $V_0 = \int d^3x$ of some finite spatial region.

Canonical variables a and

$$p_a = -\frac{3V_0}{4\pi G}\frac{a\dot{a}}{N}$$

Lagrange multiplier N, $p_N = 0$.

Hamiltonian formulation of isotropic models

Hamiltonian constraint in canonical variables

PENNSTATE

$$C = -\frac{2\pi G}{3V_0} \frac{p_a^2}{a} - \frac{3V_0}{8\pi G} ka + V_0 H_{\text{matter}} = 0$$

Deparameterized Wheeler–DeWitt equation with dust

$$\hat{p}_T \Psi(q,T) = \frac{3\pi G}{2V_0} \hat{p}_q^2 \Psi(q,T) + \frac{3kV_0}{8\pi G} q^{2/3} \Psi(q,T)$$

for $q = a^{3/2}$. (Constant $H_{\text{matter}} = p_T$ conjugate to T.)

Physical Hilbert space $L^2(\mathbb{R}, dq)$.

Evolution in *T* with Hamiltonian \hat{p}_T : relational observables. [Dirac: Can. J. Math. 2 (1950) 129; Blyth, Isham: PRD 11 (1975) 768]

- → Quantum corrections depend on arbitrary V_0 . Is quantum cosmology coordinate dependent?
- \rightarrow Does choice of T as time affect predictions?
- \rightarrow How do we choose initial states for *T*-evolution?
- → Classical constraint strongly restricted by reduction from covariant theory.

Restrictions on quantum corrections in minisuperspace model?

Loop quantum cosmology

PENNSTATE

Isotropic connection $A_a^i = c\delta_a^i$, $E_j^b = p\delta_j^b$ with $c = \gamma \dot{a}$, $|p| = a^2$ Friedmann equation (flat space)

$$\frac{c^2}{\gamma^2|p|} + \frac{8\pi G}{3}\rho = 0$$

modified by using "holonomies"

$$\frac{c^2}{|p|} \mapsto \frac{\sin(\ell c/\sqrt{|p|})^2}{\ell^2} \sim \frac{c^2}{|p|} \left(1 - \frac{1}{3}\ell^2 \frac{c^2}{|p|} + \cdots\right)$$

If $\ell \sim \ell_{\rm P}$, corrections $\ell_{\rm P}^2 c^2 / |p| \sim \rho / \rho_{\rm P}$.

Taken *in isolation*, holonomy modifications imply a "bounce" of isotropic models:

$$\frac{\sin(\ell c/\sqrt{|p|})^2}{\gamma^2 \ell^2} = \frac{8\pi G}{3}\rho$$

I. Lessons from quantum mechanics

Questions:

PENNSTATE

- → Higher-curvature/higher-derivative contributions?
- → Dynamical quantum effects? (Fluctuations, ...)
- → Generic quantum behavior?

Detailed analysis possible in solvable (harmonic) model: sourced by free massless scalar (flat space, $\Lambda = 0$).

 $p_{\phi} \propto |ap_a| \propto |cp| \propto |\mathcal{H}V|$

with $\mathcal{H} = \dot{a}/a$ and $V \propto a^3$. Holonomy-modified (ℓ constant):

 $p_{\phi} \propto |\mathrm{Im}J|$, $J := V \exp(i\ell\mathcal{H})$, $\{J, V\} \propto \ell J$

 $sl(2,\mathbb{R})$ algebra generated by (V, J, \overline{J}) .

PENNSTATE

- → Perturbation theory around harmonic model: Quantum dynamics approximated within non-solvable model.
- → Quantum back-reaction of fluctuations and higher moments on expectation values. (Equivalent to low-energy effective action in standard systems.)
- → Have to know state to estimate moments. *Problem of states.*

Relation to space-time structure:

- → Adiabatic approximation (slow moments): higher time derivatives. Expected if related to higher-curvature terms.
- → Corrections should then be relevant near "bounce." Holonomy modification and higher-curvature corrections add terms of same order $\rho/\rho_{\rm P}$.
- \rightarrow Not clear whether "bounce" is generic.

Effective shortcut

PENNSTATE

Simple effective equations in loop quantum cosmology:

- → Analyze exact solutions of solvable quantum model. Expectation value $\langle \hat{V} \rangle$ follows modified Friedmann equation.
- → Numerical studies of some related models with semiclassical initial states.
- → Call modified Friedmann equation an effective equation in all models.

But: "Bounce" density depends on type of initial state, such as Gaussian in (\mathcal{H}, V) or (ϕ, p_{ϕ}) . (Problem of states.)

[Diener, Gupt, Singh: arXiv:1310.4795]

Solvable model: Semiclassical state at large volume stays semiclassical. General models: States spread out, change form.

II. Lessons from quantum-field theory

Wheeler–DeWitt equation

$$\hat{p}_T \Psi(q, T) = \frac{3\pi G}{2V_0} \hat{p}_q^2 \Psi(q, T) + \frac{3kV_0}{8\pi G} q^{2/3} \Psi(q, T)$$

or related version.

PENNSTATE

Quantum corrections depend on arbitrary coordinate volume V_0 .

Minisuperspace *approximation* possible in self-interacting scalar field theory.

- \rightarrow Relates V_0 to infrared scale (not a cut-off).
- → Minisuperspace models inconclusive about magnitude of quantum corrections.

[with S Brahma: arXiv:1509.00640]

Lagrangian
$$L = \int d^3x \left(\frac{1}{2} \dot{\phi}^2 - \frac{1}{2} |\nabla \phi|^2 - W(\phi) \right)$$
 reduced to

$$L_{\rm mini} = V_0 \left(\frac{1}{2}\dot{\phi}^2 - W(\phi)\right)$$

with $V_0 = \int d^3x$, ϕ spatially constant. Momentum $p = \partial L_{\min} / \partial \dot{\phi} = V_0 \dot{\phi}$. Hamiltonian

$$H_{\rm mini} = \frac{1}{2} \frac{p^2}{V_0} + V_0 W(\phi)$$

quantized to

PENNSTATE

$$\hat{H}_{\min} = \frac{1}{2} \frac{\hat{p}^2}{V_0} + V_0 W(\hat{\phi})$$

PENNSTATE

1 6 5 5 S

$$H_{\text{eff}} = \langle \hat{H}_{\text{mini}} \rangle = \frac{\langle \hat{p} \rangle^2}{2V_0} + V_0 W(\langle \hat{\phi} \rangle) + \frac{\Delta(p^2)}{2V_0} + \frac{1}{2} V_0 W''(\langle \hat{\phi} \rangle) \Delta(\phi^2) + \cdots$$

generates equations of motion for fluctuations, covariance:

$$\begin{split} \dot{\Delta}(\phi^2) &= \frac{2}{V_0} \Delta(\phi p) \\ \dot{\Delta}(\phi p) &= \frac{1}{V_0} \Delta(p^2) - V_0 W''(\langle \hat{\phi} \rangle) \Delta(\phi^2) \\ \dot{\Delta}(p^2) &= -2V_0 W''(\langle \hat{\phi} \rangle) \Delta(\phi p) \end{split}$$

Zeroth-order adiabatic, saturate uncertainty relation:

$$\Delta_0(\phi p) = 0 \quad , \quad \Delta_0(\phi^2) = \frac{1}{2} \frac{\hbar}{V_0 \sqrt{W''(\langle \hat{\phi} \rangle)}} \quad , \quad \Delta_0(p^2) = \frac{1}{2} \hbar V_0 \sqrt{W''(\langle \hat{\phi} \rangle)}$$

PENNSTATE **Effective potential**

1 5 5 5

$$V_{\text{eff}}(\phi) = H_{\text{eff}}|_{\langle \hat{p} \rangle = 0, \langle \hat{\phi} \rangle = \phi}$$

= $V_0 W(\phi) + \frac{1}{2V_0} \Delta_0(p^2) + \frac{1}{2} V_0 W''(\phi) \Delta_0(\phi^2)$
= $V_0 W(\phi) + \frac{1}{2} \hbar \sqrt{W''(\phi)}$
= $V_0 W_{\text{eff}}(\phi)$

 V_0 -dependent quantum correction in

$$W_{\text{eff}}(\phi) = W(\phi) + \frac{1}{2V_0}\hbar\sqrt{W''(\phi)}$$

Can make quantum corrections small by choosing large V_0 .

Effective quantum-field theory

Coleman–Weinberg potential: [S Coleman, E Weinberg: PRD 7 (1973) 1888]

$$W_{\text{eff}}(\phi) = W(\phi) + \frac{1}{2}i\hbar \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \log\left(1 + \frac{W''(\phi)}{||\mathbf{k}||^2}\right)$$

From moments or k^0 -integration:

PENNSTATE

[with S Brahma: arXiv:1411.3636]

$$W_{\text{eff}}(\phi) = W(\phi) + \frac{1}{2}\hbar \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \left(\sqrt{|\vec{k}|^2 + W''(\phi)} - |\vec{k}|\right)$$

Infrared-contribution: Integration over $|\vec{k}| \leq k_{\text{max}} = 2\pi/V_0^{1/3}$

$$W_{\text{eff}}(\phi) \approx W(\phi) + \frac{\hbar}{12\pi^2} k_{\max}^3 \sqrt{W''(\phi)} = W(\phi) + \frac{2\pi}{3V_0} \hbar \sqrt{W''(\phi)}$$

in qualitative agreement with minisuperspace effective potential.

Minisuperspace approximation

Quantum corrections depend on V_0 via infrared scale k_{\max} of field theory: Averaging with larger V_0 leaves fewer modes, smaller k_{\max} .

Small quantum corrections for large V_0 or small k_{max} . But minisuperspace truncation becomes less accurate. Quantum corrections ignored if $V_0 \rightarrow \infty$.

Minisuperspace approximation by expansion of square root in $k_{\max}^2/W''(\phi) \propto W''(\phi)^{-1}V_0^{-2/3}$.

- \rightarrow Need some information about full theory for expansion.
- → Covariance in minisuperspace models? Fixed infrared scale breaks local Poincaré transformations.

 \longrightarrow Lagrangian density and measure in

$$S[g] = \frac{1}{16\pi G} \int \mathrm{d}^4 x \sqrt{|\det g|} \left(R[g] + \cdots \right)$$

may be subject to quantum corrections.

 \longrightarrow Quantum-field theory on curved space-time different from quantum gravity.

→ Covariance in canonical quantum gravity: Quantum version of Dirac's hypersurface deformations. Anomaly problem.

QFT vs. QG

PENNSTATE

Perturbative inhomogeneity in $h[A] := A(x)^2$. $A(x) = \overline{A} + \delta A(x)$.

Quantum effects in background dynamics by $\bar{A} \longrightarrow \ell^{-1} \sin(\ell \bar{A})$.

- \rightarrow Classical: $h[\bar{A}, \delta A] = \bar{A}^2 + 2\bar{A}\delta A(x) + \delta A(x)^2$
- $\rightarrow Effective quantum gravity:$ $h_{\ell}^{QG}[\bar{A}, \delta A] = \ell^{-2} \sin(\ell \bar{A})^2 + F_{\ell}(\bar{A})\delta A(x) + G_{\ell}(\bar{A})\delta A(x)^2 \text{ with}$ $\lim_{\ell \to 0} F_{\ell}(\bar{A}) = 2\bar{A} \text{ and } \lim_{\ell \to 0} G_{\ell}(\bar{A}) = 1.$

Subject to covariance conditions.

 F_{ℓ}/\bar{A} and G_{ℓ} of same magnitude as $(\ell\bar{A})^{-2}\sin(\ell\bar{A})^2$. [MB, Hossain, Kagan, Shankaranarayanan; Barrau, Cailleteau, Grain, Mielczarek; Wilson–Ewing]

Covariance: Hypersurface deformations

PENNSTATE

Generators $D[N^a]$ (tangential deformations along $N^a(x)$) and H[N] (normal deformations by N(x)) obey

$$\begin{split} &[D[N^{a}], D[M^{b}]] = -D[\mathcal{L}_{M^{b}}N^{a}] \\ &[H[N], D[M^{b}]] = -H[\mathcal{L}_{M^{b}}N] \\ &[H[N_{1}], H[N_{2}]] = D[q^{ab}(N_{1}\partial_{b}N_{2} - N_{2}\partial_{b}N_{1})] \end{split}$$

with induced metric q_{ab} on spatial slice. (Lie algebroid.)

Generally covariant gauge theory

- → Hypersurface-deformation brackets generalize Poincaré algebra, local version.
- → Covariance in canonical quantum gravity: Representation of brackets by operators \hat{D} , \hat{H} , \hat{q} with

$\{D[N^a], D[M^b]\}$	=	$-D[\mathcal{L}_{M^b}N^a]$
$\{H[N], D[M^b]\}$	=	$-H[\mathcal{L}_{M^b}N]$
$\{H[N_1], H[N_2]\}$	=	$D[q^{ab}(N_1\partial_b N_2 - N_2\partial_b N_1)]$

as classical limit.

PENNSTATE

"Off-shell" property. Stronger than anomaly-free reformulated system. Examples: $\{H + D, H + D\} = 0$ [Gambini, Pullin] $\{H, H\} = \{D', D'\}$ [Tomlin, Varadarajan]

Scalar field $\phi(x)$, momentum p(x), one spatial dimension.

$$H[N] = \int \mathrm{d}x N\left(f(p) - \frac{1}{4}(\phi')^2 - \frac{1}{2}\phi\phi''\right) \quad , \quad D[w] = \int \mathrm{d}x w\phi p'$$

Spatial diffeomorphisms:

$$\delta_w \phi = \{\phi, D[w]\} = -(w\phi)'$$
, $\delta_w p = \{p, D[w]\} = -wp'$

H-bracket:

 $\{H[N], H[M]\} = D[\frac{1}{2}(d^2f/dp^2)(N'M - NM')]$

Lorentzian-type hypersurface deformations for $f(p) = p^2$.

Signature change

PENNSTATE

"Holonomy" modifications, $f(p) = p_0^2 \sin^2(p/p_0)$:

 $\frac{1}{2}\mathrm{d}^2 f/\mathrm{d}p^2 = \cos(2p/p_0)$

can be negative. At maximum of f(p):

$$\{H[N], H[M]\} = D[-(N'M - NM')]$$

Euclidean signature:

 $\Delta x = -\theta \Delta y$ from commutator of infinitesimal rotation by θ and a spatial shift by Δy .

Opposite sign for infinitesimal boost: $\Delta x = v \Delta t$.

PENNSTATE

 $\{H[N], D[w]\}$ does not close in the scalar model, but does so in some gravity versions.

- \rightarrow No gauge transformations broken.
- → No effective line element on standard manifold: dx^a in

 $\mathrm{d}s_{\mathrm{eff}}^2 = \tilde{q}_{ab}\mathrm{d}x^a\mathrm{d}x^b$

do not transform by deformed gauge transformations that change \tilde{q}_{ab} .

Field redefinition to standard q_{ab} possible as long as β does not change sign. With signature change: New model of non-classical space-time.

→ Evaluate theory using canonical observables of deformed gauge theory.

[Reyes; Barrau, Cailleteau, Grain, Mielczarek]

All known consistent models (spherical symmetry, cosmological perturbations): $K^2 \longrightarrow f(K)$ modifies bracket

 $\{H[N_1], H[N_2]\} = D[\beta q^{ab}(N_1 \partial_b N_2 - N_2 \partial_b N_1)]$

with

PENNSTATE

$$\beta(K) = \frac{1}{2} d^2 f(K) / dK^2 = \cos(2\ell K)$$

for $f(K) = \ell^{-2} \sin^2(\ell K)$.

- → Covariant: Consistent gauge structure, but deformed.
- → Not undone by quantum back-reaction or higher time derivatives. Distinct from higher-curvature corrections.
- → Signature change: $\beta(K) < 0$ around maximum of f(K). "Bounce" indeterministic.

Structure functions

PENNSTATE

Systems with several constraints \hat{C}_I : $[\hat{C}_I, \hat{C}_J] = \hat{f}_{IJ}^K \hat{C}_K$.

- → Effective constraints $C_{I,pol} = \langle \widehat{pol} \hat{C}_I \rangle$ with \widehat{pol} polynomial in basic operators.
- → Effective constraint algebra by quantum Poisson brackets.
- → No quantum corrections in structure functions: [arXiv:1407.4444]

$$\{C_{I,1}, C_{J,1}\} = f_{IJ}^K(\langle \cdot \rangle)C_{K,1} + \cdots$$

Consistent with higher-curvature effective actions in gravity.

Holonomy modifications in \hat{C}_I change \hat{f}_{IJ}^K .

Related results

PENNSTATE

- → Closely related behavior in spherically symmetric models and cosmological perturbations.
 [with Barrau, Calcagni, Grain, Kagan: arXiv:1404.1018]
- → Operator version in spherical symmetry. [Brahma: arXiv:1411.3661]
- → Different operator versions in 2 + 1 dimensional models, based on reformulations of constraint algebra.
 [Perez, Pranzetti; Henderson, Laddha, Tomlin, Varadarajan]
- → Partially Abelianized constraints: [Gambini, Pullin] After holonomy modifications, can reconstruct hypersurface-deformation brackets only if deformed. [with Brahma, Reyes: arXiv:1507.00329]
- → Obstructions to anomaly freedom in models with local physical degrees of freedom. [with Brahma: arXiv:1507.00679]

Not much is known about full dynamics of loop quantum gravity. Modified space-time structures generic.

Tricomi problem and cosmic boom

PENNSTATE

[with Mielczarek: arXiv:1503.09154]

- → Need future data: No deterministic evolution. Poles generic.
- \rightarrow Phenomenology not viable in cyclic interpretation.

[Bolliet, Barrau, Grain, Schander: arXiv:1510.08766]

Information loss

Non-singular black-hole model:

Evolve through classical singularity by quantum evolution of homogeneous interior. No event horizon. [Ashtekar, MB 2006]

Anomaly-free space-time structure:

High-curvature region Euclidean.

Arbitrary boundary values affect future space-time.

Event horizon \mathcal{H} and Cauchy horizon \mathcal{C} .

