

Patrick Peter (w/ S. Vitenti \& A. Valentini) Institut d’Astrophysique de Paris
 GReCO

Bouncing quantum cosmalagical sulutions in the dBB aforoach

Singularities of general relativity and their quantum fate π

Instytut Matematyczny

Polskiej Akademii Nauk

Ontological interpretation (dBB)

Louis de Broglie

1927 Solvay meeting and von Neuman mistake ... 'In 1952, I saw the impossible done' (J. Bell)

Ontological interpretation (dBB)

Louis de Broglie (Prince, duke ...)

1927 Solvay meeting and von Neuman mistake ... ‘In 1952, I saw the impossible done’ (J. Bell)

Ontological interpretation (dBB)

Louis de Broglie (Prince, duke ...)

1927 Solvay meeting and von Neuman mistake ... 'In 1952, I saw the impossible done' (J. Bell)

Ontological formulation (dBB)

Louis de Broglie (Prince, duke ...)

1927 Solvay meeting and von Neuman mistake ... ‘In 1952, I saw the impossible done’ (J. Bell)

Ontological formulation (dBB) $\quad \exists \boldsymbol{x}(t)$

Trajectories satisfy (de Broglie) $\quad m \frac{\mathrm{~d} \boldsymbol{x}}{\mathrm{~d} t}=\Im \mathrm{m} \frac{\Psi^{*} \nabla \Psi}{|\Psi(\boldsymbol{x}, t)|^{2}}=\quad \nabla S$

Ontological formulation (BdB) $\exists \boldsymbol{x}(t)$

$$
\Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}
$$

$$
m \frac{\mathrm{~d}^{2} \boldsymbol{x}}{\mathrm{~d} t^{2}}=-\nabla(V+Q) \quad Q \equiv-\frac{1}{2 m} \frac{\nabla^{2}|\Psi|}{|\Psi|}
$$

Ontological formulation (dBB) $\quad \exists \boldsymbol{x}(t)$

Trajectories satisfy (de Broglie) $\quad m \frac{\mathrm{~d} \boldsymbol{x}}{\mathrm{~d} t}=\Im \mathrm{m} \frac{\Psi^{*} \nabla \Psi}{|\Psi(\boldsymbol{x}, t)|^{2}}=\quad \nabla S$

Ontological formulation (dBB) $\quad \exists \boldsymbol{x}(t)$

$$
\Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}
$$

Trajectories satisfy (de Broglie) $\quad m \frac{\mathrm{~d} \boldsymbol{x}}{\mathrm{~d} t}=\Im \mathrm{m} \frac{\Psi^{*} \nabla \Psi}{|\Psi(\boldsymbol{x}, t)|^{2}}=\quad \nabla S$
(e) strictly equivalent to Copenhagen QM

Properties:

$$
\begin{aligned}
& \text { probability distribution (attractor) } \\
& \exists t_{0} ; \rho\left(x, t_{0}\right)=\left|\Psi\left(x, t_{0}\right)\right|^{2}
\end{aligned}
$$

$$
Q \equiv-\frac{1}{2 m} \frac{\nabla^{2}|\Psi|}{|\Psi|}
$$

© classical limit well defined
© state dependent
© \exists intrinsic reality

- non local...
© no need for external classical domain/observer!

The two-slit experiment:

Surrealistic trajectories?

Non straight in vacuum...

$$
m \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}=-\nabla(V+Q)
$$

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.

The two-slit experiment:

Surrealistic trajectories?

Non straight in vacuum...
$m \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}=-\nabla(\underset{\boldsymbol{X}}{ }+Q)$
... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.

The two-slit experiment:

Surrealistic trajectories?

Non straight in vacuum...

$$
m \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}=-\nabla(\stackrel{\downarrow}{\boldsymbol{X}}+\stackrel{\downarrow}{Q})
$$

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.

QM
 $\rho=|\Psi|^{2}$

1st order
 $\rho_{\mathrm{ini}} \neq|\Psi|^{2}$ $v_{\text {ini }} \propto \nabla S$

 QM$$
\rho=|\Psi|^{2}
$$

$\rho_{\text {ini }} \neq|\Psi|^{2}$
 1st order
 $$
v_{\mathrm{ini}} \propto \nabla S
$$

QM
 $\rho=|\Psi|^{2}$

2nd order

$$
\begin{aligned}
& \rho_{\mathrm{ini}} \neq|\Psi|^{2} \\
& v_{\mathrm{ini}} \not \propto \nabla S
\end{aligned}
$$

2nd order

$$
\begin{aligned}
& \rho_{\mathrm{ini}} \neq|\Psi|^{2} \\
& v_{\mathrm{ini}} \not \nsim \nabla S
\end{aligned}
$$

1st order

$$
\begin{aligned}
& \rho_{\mathrm{ini}} \neq|\Psi|^{2} \\
& v_{\mathrm{ini}} \propto \nabla S
\end{aligned}
$$

QM
$\rho=|\Psi|^{2}$

2nd order $\rho_{\text {ini }} \neq|\Psi|^{2}$ $v_{\text {ini }} \not \nless \nabla S$

2nd order: is unstable...

S. Colin \& A. Valentini, Proc. R. Soc. A 470, 20140288 (2014)
ruled out!

1st order: can be tested?

2nd order: is unstable...

S. Colin \& A. Valentini, Proc. R. Soc. A 470, 20140288 (2014)
ruled out!

1st order: can be tested?

2nd order: is unstable...

S. Colin \& A. Valentini, Proc. R. Soc. A 470, 20140288 (2014)
ruled out!

1st order: can be tested?

2nd order: is unstable...

S. Colin \& A. Valentini, Proc. R. Soc. A 470, 20140288 (2014)
ruled out!

Primordial
Perturbation
Theory

Quantum equilibrium

(Valentini \& Westman, 2005)

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t}|\Psi\rangle=\hat{H}|\Psi\rangle
$$

Particle in a box -2D

$$
i \frac{\partial \psi}{\partial t}=-\frac{1}{2} \frac{\partial^{2} \psi}{\partial x^{2}}-\frac{1}{2} \frac{\partial^{2} \psi}{\partial y^{2}}+\underbrace{V \psi}_{\text {infinite square well - size } \pi}
$$

Density of actual configurations

$$
\rho(x, y, t) \Longrightarrow \frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho \dot{x})+\frac{\partial}{\partial y}(\rho \dot{y})=0 \quad \text { continuity equation }
$$

Energy eigenfunctions $\phi_{m n}(x, y)=\frac{2}{\pi} \sin (m x) \sin (n y)$
Energy levels $E_{m n}=\frac{1}{2}\left(m^{2}+n^{2}\right)$

Initial configuration

$$
\rho(x, y, 0)=\left|\phi_{11}(x, y)\right|^{2}
$$

$$
\psi(x, y, 0)=\sum_{m, n=1}^{4} \frac{1}{4} \phi_{m n}(x, y) \exp \left(i \theta_{m n}\right)
$$

$$
\psi(x, y, t)=\sum_{m, n=1}^{4} \frac{1}{4} \phi m n(x, y) \exp i\left(\theta_{m n}-E_{m n} t\right)
$$

Dynamical evolutions

ρ

Typical quantum trajectory...

Close-up of a trajectory near a node

chaotic mixing...

$$
\tilde{\rho}(t=0)
$$

$$
\tilde{\rho}_{\mathrm{QT}}(t=0)
$$

$\tilde{\rho}_{\mathrm{QT}}(t=10 \pi)$

chaotic mixing...

relaxation towards equilibrium
just like ordinary thermal equilibrium

$\tilde{\rho}_{\mathrm{QT}}(t=0)$

$$
\tilde{\rho}(t=100 \pi)
$$

$\tilde{\rho}_{\mathrm{QT}}(t=100 \pi)$

chaotic mixing...

relaxation towards equilibrium
just like ordinary thermal equilibrium

Quantum cosmology

- Hamiltonian GR

Action: $\quad \mathcal{S}=\frac{1}{16 \pi G_{\mathrm{N}}}\left[\int_{\mathcal{M}} \mathrm{d}^{4} x \sqrt{-g}\left({ }^{4} R-2 \Lambda\right)+2 \int_{\partial \mathcal{M}} \mathrm{d}^{3} x \sqrt{h} K^{i}{ }_{i}\right]+\mathcal{S}_{\text {matter }}$

- Superspace \& canonical quantisation

Relevant configuration space?

$$
\operatorname{Riem}(\Sigma) \equiv\{h_{i j}\left(x^{\mu}\right), \stackrel{\downarrow}{\left.\Phi\left(x^{\mu}\right) \mid x \in \Sigma\right\}} \underbrace{}_{\text {parameters }} \text { matter fields }
$$

GR \Longrightarrow invariance $/$ diffeomorphisms $\Longrightarrow \operatorname{Conf}=\frac{\operatorname{Riem}(\Sigma)}{\operatorname{Diff}_{0}(\Sigma)}$
superspace

Wave functional $\Psi\left[h_{i j}(x), \Phi(x)\right]$
Dirac canonical quantisation
$\pi^{i j} \rightarrow-i \frac{\delta}{\delta h_{i j}}$
$\pi_{\Phi} \rightarrow-i \frac{\delta}{\delta \Phi}$
$\pi^{0} \rightarrow-i \frac{\delta}{\delta \mathcal{N}}$

$$
\pi^{i} \rightarrow-i \frac{\delta}{\delta \mathcal{N}_{i}}
$$

- Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space = mini-superspace

$$
h_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=a^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)\right] \quad \Phi(x)=\phi(t)
$$

WDW equation becomes Schrödinger-like for $\Psi[a(t), \phi(t)]$

Conceptual and technical problems:
Infinite number of dof \longrightarrow a few: mathematical consistency?
Freeze momenta? Heisenberg uncertainties?
$\mathrm{QM}=$ minisuperspace of QFT

- Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space = mini-superspace

$$
h_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=a^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)\right] \quad \Phi(x)=\phi(t)
$$

WDW equation becomes Schrödinger-like for $\Psi[a(t), \phi(t)]$

However, one can actually make calculations!

Exemple : Quantum cosmology of a perfect fluid

$$
\mathrm{d} s^{2}=N^{2}(\tau) \mathrm{d} \tau-a^{2}(\tau) \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

Perfect fluid: Schutz formalism ('70)

$$
p=p_{0}\left[\frac{\dot{\varphi}+\theta \dot{s}}{N(1+\omega)}\right]^{\frac{1+\omega}{\omega}}
$$

$(\varphi, \theta, s)=$ Velocity potentials
canonical transformation: $\quad T=-p_{s} \mathrm{e}^{-s / s_{0}} p_{\varphi}^{-(1+\omega)} s_{0} \rho_{0}^{-\omega} \quad \ldots$

+ rescaling (volume...) + units... : simple Hamiltonian:

$$
H=\left(-\frac{p_{a}^{2}}{4 a}-\mathcal{K} a+\frac{p_{T}}{a^{3 \omega}}\right) N
$$

$$
H \Psi=0
$$

$$
\mathcal{K}=0 \Longrightarrow \chi \equiv \frac{2 a^{3(1-\omega) / 2}}{3(1-\omega)} \Longrightarrow i \frac{\partial \Psi}{\partial T}=\frac{1}{4} \frac{\partial^{2} \Psi}{\partial \chi^{2}}
$$

space defined by $\chi>0 \longrightarrow$ constraint $\bar{\Psi} \frac{\partial \Psi}{\partial \chi}=\Psi \frac{\partial \bar{\Psi}}{\partial \chi}$
Gaussian wave packet

$$
\begin{gathered}
\square \Psi=\left[\frac{8 T_{0}}{\pi\left(T_{0}^{2}+T^{2}\right)^{2}}\right]^{\frac{1}{4}} \exp \left(-\frac{T_{0} \chi^{2}}{T_{0}^{2}+T^{2}}\right) \mathrm{e}^{-i S(\chi, T)} \\
\text { phase } \quad S=\frac{T \chi^{2}}{T_{0}^{2}+T^{2}}+\frac{1}{2} \arctan \frac{T_{0}}{T}-\frac{\pi}{4}
\end{gathered}
$$

What do we do with the wave function of the Universe???

Gaussian wave packet

$$
\begin{gathered}
\square \Psi=\left[\frac{8 T_{0}}{\pi\left(T_{0}^{2}+T^{2}\right)^{2}}\right]^{\frac{1}{4}} \exp \left(-\frac{T_{0} \chi^{2}}{T_{0}^{2}+T^{2}}\right) \mathrm{e}^{-i S(\chi, T)} \\
\text { phase } S=\frac{T \chi^{2}}{T_{0}^{2}+T^{2}}+\frac{1}{2} \arctan \frac{T_{0}}{T}-\frac{\pi}{4}
\end{gathered}
$$

What do we do with the wave function of the Universe???

Gaussian wave packet

$$
\begin{aligned}
& \square \Psi=\left[\frac{8 T_{0}}{\pi\left(T_{0}^{2}+T^{2}\right)^{2}}\right]^{\frac{1}{4}} \exp \left(-\frac{T_{0} \chi^{2}}{T_{0}^{2}+T^{2}}\right) \mathrm{e}^{-i S(\chi, T)} \\
& \text { phase } S=\frac{T \chi^{2}}{T_{0}^{2}+T^{2}}+\frac{1}{2} \arctan \frac{T_{0}}{T}-\frac{\pi}{4} \\
& \qquad a=a_{0}\left[1+\left(\frac{T}{T_{0}}\right)^{2}\right]^{\frac{1}{3(1-\omega)}}
\end{aligned}
$$

J. Acacio de Barros, N. Pinto-Neto \& M. A. Sagorio-Leal, Phys. Lett. A241, 229 (1998)

A simple Bianchi I model $\quad \mathrm{d} s^{2}=-N^{2}(t) \mathrm{d} t^{2}+\sum_{i=1}^{3} a_{i}^{2}(t)\left(\mathrm{d} x^{i}\right)^{2}$

$$
+ \text { (radiation) fluid / constant equation of state } \quad w \equiv p / \rho=\frac{1}{3}
$$

conformal time choice $N \rightarrow a$

$$
t \rightarrow \eta
$$

GR Hamiltonian $\quad H=\frac{\Pi_{a}^{2}}{24}-\frac{p_{-}^{2}+p_{+}^{2}}{24 a^{2}}$

Canonical commutation relations

$$
\left[\hat{a}, \hat{\Pi}_{a}\right]=\left[\hat{\beta}_{ \pm}, \hat{p}_{ \pm}\right]=i
$$

$$
\begin{aligned}
& a \equiv\left(a_{1} a_{2} a_{3}\right)^{\frac{1}{3}} \\
& \beta_{-} \equiv \frac{1}{2 \sqrt{3}} \ln \left(a_{1} / a_{2}\right)
\end{aligned}
$$

Rescaling:

$$
\beta_{+} \equiv \frac{1}{6} \ln \left(a_{1} a_{2} / a_{3}^{2}\right)
$$

$$
\hat{H}=\hat{\Pi}_{a}^{2}-\left(\hat{p}_{-}^{2}+\hat{p}_{+}^{2}\right) \hat{a}^{-2}
$$

mixed representation for the wave function

$$
\begin{aligned}
\hat{a} \Psi & =a \Psi \\
\hat{p}_{ \pm} \Psi & =p_{ \pm} \Psi \\
\hat{\Pi}_{a} & =-i \partial / \partial a \\
\hat{\beta}_{ \pm} & =i \partial / \partial p_{ \pm}
\end{aligned}
$$

Hilbert space \mathbb{H}

$$
\mathbb{H} \subset\left\{\left.f\left(a, p_{+}, p_{-}\right) \in \mathbb{C}\left|\int_{0}^{\infty} \mathrm{d} a \int_{-\infty}^{\infty} \mathrm{d} p_{+} \int_{-\infty}^{\infty} \mathrm{d} p_{-}\right| f\left(a, p_{+}, p_{-}\right)\right|^{2}<\infty\right\}
$$

eigenvalue equation $\hat{H} \Psi=\ell^{2} \Psi \longrightarrow-\frac{\partial^{2} \mathcal{U}_{\ell}^{(k)}}{\partial a^{2}}-\frac{k^{2}}{4 a^{2}} \mathcal{U}_{\ell}^{(k)}=\ell^{2} \mathcal{U}_{\ell}^{(k)}$
mixed representation for the wave function

$$
\begin{aligned}
\hat{a} \Psi & =a \Psi \\
\hat{p}_{ \pm} \Psi & =p_{ \pm} \Psi \\
\hat{\Pi}_{a} & =-i \partial / \partial a \\
\hat{\beta}_{ \pm} & =i \partial / \partial p_{ \pm}
\end{aligned}
$$

Hilbert space \mathbb{H}

$$
\mathbb{H} \subset\left\{\left.f\left(a, p_{+}, p_{-}\right) \in \mathbb{C}\left|\int_{0}^{\infty} \mathrm{d} a \int_{-\infty}^{\infty} \mathrm{d} p_{+} \int_{-\infty}^{\infty} \mathrm{d} p_{-}\right| f\left(a, p_{+}, p_{-}\right)\right|^{2}<\infty\right\}
$$

eigenvalue equation $\hat{H} \Psi=\ell^{2} \Psi \longrightarrow-\frac{\partial^{2} \mathcal{U}_{\ell}^{(k)}}{\partial a^{2}}-\frac{k^{2}}{4 a^{2}} \mathcal{U}_{\ell}^{(k)}=\ell^{2} \mathcal{U}_{\ell}^{(k)}$

$$
k^{2} \equiv 4\left(p_{+}^{2}+p_{-}^{2}\right)
$$

mixed representation for the wave function

$$
\begin{aligned}
\hat{a} \Psi & =a \Psi \\
\hat{p}_{ \pm} \Psi & =p_{ \pm} \Psi \\
\hat{\Pi}_{a} & =-i \partial / \partial a \\
\hat{\beta}_{ \pm} & =i \partial / \partial p_{ \pm}
\end{aligned}
$$

Hilbert space \mathbb{H}

$$
\mathbb{H} \subset\left\{\left.f\left(a, p_{+}, p_{-}\right) \in \mathbb{C}\left|\int_{0}^{\infty} \mathrm{d} a \int_{-\infty}^{\infty} \mathrm{d} p_{+} \int_{-\infty}^{\infty} \mathrm{d} p_{-}\right| f\left(a, p_{+}, p_{-}\right)\right|^{2}<\infty\right\}
$$

eigenvalue equation $\hat{H} \Psi=\ell^{2} \Psi \longrightarrow-\frac{\partial^{2} \mathcal{U}_{\ell}^{(k)}}{\partial a^{2}}-\frac{k}{}_{2}^{4 a^{2}} \mathcal{U}_{\ell}^{(k)}=\ell^{2} \mathcal{U}_{\ell}^{(k)}$

$$
k^{2} \equiv 4\left(p_{+}^{2}+p_{-}^{2}\right)
$$

Wave function

$$
\Psi\left(a, p_{ \pm}\right)=\int_{0}^{\infty} \mathrm{d} \ell \int_{-\infty}^{\infty} \mathrm{d} \beta_{+} \int_{-\infty}^{\infty} \mathrm{d} \beta_{-} \tilde{\Psi}\left(\ell, \beta_{ \pm}\right) \mathrm{e}^{i\left[\beta_{+} p_{+}+\beta_{-} p_{-}\right]} \mathcal{U}_{\ell}^{(k)}(a)
$$

$$
\text { Self-adjoint Hamiltonian } \quad \int \mathrm{d} a \mathrm{~d}^{2} p(H \Psi)^{*} \Psi=\int \mathrm{d} a \mathrm{~d}^{2} p \Psi^{*}(H \Psi)
$$

automatically satisfied if

$$
\begin{aligned}
& \int_{0}^{\infty} \mathrm{d} a \mathcal{U}_{\ell}^{(k) *}(a) \mathcal{U}_{\ell^{\prime}}^{(k)}(a)=\delta\left(\ell-\ell^{\prime}\right) \\
& \int_{0}^{\infty} \mathrm{d} \ell \int_{-\infty}^{\infty} \mathrm{d} \beta_{+} \int_{-\infty}^{\infty} \mathrm{d} \beta_{-}\left|\tilde{\Psi}\left(\ell, \beta_{ \pm}\right)\right|^{2} \ell^{2}<\infty
\end{aligned}
$$

$$
\nu=\frac{1}{2} \sqrt{1-k^{2}}
$$

$$
\begin{gathered}
\text { general solution for the energy eigenmodes } \\
\mathcal{U}_{\ell}^{(k)}(a)=c_{+} \sqrt{a \ell} J_{\nu}(a \ell)+c_{-} \sqrt{a \ell} J_{-\nu}(a \ell)
\end{gathered}\left\{\begin{array}{l}
c_{+}=1 \text { and } c_{-}=0 \\
c_{+}=0 \text { and } c_{-}=1
\end{array}\right.
$$

Linear fluid momentum

$\hat{P}_{\text {fluid }}=-i \partial_{\eta}$
Schödinger
Evolution operator
Banach center - Warsaw- June 30, 2016

$$
i \frac{\partial U}{\partial \eta}=\hat{H} U
$$

$$
\Psi_{0}(a)=\left\langle a, p_{ \pm} \mid \Psi_{0}\right\rangle=\frac{2^{(1-2 \alpha) / 4} a^{\alpha}}{\sigma^{\alpha+1 / 2} \sqrt{\Gamma\left(\alpha+\frac{1}{2}\right)}} \exp \left[-\frac{1}{2} a^{2}\left(\frac{1}{2 \sigma^{2}}-i \mathcal{H}_{\mathrm{ini}}\right)\right]
$$

Propagator

$$
\begin{aligned}
G\left(a, p_{ \pm}, a_{0}, p_{ \pm}^{0}\right) & \equiv\left\langle a, p_{ \pm}\right| U\left|a_{0}, p_{ \pm}^{0}\right\rangle \\
& =\delta^{(2)}\left(p_{ \pm}-p_{ \pm}^{\prime}\right) \int_{0}^{\infty} \mathrm{d} \ell \mathrm{e}^{-i \ell^{2} \Delta \eta} \mathcal{U}_{\ell}^{(k)}(a) \mathcal{U}_{\ell}^{(k) *}\left(a^{\prime}\right)
\end{aligned}
$$

$$
+ \text { regularisation } \widetilde{\Delta \eta}=\Delta \eta(1+i \epsilon)
$$

$$
G\left(a, a_{0} ; \eta\right)=-\frac{i \sqrt{a a_{0}}}{2 \widetilde{\Delta \eta}} \mathrm{e}^{\frac{i}{4}\left(a^{2}+a_{0}^{2}\right) / \widetilde{\Delta \eta}-i \alpha \pi / 2} J_{\nu}\left(\frac{a a_{0}}{2 \widetilde{\Delta \eta}}\right)
$$

dBB trajectory

$\nu=\frac{1}{2}$
(FLRW)

$$
\mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}
$$

$$
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle
$$

Inflationary perturbations: quantum fluctuations / expanding background
Classical temperature fluctuations

$$
\frac{\Delta T}{T} \propto v \sim \Phi \sim \delta g_{00}
$$

Inflationary perturbations: quantum fluctuations / expanding background
Classical temperature fluctuations promoted to quantum operators

$$
\frac{\widehat{\Delta T}}{T} \propto \hat{v} \sim \Phi \sim \delta g_{00}
$$

Inflationary perturbations: quantum fluctuations / expanding background

Classical temperature fluctuations promoted to quantum operators

$$
\frac{\widehat{\Delta T}}{T} \propto \hat{v} \sim \Phi \sim \delta g_{00}
$$

second order perturbed Einstein action $\quad{ }^{(2)} \delta S=\frac{1}{2} \int \mathrm{~d}^{4} x\left[\left(v^{\prime}\right)^{2}-\delta^{i j} \partial_{i} v \partial_{j} v+\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}} v^{2}\right]$

> variable-mass scalar field in Minkowski spacetime

+ Fourier transform $\quad v(\eta, \boldsymbol{x})=\frac{1}{(2 \pi)^{3 / 2}} \int_{\mathbb{R}^{3}} \mathrm{~d}^{3} \boldsymbol{k} v_{\boldsymbol{k}}(\eta) \mathrm{e}^{i \boldsymbol{k} \cdot \boldsymbol{x}}$
slow-roll parameter

$$
{ }^{(2)} \delta S=\int \mathrm{d} \eta \int \mathrm{~d}^{3} \boldsymbol{k}\left\{v_{\boldsymbol{k}}^{\prime} v_{\boldsymbol{k}}^{* \prime}+v_{\boldsymbol{k}} v_{\boldsymbol{k}}^{*}\left[\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}}-k^{2}\right]\right\}
$$

Hamiltonian

$$
H=\int \mathrm{d}^{3} \boldsymbol{k}\left\{p_{\boldsymbol{k}} p_{\boldsymbol{k}}^{*}+v_{\boldsymbol{k}} v_{\boldsymbol{k}}^{*}\left[k^{2}-\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}}\right]\right\}
$$

collection of parametric oscillators with time dependent frequency
factorization of the full wave function real and imaginary parts

$$
\Psi[v(\eta, \boldsymbol{x})]=\prod_{k} \Psi_{k}\left(v_{k}^{\mathrm{R}}, v_{k}^{\mathrm{I}}\right)=\prod_{k} \Psi_{k}^{\mathrm{R}}\left(v_{k}^{\mathrm{R}}\right) \Psi_{k}^{\mathrm{I}}\left(v_{k}^{\mathrm{I}}\right)
$$

$$
\begin{aligned}
i \frac{\Psi_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}}}{\partial \eta} & =\hat{\mathcal{H}}_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}} \Psi_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}} \\
\hat{\mathcal{H}}_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}} & =-\frac{1}{2} \frac{\partial^{2}}{\partial\left(v_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}}\right)^{2}}+\frac{1}{2} \omega^{2}(\eta, \boldsymbol{k})\left(\hat{v}_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}}\right)^{2}
\end{aligned}
$$

Gaussian state solution $\Psi\left(\eta, v_{\boldsymbol{k}}\right)=\left[\frac{2 \Re \mathrm{e} \Omega_{\boldsymbol{k}}(\eta)}{\pi}\right]^{1 / 4} \mathrm{e}^{-\Omega_{\boldsymbol{k}}(\eta) v_{\boldsymbol{k}}^{2}}$

Wigner function $W\left(v_{\boldsymbol{k}}, p_{\boldsymbol{k}}\right)=\int \frac{\mathrm{d} x}{2 \pi^{2}} \Psi^{*}\left(v_{\boldsymbol{k}}-\frac{x}{2}\right) \mathrm{e}^{-i p_{\boldsymbol{k}} x} \Psi\left(v_{\boldsymbol{k}}+\frac{x}{2}\right)$

Gaussian state solution $\Psi\left(\eta, v_{k}\right)=\left[\frac{2 \Re \mathrm{e} \Omega_{k}(\eta)}{\pi}\right]^{1 / 4} \mathrm{e}^{-\Omega_{k}(\eta) v_{k}^{2}}$

$$
\text { Wigner function } W\left(v_{\boldsymbol{k}}, p_{\boldsymbol{k}}\right)=\int \frac{\mathrm{d} x}{2 \pi^{2}} \Psi^{*}\left(v_{\boldsymbol{k}}-\frac{x}{2}\right) \mathrm{e}^{-i p_{k} x} \Psi\left(v_{\boldsymbol{k}}+\frac{x}{2}\right)
$$

$$
W \propto \delta\left(p_{\boldsymbol{k}}+k \tan \phi_{\boldsymbol{k}} v_{\boldsymbol{k}}\right)
$$

Animation provided by V . Vennin

Primordial Power Spectrum

Standard case

Quantization in the
Schrödinger picture
(functional representation)

$$
\Psi_{\boldsymbol{k}}\left(\eta, v_{\boldsymbol{k}}\right)=\left[\frac{2 \Re \mathrm{e} \Omega_{\boldsymbol{k}}(\eta)}{\pi}\right]^{1 / 4} \mathrm{e}^{-\Omega_{\boldsymbol{k}}(\eta) v_{\boldsymbol{k}}^{2}}
$$

$$
i \frac{\mathrm{~d}\left|\Psi_{\boldsymbol{k}}\right\rangle}{\mathrm{d} \eta}=\hat{\mathcal{H}}_{\boldsymbol{k}}\left|\Psi_{\boldsymbol{k}}\right\rangle \quad \text { with } \quad \hat{\mathcal{H}}_{\boldsymbol{k}}=\frac{\hat{p}_{\boldsymbol{k}}^{2}}{2}+\omega^{2}(\boldsymbol{k}, \eta) \hat{v}_{\boldsymbol{k}}^{2}
$$

$$
\Omega_{\boldsymbol{k}}^{\prime}=-2 i \Omega_{\boldsymbol{k}}^{2}+\frac{i}{2} \omega^{2}(\eta, \boldsymbol{k})
$$

$$
\Omega_{k}=-\frac{i}{2} \frac{f_{\boldsymbol{k}}^{\prime}}{f_{k}}
$$

$$
f_{k}^{\prime \prime}+\omega^{2}(\boldsymbol{k}, \eta) f_{k}=0
$$

Harmonic oscillator fundamental state
$\Psi_{k}=\left(\frac{k}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{k}{2} v_{k}^{2}}$

Harmonic oscillator fundamental state
$\Psi_{k}=\left(\frac{k}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{k}{2} v_{k}^{2}}$

Harmonic oscillator fundamental state
$\Psi_{k}=\left(\frac{k}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{k}{2} v_{k}^{2}}$

$$
\log \left(H^{-1}\right), \log \left(\lambda_{k}\right)
$$

Primordial Power Spectrum
 Standard case

Two physical scales Hubble radius $H^{-1}=\frac{a^{2}}{a^{\prime}} \underset{\beta \sim-2}{\simeq} \ell_{0}$
wavelength $\quad \lambda=\frac{a}{k} \underset{\beta \sim-2}{\simeq} \frac{\ell_{0}}{-k \eta}$

sets initial conditions $f_{\boldsymbol{k}}(k \eta \rightarrow-\infty)=\mathrm{e}^{i k \eta} / \sqrt{2 k}$

Planck + ACT + SPT data
Theoretical prediction (quantum vacuum fluctuations)

- Both background and perturbations are quantum

Usual treatment of the perturbations?
Einstein-Hilbert action up to $2^{\text {nd }}$ order

$$
\mathcal{S}_{\mathrm{E}-\mathrm{H}}=\int \mathrm{d}^{4} x\left[R^{(0)}+\delta^{(2)} R\right]
$$

Bardeen (Newton) gravitational potential

$$
\mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}
$$

conformal time

$$
\mathrm{d} \eta=a(t)^{-1} \mathrm{~d} t \quad \Delta \Phi=-\frac{3 \ell_{\mathrm{Pl}}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}
$$

$$
\int \mathrm{d}^{4} x \delta^{(2)} \mathcal{L}=\frac{1}{2} \int \sqrt{\gamma} \mathrm{~d}^{3} \boldsymbol{x} \mathrm{~d} \eta\left[\left(\partial_{\eta} v\right)^{2}-\gamma^{i j} \partial_{i} v \partial_{j} v+\frac{z^{\prime \prime}}{z} v^{2}\right]
$$

Mukhanov-Sasaki variable

Simple scalar field with varying mass in Minkowski space!!!

$$
z=z[a(\eta)]
$$

- Both background and perturbations are quantum

Usual treatment of the perturbations?
Einstein-Hilbert action up to $2^{\text {nd }}$ order

$$
\left.\mathcal{S}_{\mathrm{E}-\mathrm{H}}=\int \mathrm{d}^{4} x\left[R^{(0)}\right\rangle+\delta^{(2)} R\right]
$$

Classical

Bardeen (Newton) gravitational potential

$$
\mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}
$$

conformal time

$$
\mathrm{d} \eta=a(t)^{-1} \mathrm{~d} t \quad \Delta \Phi=-\frac{3 \ell_{\mathrm{Pl}}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}
$$

$$
\int \mathrm{d}^{4} x \delta^{(2)} \mathcal{L}=\frac{1}{2} \int \sqrt{\gamma} \mathrm{~d}^{3} \boldsymbol{x} \mathrm{~d} \eta\left[\left(\partial_{\eta} v\right)^{2}-\gamma^{i j} \partial_{i} v \partial_{j} v+\frac{z^{\prime \prime}}{z} v^{2}\right]
$$

Mukhanov-Sasaki variable

Simple scalar field with varying mass in Minkowski space!!!

$$
z=z[a(\eta)]
$$

- Both background and perturbations are quantum

Usual treatment of the perturbations?
Einstein-Hilbert action up to $2^{\text {nd }}$ order

$$
\left.\mathcal{S}_{\mathrm{E}-\mathrm{H}}=\int \mathrm{d}^{4} x\left[R^{(0)}\right\rangle+\delta^{(2)} R\right]
$$

Classical Quantum

Bardeen (Newton) gravitational potential

$$
\mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}
$$

conformal time

$$
\mathrm{d} \eta=a(t)^{-1} \mathrm{~d} t \quad \Delta \Phi=-\frac{3 \ell_{\mathrm{Pl}}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}
$$

$$
\int \mathrm{d}^{4} x \delta^{(2)} \mathcal{L}=\frac{1}{2} \int \sqrt{\gamma} \mathrm{~d}^{3} \boldsymbol{x} \mathrm{~d} \eta\left[\left(\partial_{\eta} v\right)^{2}-\gamma^{i j} \partial_{i} v \partial_{j} v+\frac{z^{\prime \prime}}{z} v^{2}\right]
$$

Mukhanov-Sasaki variable

Simple scalar field with varying mass in Minkowski space!!!

$$
z=z[a(\eta)]
$$

Self-consistent treatment of the perturbations?
Hamiltonian up to $2^{\text {nd }}$ order $\quad H=H_{(0)}+H_{(2)}+\cdots$

$$
\Delta \Phi=-\frac{3 \ell_{\mathrm{Pl}}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}\left(\frac{v}{a}\right)
$$

factorization of the wave function

$$
\Psi=\Psi_{(0)}(a, T) \Psi_{(2)}[v, T ; a(T)]
$$ comes from $0^{\text {th }}$ order

Self-consistent treatment of the perturbations?
Hamiltonian up to $2^{\text {nd }}$ order $\quad H=H_{(0)}+H_{(2)}+\cdots$

$$
\Delta \Phi=-\frac{3 \ell_{\mathrm{Pl}}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}\left(\frac{v}{a}\right)
$$

factorization of the wave function

$$
\Psi=\Psi_{(0)}(a, T) \Psi_{(2)}[v, T ; a(T)]
$$

Self-consistent treatment of the perturbations?
Hamiltonian up to $2^{\text {nd }}$ order $\quad H=H_{(0)}+H_{(2)}+\cdots$

$$
\Delta \Phi=-\frac{3 \ell_{\mathrm{Pl}}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}\left(\frac{v}{a}\right)
$$

factorization of the wave function

$$
\begin{aligned}
& \Psi=\Psi_{(0)}(a, T) \Psi_{(2)}[v, T ; a(T)] \\
& \text { comes from } 0^{\text {th }} \text { order } \\
& \text { Use dBB... }
\end{aligned}
$$

Question: what if initial perturbation out of quantum equilibrium?

Recall: Hamiltonian

$$
H=\int \mathrm{d}^{3} \boldsymbol{k}\left\{p_{\boldsymbol{k}} p_{\boldsymbol{k}}^{*}+v_{\boldsymbol{k}} v_{\boldsymbol{k}}^{*}\left[k^{2}-\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}}\right]\right\}
$$

collection of parametric oscillators with time dependent frequency

Simpler model: spectator scalar field in an expanding and finite size Universe

$$
\begin{aligned}
& \phi_{\boldsymbol{k}}=\frac{\sqrt{V}}{(2 \pi)^{3 / 2}}\left(q_{\boldsymbol{k} 1}+i q_{\boldsymbol{k} 2}\right) \quad H=\sum_{\boldsymbol{k}, r=1,2} \frac{1}{2 a^{3}} \pi_{\boldsymbol{k} r}^{2}+\frac{1}{2} a k^{2} q_{\boldsymbol{k} r}^{2} \\
& a^{3} \rightarrow m \\
& k / a \rightarrow \omega \\
& i \frac{\partial \psi}{\partial t}=\sum_{r=1}^{2}\left(-\frac{1}{2 m} \frac{\partial^{2}}{\partial q_{r}^{2}}+\frac{1}{2} m \omega^{2} q_{r}^{2}\right) \psi
\end{aligned}
$$

Recall: Hamiltonian

$$
H=\int \mathrm{d}^{3} \boldsymbol{k}\left\{p_{\boldsymbol{k}} p_{\boldsymbol{k}}^{*}+v_{\boldsymbol{k}} v_{\boldsymbol{k}}^{*}\left[k^{2}-\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}}\right]\right\}
$$

collection of parametric oscillators with time dependent frequency

Simpler model: spectator scalar field in an expanding and finite size Universe

$$
\begin{aligned}
& \phi_{\boldsymbol{k}}=\frac{\sqrt{V}}{(2 \pi)^{3 / 2}}\left(q_{\boldsymbol{k} 1}+i q_{\boldsymbol{k} 2}\right) \quad H=\sum_{\boldsymbol{k}, r=1,2} \frac{1}{2 a^{3}} \pi_{\boldsymbol{k} r}^{2}+\frac{1}{2} a k^{2} q_{\boldsymbol{k} r}^{2} \\
& a^{3} \rightarrow m \\
& k / a \rightarrow \omega \\
& i \frac{\partial \psi}{\partial t}=\sum_{r=1}^{2}\left(-\frac{1}{2 m} \frac{\partial^{2}}{\partial q_{r}^{2}}+\frac{1}{2} m \omega^{2} q_{r}^{2}\right) \psi
\end{aligned}
$$

dBB trajectory of the field component $\quad \dot{q}_{r}=m^{-1} \Im m \frac{\partial_{r} \psi}{\psi}$
Statistical distribution $\frac{\partial \rho}{\partial t}+\sum_{r} \partial_{r}\left(\frac{\rho}{m} \Im m \frac{\partial_{r} \psi}{\psi}\right)=0$

$$
i \frac{\partial \psi}{\partial t}=\sum_{r=1}^{2}\left(-\frac{1}{2 m} \frac{\partial^{2}}{\partial q_{r}^{2}}+\frac{1}{2} m \omega^{2} q_{r}^{2}\right) \psi
$$

Relaxation of a 2D harmonic oscillator (time dependent mass \& frequency)

$\tilde{\rho}^{\prime}\left(0.5 t_{\text {cuter }}\right)$

$\tilde{\rho}^{\prime}\left(\right.$ tenter $\left.^{\prime}\right)$

$\tilde{\rho}_{\mathrm{QT}}^{\prime}\left(0.5 t_{\text {cnter }}\right)$

$\tilde{p}_{\text {QT }}^{\prime}\left(t_{\text {onteres }}\right)$

Out-of-equilibrium time evolution

- Usual behaviour = evolves towards equilibrium (Minkowski or slowly expanding Universe)
- expansion: there is a retarded time...

Freezing the pdf out of equilibrium

$\tilde{\rho}^{\prime}\left(0.5 t_{\text {enter }}\right)$

$\tilde{\rho}^{\prime}\left(t_{\text {cnter }}\right)$

$\tilde{\rho}_{\mathrm{QT}}^{\prime}\left(t_{i}\right)$

$\tilde{\rho}_{\text {QT }}^{\prime}\left(0.5 t_{\text {enter }}\right)$

$\tilde{\rho}_{\mathrm{QT}}^{\prime}\left(t_{\text {enter }}\right)$

without expansion

with expansion

S. Colin \& A. Valentini,

Phys. Rev. D88 103515 (2013)

$$
H \equiv \int \mathrm{~d} q \rho \ln \left(\frac{\rho}{|\Psi|^{2}}\right)
$$

measures "out-of-equilibrium-ness"

Initial out-of-equilibrium conditions
S. Colin \& A. Valentini, Int. J. Mod. Phys. D 25, 1650068 (2016)
$\mathcal{P}(k)=\mathcal{P}(k)_{\mathrm{QE}} \xi(k)$
width deficit

Banach center - Warsaw- June 30, 2016

$\log \left(H^{-1}\right), \log \left(\lambda_{k}\right)$

$\log \left(H^{-1}\right), \log \left(\lambda_{k}\right)$

Out-of-Equilibrium
initial density:
less quantum noise

Harmonic oscillator

 fundamental state$\Psi_{k}=\left(\frac{k}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{k}{2} v_{k}^{2}}$ fundamental state
$\Psi_{k}=\left(\frac{k}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{k}{2} v_{k}^{2}}$
$\log \left(H^{-1}\right), \log \left(\lambda_{k}\right)$

Out-of-Equilibrium initial density:
less quantum noise

Banach center - Warsaw- June 30, 2016

Banach center - Warsaw- June 30, 2016

Banach center - Warsaw- June 30, 2016

Better fit???

with only one parameter added, others held fixed:

$$
\xi(k)=\tan ^{-1}\left[c_{1}\left(\frac{k}{k_{\star}}\right)+c_{2}\right]+c_{3}-\frac{\pi}{2}
$$

Results...
work in progress!

Usual Planck best-fit

The GRW dynamical collapse model
Ghirardi - Rimini - Weber
Modified Schrödinger equation with collapse towards \hat{C} eigenstates

Hamiltonian

$$
\langle\hat{C}\rangle \equiv\langle\Psi| \hat{C}|\Psi\rangle \quad \begin{gathered}
\text { non linear stochastic } \\
\mathbb{E}\left(\mathrm{d} W_{t}\right)=0
\end{gathered} \text { random outcomes }
$$

break superposition principle

$$
\mathbb{E}\left(\mathrm{d} W_{t} \mathrm{~d} W_{t^{\prime}}\right)=\mathrm{d} t \mathrm{~d} t^{\prime} \delta\left(t-t^{\prime}\right)
$$

Born rule
Wiener process

BONUS: Amplification mechanism

Conclusions

(1) $\mathrm{dBB}=$ testable formulation of QM
(2) quantum non-equilibrium may produce new effects
(3) most systems did reach equilibrium
(4) primordial perturbations maybe not...
(5) specific shape for the primordial spectrum
(6) comparable with data!
(7) not incompatible with Planck... for the time being!
more work still needs be done (other modifications of QM can be tested...)

Conclusions

(1) $\mathrm{dBB}=$ testable formulation of QM
(2) quantum non-equilibrium may produce new effects
(3) most systems did reach equilibrium
(4) primordial perturbations maybe not...
(5) specific shape for the primordial spectrum

Dziękuję!

(6) comparable with data!
(7) not incompatible with Planck... for the time being!
more work still needs be done (other modifications of QM can be tested...)

