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Outline

Introduction and a brief overview of loop quantum cosmology

Singularity resolution and the quantum bounce.

Development of new and more efficient tools for numerical
simulations. Results from numerical simulations with various
kinds of initial states, in presence of a potential and
anisotropies.

Possible singularities in loop quantum cosmology

Open issues and future directions
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Symmetry reduced spacetimes, such as isotropic, Bianchi and
Schwarzschild interior provide a tractable, non-trivial and rich
setting to implement techniques of a full theory of quantum
gravity. Kindergarten to learn valuable lessons in quantum gravity.

What can one learn in this quantum gravity playground?

Rigorous construction of mathematically and physically
consistent model quantum spacetimes.
Develop and rigorously test different tools and techniques to
extract reliable physics.
Understand potential quantum gravity implications for
singularity resolution, early universe and black hole physics.

Main Caveat: Quantization of homogeneous spacetimes is
“quantum mechanics of spacetime.” Where as full quantum
gravity is “QFT of spacetime.” Assuming homogeneity of
spacetime, various hurdles of the full quantum gravity can be
bypassed. Hope is that some qualitative aspects captured.
Though, tempting to use these qualitative aspects to guess a fuller
picture, there can be many pitfalls.
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Loop quantum gravity/cosmology
Non-perturbative background independent quantization based on
Ashtekar variables: connection Aia and the triad Eai .

High mathematical precision, thanks to the work of several
people in 90’s: (Ashtekar, Baez, Barbero, Bombelli, Corichi, Isham, Gambini, Jacobson,

Lewandowski, Marolf, Morau, Pullin, Rovelli, Smolin, Thiemann, Varadarajan ...)

At a kinematical level, classical differential geometry replaced
by quantum discrete geometry.
Uniqueness of quantum theory (Lewandowski, Okolow, Sahlmann, Thiemann;

Fleischhack (2005))

Loop quantum cosmology: Symmetry reduce connection and triads
at classical level, and then quantize. Various kinematical features
of LQG understood in LQC (Bojowald; Ashtekar, Bojowald, Lewandowski (2001-03)).
(Indications of non-singular behavior).

First explicit evidence of singularity resolution in physical Hilbert
space in isotropic models (Ashtekar, Kaminski, Lewandowski, Pawlowski, PS, Szulc,

Vandersloot (06-07)). Many regularizations severly restricted (Corichi, PS (08)),
leading to a unique choice in isotropic models (Ashtekar, Pawlowski, PS (06)).
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Gravitational part of Hamiltonian constraint:

Cgrav = −
∫
V
d3xN εijk F

i
ab (EajEbk/

√
|detE|)

Leads to two types of quantum modifications:

Curvature modifications from field strength/holonomies

Primarily responsible for singularity resolution. For spatially flat
models, under certain assumptions, can be captured effectively by
trignometric terms. Such a naive replacement misleading for
spatially curved models, leads to very different physics (Gupt, PS (11))

Inverse triad (or inverse volume) corrections

Many early results (pre-2006) based on this. Examples: black hole
mass threshold (Bojowald, Goswami, Maartens, PS (05)), absence of naked
singularities (Goswami, Joshi, PS (05)). Modification not tied to any
curvature scale and does not dictate quantum dynamics unless
intrinsic curvature is non-vanishing. But, can lead to singularity
resolution by itself in latter spacetimes (PS, Toporensky (04)).
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Strategy to extract reliable quantum gravitational physics

Find physical Hilbert space: self-adjoint Hamiltonian
constraint, inner product and physical states.

Find (Dirac) observables to study relational dynamics.

Consider physical initial states (such as in the GR epoch) and
evolve using quantum Hamiltonian constraint. Almost on all
occasions, models not exactly solvable therefore numerical
simulations necessary.

Compute expectation values of observables (and their
fluctuations). Compare with the classical trajectory. Obtain
departures between GR and LQC.

Make precise statements about how singularity resolution
occurs. Behavior of energy density, expansion and shear
scalars, curvature invariants.

Extract robust predictions
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Massless scalar in spatially flat FLRW spacetime

Classically singularity inevitable (disjoint expanding and
contracting trajectories)

Quantum Hamiltonian constraint: ∂2φΨ = −ΘΨ (Ashtekar, Pawlowski, PS (06))

ΘΨ := −B(v)−1[C+(v)Ψ(v+ 4, φ) +Co(v)Ψ(v, φ) +C−(v)Ψ(v− 4, φ)]

C
+
(v) =

3πKG

8
|v + 2| ||v + 1| − |v + 3|| , K =

2

3
√

3
√
3

C
−
(v) = C

+
(v − 4) =

3πKG

8
|v − 2| ||v − 3| − |v − 1|| ,

C
0
(v) = −C+

(v)− C−
(v),

B(v) =
27K

8
|v|
∣∣∣|v + 1|1/3 − |v − 1|1/3

∣∣∣3 .
Discreteness fixed by the underlying quantum geometry

φ plays the role of internal time. Relational dynamics.

Θ positive definite and self adjoint.

Dirac Observables: pφ, |v|φo

Quantum difference equation resulting from quantum geometry results in
Wheeler-DeWitt differential equation at large volumes.
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Loop quantum universes do not encounter big bang in the
backward evolution. Big bang is replaced by a quantum bounce
without any fine tuning.
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Initial states sharply peaked in a macroscopic universe numerically
found to bounce at ρmax ≈ 3/8πG∆ ≈ 0.41ρPlanck.
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Massless scalar in k = 1 FLRW model

A small change in classical theory, but a significant change in
quantization (Ashtekar, Pawlowski, PS, Vandersloot; Szulc, Kaminski, Lewandowski (2007)).
Quantization overcame difficulties noted by Green and Unruh (04) on
viability of earlier loop quantization by Bojowald and Vandersloot (03).
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Rigorous quantization and detailed physics analyzed for:

Using a different lapse, quantum Hamiltonian constraint can
be exactly solved for spatially flat FLRW with a massless
scalar (sLQC) (Ashtekar, Corichi, PS (08)). Predicts minimum non-zero
volume for all the states. Universal maximum of energy
density in the physical Hilbert space (ρmax)

Probability of bounce computed to be unity using consistent
histories approach of Gell-Mann, Griffiths, Hartle (Craig, PS (13))

Cosmological constant (Ashtekar, Bentivegna, Kaminski, Pawlowski (07-12))

Radiation (Pawlowski, Pierini, Wilson-Ewing (15))

Potentials (Ashtekar, Pawlowski, PS; Diener, Gupt, Megevand, PS (To appear))

Bianchi-I, II and IX spacetimes (Ashtekar, Diener, Joe, Martin-Benito, Megevand,

Mena-Marugan, Pawlowski, PS, Wilson-Ewing (09-16))

LRS Gowdy (de Blas, Olmedo, Pawlowski (15)); Hybrid quantization of
polarized Gowdy models (Garay, Martin-Benito, Mena-Marugan, ... (09-15))
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Effective spacetime description
Under appropriate conditions, quantum evolution can be
approximated by a continuum effective spacetime description.
Embedding method (Willis’ PhD Thesis at Penn State (2004), Taveras (2008), PS, Taveras (To

appear)) and moment expansion method (Bojowald’s talk).

Embedding method

Always derived from the quantum Hamiltonian constraint in LQC.
Relationship with LQC always very transparent. Uses coherent
states. Assumptions: (i) small relative fluctuations, (ii) state
should not probe regions very close to the Planck volume.

Rather tight assumptions and explicitely computed for limited
models, but the method still works well.

For all the models in LQC where physical Hilbert space is known,
numerical simulations show that it provides an excellent
approximation for initial states which are sharply peaked at late
times in a large macroscopic universe.
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An example: bounce in presence of a potential

Cyclic model inspired potential: U = Uoe
−φ2

(Diener, Gupt, Megevand, PS (To appear))

Qualitative features of the bounce unaffected by the potential, for
various choices of parameters and initial conditions.
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Effective description in very good agreement in the presence of
potential for sharply peaked initial states.
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also in non-kinetic domination regions.
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Rich physics explored

Some examples:

Singularity resolution in inflation for isotropic and anisotropic
models, attractors and probability (PS, Vereshchagin, Vandersloot (06);

Ashtekar, Sloan (09,11); Corichi, Montoya (11); Ranken, PS (12); Gupt, PS (13); Bonga, Gupt (15))

Singularity resolution and onset of inflation in landscape
scenarios (Garriga, Vilenkin, Zhang; Gupt PS (2014))

Singularity resolution in pre-big bang cosmology, string
inspired scenarios (de Risi, Maartens, PS (07); Cailleteau, PS, Vandersloot (09))

Quantum Kasner transitions in Bianchi-I model with scalar
field and perfect fluid (Gupt, PS (2014)). Interesting hierarchy found
for different geometrical transitions across the bounce.

Bianchi-IX spacetimes (Corichi, Karami, Montoya (12-16))

Black hole interiors (Ashtekar, Boehmer, Bojowald, Campiglia, Chiou, Corichi, Dadhich,

Gambini, Joe, PS, Pullin (05-16))
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Some of the open questions (partially answered recently)

Is bounce an artifact of choosing special kinds of initial
states? Does bounce occur if the initial state has very large
quantum fluctuations?

Only simulations with sharply peaked Gaussian states
considered so far, which bounce at volumes much larger than
the Planck volume. Can we consider states which probe
deeper quantum geometry? Is the effective spacetime
description still a good approximation?

Due to the heavy computational costs, many details of the
anisotropic models in quantum theory partially explored
(Martin-Benito, Mena Marugan, Pawlowski (2008)). Can we understand bounce(s)
in anisotropic models with as much rigor as in the isotropic
model?

Does quantum geometry always binds the curvature
invariants? Are there any allowed singularities in LQC?
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Numerical challenges for isotropic and anisotropic models
Isotropic models:

For sharply peaked initial states simulations: vouter ∼ 105,
computational time ∼ 15 minutes on single core.
For widely spread states and those which can probe deep
Planck regime, vouter ∼ 1012 (and higher). This requires 107

more spatial grid points. Since quantum grid is fixed, stability
requirements lead to 107 finer time steps. Such a simulation
would take 1010 years!

Anisotropic models:
Non-hyperbolicity encountered for Bianchi-I vacuum model
when casted in relational observables. However, one can
evaluate the entire physical wavefuntion by integration

χ(b1, v2, v3) =

∫
dω2dω3χ̃(ω2, ω3)eω1

(b1)eω2
(v2)eω3

(v3)

For a state sharply peaked at ω2 = ω3 = 103, a typical
simulations require 1014 floating point operations.
For wider states, and states probing deep quantum geometry,
typical simulations require 1019 flop. Memory needed ∼ 5 Tb.
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Probing deep Planck regime

Chimera scheme (Diener, Gupt, PS (2014)): Use an inner grid where the
LQC difference equation is solved, and a carefully chosen outer
grid at large volumes where the Wheeler-DeWitt theory is an
excellent approximation. Choose logarithmic variable in outer grid.
Makes characteristic speeds constant. Getting stable evolution
easier at far less expense. With vint = 10000 and vouter = 1012,
evolution takes less than 10 minutes on a single core.
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Widely spread quantum states bounce at smaller volume than
predicted by effective theory (Diener, Gupt, PS (2014))
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Quantum bounce for highly quantum states

Bounce not restricted to any special states. Even occurs for states
which are highly non-Gaussian or squeezed.
(Diener, Gupt, Megevand, PS (2014))
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Tight constraints on the growth of the fluctuations across the
bounce. State in the asymptotic future turns out to be very similar
to the one in the asymptotic past. Results are in agreement with
analytical estimates using sLQC (Corichi, Kaminski, Montoya, Pawlowski, PS (2008-11))
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Effect of large quantum fluctuations on the bounce

In the isotropic model, quantum fluctuations are found to always
lower the curvature scale at which the bounce occurs. Quantum
fluctuations in the state enhance the “repulsive nature of gravity”
in the quantum regime.
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The bounce density can be much smaller than the estimate from
sLQC ρmax ≈ 0.41ρPl depending on the initial state.
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Anisotropic quantum bounce

Rigorous quantization of Bianchi-I vacuum model available.
Singularity resolution found (Martin-Benito, Mena Marugan, Pawlowski (2008)).

Using high performance computing we can now rigorously
understand the physics of quantum bounce in Bianchi-I vacuum
(Diener, Joe, Megevand, PS (To appear))
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The effective theory of Bianchi-I spacetime is in an excellent
agreement with the quantum evolution for various states. However,
depending on the relative fluctuations in the state, departures exist.
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Does LQC resolve all the singularities?

Assuming the validity of effective spacetime, spacetime curvature
invariants can in principle diverge for isotropic, Bianchi-I and
Kantowski-Sachs spacetimes (PS (09,11); Saini, PS (16))

Example: In the spatially flat isotropic model in LQC, spacetime
curvature captured by

R = 6
(
H2 + ä

a

)
= 8πGρ

(
1− 3w + 2 ρ

ρmax
(1 + 3w)

)
, w = p/ρ

Even though energy density and Hubble rate have upper bound in
LQC, pressure is not bounded.

If pressure diverges at a finite value of energy density, such as in
sudden singularities (Barrow, Tsagas (04-05)), curvature invariants diverge in
effective LQC.
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Strength of possible singularities in LQC

Królak’s criteria: The singularity at τ = τo is strong if
∫ τ
0 dτ

′|Ri
4j4
|

diverges as τ → τo

Królak’s conjecture: All relevant physical singularities which lead
to geodesic incompleteness are strong curvature type.

All the events where curvature invariants diverge in effective LQC,
turn out to be weak singularities. Geodesics can be extended
beyond such events in effective spacetime. Quantum geometry
effects ignore weak singularities (except in presence of spatial
curvature (PS, Vidotto (10)))

Strong curvature singularities are forbidden in effective LQC at
least for isotropic, Bianchi-I and Kantowski-sachs spacetimes.
No big bang/crunch, big rip, big freeze in finite proper time
evolution (PS (09,11); Saini, PS (16))
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Some of the most important open issues

Are predictions of LQC robust when inhomogeneous fluctuations of
loop quantum gravity are switched on? (Brunnemann, Thiemann (05))

The inverse triad operators may not be bounded in LQG. (Recall
they play little role in singularity resolution)

Does not affect results on bounce, but an important open issue to
understand is whether holonomy modifications leading to bounce
survive in top-down approach from loop quantum gravity.

Rigorous relationship between loop quantum gravity and LQC: new
insights and interesting results (Beetle, Bodendorfer, Brunnemann, Engle, Fleishchack,

Hogan, Mendonca (08-16)).

Possible generalization of LQC results to infinite degrees of
freedom in loop quantum gravity can be studied rigorously
(Domagala, Giesel, Kaminski, Lewandowski (10))

Effective dynamics of bounce in LQC can be obtained from a
gauge fixed version of loop quantum gravity (Alesci, Cianfrani (14))
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Future directions and ongoing work

Numerical simulations for various loop quantized Bianchi
models can be performed rigorously (Pawlowski; Diener, PS (work in progress)).
Promising avenue for quantum generalization of results in the
classical theory (Berger, Garfinkle, Isenberg, Moncrief ...)

Inclusion of inhomogenieities: Ongoing work in polarized
Gowdy models suggests singularity resolution (Martin-Benito, Martin-de

Blas, Mena Marugan, Olmedo, Pawlowski). Rich area for detailed explorations
(Garfinkle’s question).

New avenues for cosmologies in spinfoams and group field
theory (Bianchi, Gielen, Rovelli, Oriti, Sindoni, Sloan, Vidotto, Wilson-Ewing, ...).

Schwarschild interior: Analytical studies indicate singularity
resolution (Ashtekar, Bojowald, Campiglia, Chiou, Corichi, Gambini, Modesto, Pullin, PS).
Detailed physics starting to be explored.
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