

Patrick Peter (w/S. Vitenti & A. Valentini) Institut d'Astrophysique de Paris





Bouncing quantum cosmological solutions in the dBB approach

Singularities of general relativity and their quantum fate



Instytut Matematyczny

Polskiej Akademii Nauk

### Ontological interpretation (dBB)



Louis de Broglie



David Bohm

1927 Solvay meeting and von Neuman mistake ... 'In 1952, I saw the impossible done' (J. Bell)

### Ontological interpretation (dBB)



Louis de Broglie (Prince, duke ...)



David Bohm

1927 Solvay meeting and von Neuman mistake ... 'In 1952, I saw the impossible done' (J. Bell)

### Ontological interpretation (dBB)



Louis de Broglie (Prince, duke ...)



David Bohm (Communist)

1927 Solvay meeting and von Neuman mistake ... 'In 1952, I saw the impossible done' (J. Bell)

### Ontological formulation (dBB)



Louis de Broglie (Prince, duke ...)



David Bohm (Communist)

1927 Solvay meeting and von Neuman mistake ... 'In 1952, I saw the impossible done' (J. Bell)

 $\Psi = A(\mathbf{r}, t) e^{iS(\mathbf{r}, t)}$ 

Trajectories satisfy (de Broglie) 
$$m \frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} t} = \Im m \, \frac{\Psi^* \nabla \Psi}{|\Psi(\boldsymbol{x},t)|^2} = \nabla S$$

 $\exists \, \boldsymbol{x}(t)$ 

 $\Psi = A(\mathbf{r}, t) e^{iS(\mathbf{r}, t)}$ 

Trajectories satisfy (Bohm)

$$m \frac{\mathrm{d}^2 \boldsymbol{x}}{\mathrm{d}t^2} = -\boldsymbol{\nabla}(V+Q)$$
  $Q \equiv -\frac{1}{2m} \frac{\boldsymbol{\nabla}^2 |\Psi|}{|\Psi|}$ 

 $\exists \, \boldsymbol{x}(t)$ 

$$Q \equiv -\frac{1}{2m} \frac{\nabla^2 |\Psi|}{|\Psi|}$$

 $\Psi = A(\mathbf{r}, t) e^{iS(\mathbf{r}, t)}$ 

Trajectories satisfy (de Broglie) 
$$m \frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} t} = \Im m \, \frac{\Psi^* \nabla \Psi}{|\Psi(\boldsymbol{x},t)|^2} = \nabla S$$

 $\exists \, \boldsymbol{x}(t)$ 

$$\Psi = A(\mathbf{r}, t) e^{iS(\mathbf{r}, t)}$$

Trajectories satisfy (de Broglie) 
$$m \frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} t} = \Im m \, \frac{\Psi^* \nabla \Psi}{|\Psi(\boldsymbol{x},t)|^2} = \nabla S$$

 $\exists \, \boldsymbol{x}(t)$ 

# strictly equivalent to Copenhagen QM

probability distribution (attractor)

$$\exists t_0; \rho\left(\boldsymbol{x}, t_0\right) = \left|\Psi\left(\boldsymbol{x}, t_0\right)\right|^2$$

$$Q \equiv -\frac{1}{2m} \frac{\nabla^2 |\Psi|}{|\Psi|}$$

# Properties:

- classical limit well defined  $Q \longrightarrow 0$
- state dependent
- intrinsic reality
  - non local ...
- no need for external classical domain/observer!

### The two-slit experiment:



Surrealistic trajectories?

Non straight in vacuum...

$$m\frac{\mathrm{d}^2x(t)}{\mathrm{d}t^2} = -\nabla\left(V + Q\right)$$

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.

### The two-slit experiment:



Surrealistic trajectories?

Non straight in vacuum...

$$m\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} = -\nabla (X + Q)$$

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.

### The two-slit experiment:



Surrealistic trajectories?

Non straight in vacuum...

$$m\frac{\mathrm{d}^2x(t)}{\mathrm{d}t^2} = -\nabla (X + Q)$$

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.











# 2nd order: is unstable...

S. Colin & A. Valentini, Proc. R. Soc. A 470, 20140288 (2014)

# 1st order: can be tested?

# 2nd order: is unstable...

S. Colin & A. Valentini, Proc. R. Soc. A 470, 20140288 (2014)

# 1st order: can be tested?

How????

# 2nd order: is unstable...

S. Colin & A. Valentini, Proc. R. Soc. A 470, 20140288 (2014)

# 1st order: can be tested?

# 2nd order: is unstable...

S. Colin & A. Valentini, Proc. R. Soc. A 470, 20140288 (2014)



### Quantum equilibrium

(Valentini & Westman, 2005)

$$i\frac{\mathrm{d}}{\mathrm{d}t}|\Psi\rangle = \hat{H}|\Psi\rangle$$

Particle in a box - 2D

$$i\frac{\partial\psi}{\partial t} = -\frac{1}{2}\frac{\partial^2\psi}{\partial x^2} - \frac{1}{2}\frac{\partial^2\psi}{\partial y^2} + V\psi$$

infinite square well - size  $\pi$ 

Density of actual configurations

$$\rho(x,y,t) \implies \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho \dot{x}) + \frac{\partial}{\partial y}(\rho \dot{y}) = 0$$
 continuity equation

Energy eigenfunctions 
$$\phi_{mn}(x,y) = \frac{2}{\pi}\sin(mx)\sin(ny)$$
  
Energy levels  $E_{mn} = \frac{1}{2}(m^2 + n^2)$ 

## Initial configuration

$$\rho(x, y, 0) = |\phi_{11}(x, y)|^2$$



$$\psi(x, y, 0) = \sum_{m,n=1}^{4} \frac{1}{4} \phi_{mn}(x, y) \exp(i\theta_{mn})$$

$$\psi(x, y, t) = \sum_{m,n=1}^{4} \frac{1}{4} \phi_{mn}(x, y) \exp i(\theta_{mn} - E_{mn}t)$$





Banach center - Warsaw- June 30, 2016



Banach center - Warsaw- June 30, 2016



chaotic mixing...

Banach center - Warsaw- June 30, 2016





just like ordinary thermal equilibrium



chaotic mixing...

relaxation towards

equilibrium

just like ordinary thermal equilibrium

### Quantum cosmology

Hamiltonian GR



Action: 
$$S = \frac{1}{16\pi G_{\rm N}} \left[ \int_{\mathcal{M}} \mathrm{d}^4 x \sqrt{-g} \left( {}^4R - 2\Lambda \right) + 2 \int_{\partial \mathcal{M}} \mathrm{d}^3 x \sqrt{h} K^i_{\ i} \right] + S_{\rm matter}$$

• Superspace & canonical quantisation

$$\mathrm{Riem}(\Sigma) \equiv \left\{ h_{ij} \left( x^{\mu} \right), \Phi \left( x^{\mu} \right) \mid x \in \Sigma \right\}$$
 parameters

$$GR \Longrightarrow invariance / diffeomorphisms \Longrightarrow Conf = \frac{Riem(\Sigma)}{Diff_0(\Sigma)}$$
 superspace

Wave functional  $\Psi[h_{ij}(x), \Phi(x)]$ 

Dirac canonical quantisation

$$\pi^{ij} \to -i\frac{\delta}{\delta h_{ij}}$$
  $\pi_{\Phi} \to -i\frac{\delta}{\delta \Phi}$ 

$$\pi_{\Phi} \to -i \frac{\delta}{\delta \Phi}$$

$$\pi^0 \to -i \frac{\delta}{\delta \mathcal{N}}$$
  $\pi^i \to -i \frac{\delta}{\delta \mathcal{N}_i}$ 

$$-i \frac{\delta}{\delta \mathcal{N}_i}$$

#### Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space = mini-superspace

$$h_{ij} dx^i dx^j = a^2(t) \left[ \frac{dr^2}{1 - kr^2} + r^2 \left( d\theta^2 + \sin^2 \theta d\varphi^2 \right) \right] \qquad \Phi(x) = \phi(t)$$

WDW equation becomes Schrödinger-like for  $\Psi[a(t), \phi(t)]$ 

Conceptual and technical problems:

Infinite number of dof → a few: mathematical consistency? Freeze momenta? Heisenberg uncertainties? QM = minisuperspace of QFT

#### Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space = mini-superspace

$$h_{ij} dx^i dx^j = a^2(t) \left[ \frac{dr^2}{1 - kr^2} + r^2 \left( d\theta^2 + \sin^2 \theta d\varphi^2 \right) \right] \qquad \Phi(x) = \phi(t)$$

WDW equation becomes Schrödinger-like for  $\Psi[a(t), \phi(t)]$ 

However, one can actually make calculations!

## Exemple: Quantum cosmology of a perfect fluid

$$ds^{2} = N^{2}(\tau)d\tau - a^{2}(\tau)\gamma_{ij}dx^{i}dx^{j}$$

Perfect fluid: Schutz formalism ('70)

$$p = p_0 \left[ \frac{\dot{\varphi} + \theta \dot{s}}{N(1+\omega)} \right]^{\frac{1+\omega}{\omega}}$$

 $(\varphi, \theta, s)$  = Velocity potentials

canonical transformation:  $T = -p_s e^{-s/s_0} p_{\varphi}^{-(1+\omega)} s_0 \rho_0^{-\omega}$  ...

+ rescaling (volume...) + units...: simple Hamiltonian:

$$H = \left(-\frac{p_a^2}{4a} - \mathcal{K}a + \frac{p_T}{a^{3\omega}}\right) N$$

Wheeler-De Witt 
$$H\Psi=0$$

$$H\Psi = 0$$

$$\mathcal{K} = 0 \Longrightarrow \chi \equiv \frac{2a^{3(1-\omega)/2}}{3(1-\omega)} \Longrightarrow i\frac{\partial\Psi}{\partial T} = \frac{1}{4}\frac{\partial^2\Psi}{\partial\chi^2}$$

$$\bar{\Psi} \frac{\partial \Psi}{\partial \chi} = \Psi \frac{\partial \bar{\Psi}}{\partial \chi}$$

#### Gaussian wave packet

$$\Psi = \left[ \frac{8T_0}{\pi \left( T_0^2 + T^2 \right)^2} \right]^{\frac{1}{4}} \exp\left( -\frac{T_0 \chi^2}{T_0^2 + T^2} \right) e^{-iS(\chi, T)}$$

$$\text{phase} \quad S = \frac{T\chi^2}{T_0^2 + T^2} + \frac{1}{2} \arctan \frac{T_0}{T} - \frac{\pi}{4}$$

# What do we do with the wave function of the Universe???

Gaussian wave packet

$$\Psi = \left[ \frac{8T_0}{\pi \left( T_0^2 + T^2 \right)^2} \right]^{\frac{1}{4}} \exp\left( -\frac{T_0 \chi^2}{T_0^2 + T^2} \right) e^{-iS(\chi, T)}$$

$$\text{phase} \quad S = \frac{T\chi^2}{T_0^2 + T^2} + \frac{1}{2} \arctan \frac{T_0}{T} - \frac{\pi}{4}$$

# What do we do with the wave function of the Universe???

Gaussian wave packet

$$\Psi = \left[ \frac{8T_0}{\pi (T_0^2 + T^2)^2} \right]^{\frac{1}{4}} \exp\left(-\frac{T_0 \chi^2}{T_0^2 + T^2}\right) e^{-iS(\chi, T)}$$

phase 
$$S = \frac{T\chi^2}{T_0^2 + T^2} + \frac{1}{2}\arctan\frac{T_0}{T} - \frac{\pi}{4}$$

dB trajectory

$$a = a_0 \left[ 1 + \left( \frac{T}{T_0} \right)^2 \right]^{\frac{1}{3(1-\omega)}}$$



J. Acacio de Barros, N. Pinto-Neto & M. A. Sagorio-Leal, Phys. Lett. A241, 229 (1998)



A simple Bianchi I model

$$ds^{2} = -N^{2}(t)dt^{2} + \sum_{i=1}^{3} a_{i}^{2}(t) (dx^{i})^{2}$$

+ (radiation) fluid / constant equation of state

$$w \equiv p/\rho = \frac{1}{3}$$

conformal time choice  $N \to a$ 

$$t \rightarrow \eta$$

$$H = \frac{\Pi_a^2}{24} - \frac{p_-^2 + p_+^2}{24a^2}$$

$$a \equiv (a_1 a_2 a_3)^{\frac{1}{3}}$$

$$\beta_{-} \equiv \frac{1}{2\sqrt{3}} \ln \left( a_1/a_2 \right)$$

$$\beta_{+} \equiv \frac{1}{6} \ln \left( a_1 a_2 / a_3^2 \right)$$

$$[\hat{a}, \hat{\Pi}_a] = [\hat{\beta}_{\pm}, \hat{p}_{\pm}] = i$$

## Rescaling:

$$\hat{H} = \hat{\Pi}_a^2 - (\hat{p}_-^2 + \hat{p}_+^2) \,\hat{a}^{-2}$$

mixed representation for the wave function

$$\hat{a}\Psi = a\Psi$$

$$\hat{p}_{\pm}\Psi = p_{\pm}\Psi$$

$$\hat{\Pi}_{a} = -i\partial/\partial a$$

$$\hat{\beta}_{\pm} = i\partial/\partial p_{\pm}$$

Hilbert space H

$$\mathbb{H} \subset \left\{ f(a, p_{+}, p_{-}) \in \mathbb{C} \mid \int_{0}^{\infty} da \int_{-\infty}^{\infty} dp_{+} \int_{-\infty}^{\infty} dp_{-} |f(a, p_{+}, p_{-})|^{2} < \infty \right\}$$

eigenvalue equation 
$$\hat{H}\Psi = \ell^2\Psi$$
 
$$-\frac{\partial^2 \mathcal{U}_{\ell}^{(k)}}{\partial a^2} - \frac{k^2}{4a^2}\mathcal{U}_{\ell}^{(k)} = \ell^2 \mathcal{U}_{\ell}^{(k)}$$

mixed representation for the wave function

$$\hat{a}\Psi = a\Psi$$

$$\hat{p}_{\pm}\Psi = p_{\pm}\Psi$$

$$\hat{\Pi}_a = -i\partial/\partial a$$

$$\hat{\beta}_{\pm} = i\partial/\partial p_{\pm}$$

 $k^2 \equiv 4(p_\perp^2 + p^2)$ 

Hilbert space H

$$\mathbb{H} \subset \left\{ f(a, p_{+}, p_{-}) \in \mathbb{C} \middle| \int_{0}^{\infty} da \int_{-\infty}^{\infty} dp_{+} \int_{-\infty}^{\infty} dp_{-} |f(a, p_{+}, p_{-})|^{2} < \infty \right\}$$

eigenvalue equation 
$$\hat{H}\Psi = \ell^2\Psi$$

$$-\frac{\partial^2 \mathcal{U}_{\ell}^{(\kappa)}}{\partial a^2} - \frac{k^2}{4a^2} \mathcal{U}_{\ell}^{(k)} = \ell^2 \mathcal{U}_{\ell}^{(k)}$$

mixed representation for the wave function

$$\hat{a}\Psi = a\Psi$$

$$\hat{p}_{\pm}\Psi = p_{\pm}\Psi$$

$$\hat{\Pi}_{a} = -i\partial/\partial a$$

$$\hat{\beta}_{\pm} = i\partial/\partial p_{\pm}$$

 $k^2 \equiv 4(p_{\perp}^2 + p_{\parallel}^2)$ 

Hilbert space H

$$\mathbb{H} \subset \left\{ f(a, p_{+}, p_{-}) \in \mathbb{C} \middle| \int_{0}^{\infty} da \int_{-\infty}^{\infty} dp_{+} \int_{-\infty}^{\infty} dp_{-} |f(a, p_{+}, p_{-})|^{2} < \infty \right\}$$

eigenvalue equation 
$$\hat{H}\Psi=\ell^2\Psi$$
 
$$-\frac{\partial^2\mathcal{U}_\ell^{(k)}}{\partial a^2} -\frac{k^2}{4a^2}\mathcal{U}_\ell^{(k)}=\ell^2\mathcal{U}_\ell^{(k)}$$

$$\Psi(a, p_{\pm}) = \int_{0}^{\infty} d\ell \int_{-\infty}^{\infty} d\beta_{+} \int_{-\infty}^{\infty} d\beta_{-} \tilde{\Psi}(\ell, \beta_{\pm}) e^{i[\beta_{+}p_{+} + \beta_{-}p_{-}]} \mathcal{U}_{\ell}^{(k)}(a)$$

Self-adjoint Hamiltonian

$$\int da d^2p (H\Psi)^* \Psi = \int da d^2p \Psi^* (H\Psi)$$

automatically satisfied if

$$\int_0^\infty da \, \mathcal{U}_{\ell}^{(k)*}(a) \mathcal{U}_{\ell'}^{(k)}(a) = \delta(\ell - \ell')$$

$$\int_{0}^{\infty} d\ell \int_{-\infty}^{\infty} d\beta_{+} \int_{-\infty}^{\infty} d\beta_{-} |\tilde{\Psi}(\ell, \beta_{\pm})|^{2} \ell^{2} < \infty$$

$$\nu = \frac{1}{2}\sqrt{1-k^2}$$
 general solution for the energy eigenmodes

general solution for the energy eigenmodes 
$$\mathcal{U}_{\ell}^{(k)}(a) = c_{+}\sqrt{a\ell}J_{\nu}(a\ell) + c_{-}\sqrt{a\ell}J_{-\nu}(a\ell)$$
 
$$c_{+} = 1 \text{ and } c_{-} = 0$$
 
$$c_{+} = 0 \text{ and } c_{-} = 1$$

$$c_{+} = 1 \text{ and } c_{-} = 0$$

#### Linear fluid momentum

$$\hat{P}_{\text{fluid}} = -i\partial_{\eta}$$

Schödinger — Evolution operator

$$i\frac{\partial U}{\partial \eta} = \hat{H}U$$

Initial gaussian wave function

$$\Psi_0(a) = \langle a, p_{\pm} | \Psi_0 \rangle = \frac{2^{(1-2\alpha)/4} a^{\alpha}}{\sigma^{\alpha+1/2} \sqrt{\Gamma\left(\alpha + \frac{1}{2}\right)}} \exp\left[-\frac{1}{2}a^2 \left(\frac{1}{2\sigma^2} - i\mathcal{H}_{\text{ini}}\right)\right]$$

Propagator 
$$G(a, p_{\pm}, a_0, p_{\pm}^0) \equiv \langle a, p_{\pm} | U | a_0, p_{\pm}^0 \rangle$$
  
=  $\delta^{(2)}(p_{\pm} - p_{\pm}') \int_0^{\infty} d\ell \, e^{-i\ell^2 \Delta \eta} \mathcal{U}_{\ell}^{(k)}(a) \mathcal{U}_{\ell}^{(k)*}(a')$ 

+ regularisation  $\widetilde{\Delta \eta} = \Delta \eta (1 + i\epsilon)$ 

$$G(a, a_0; \eta) = -\frac{i\sqrt{aa_0}}{2\widetilde{\Delta\eta}} e^{\frac{i}{4}(a^2 + a_0^2)/\widetilde{\Delta\eta} - i\alpha\pi/2} J_{\nu} \left(\frac{aa_0}{2\widetilde{\Delta\eta}}\right)$$

dBB trajectory 
$$\frac{\mathrm{d}a}{\mathrm{d}\eta} = \frac{\partial S}{\partial a} = \frac{i}{2|\Psi|^2} \left( \Psi \frac{\partial \Psi^*}{\partial a} - \frac{\partial \Psi}{\partial a} \Psi^* \right)$$





Banach center - Warsaw- June 30, 2016

$$ds^{2} = a^{2}(\eta) \left\{ (1 + 2\Phi) d\eta^{2} - \left[ (1 - 2\Phi) \gamma_{ij} + h_{ij} \right] dx^{i} dx^{j} \right\}$$

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$



Inflationary perturbations: quantum fluctuations / expanding background

Classical temperature fluctuations

$$\frac{\Delta T}{T} \propto v \sim \Phi \sim \delta g_{00}$$

Inflationary perturbations: quantum fluctuations / expanding background

Classical temperature fluctuations promoted to quantum operators

$$\frac{\widehat{\Delta T}}{T} \propto \hat{v} \sim \Phi \sim \delta g_{00}$$

## Inflationary perturbations: quantum fluctuations / expanding background

Classical temperature fluctuations promoted to quantum operators

$$\frac{\widehat{\Delta T}}{T} \propto \widehat{v} \sim \Phi \sim \delta g_{00}$$

second order perturbed Einstein action  $^{(2)}\delta S = \frac{1}{2} \int d^4x \left| (v')^2 - \delta^{ij}\partial_i v \partial_j v + \frac{(a\sqrt{\epsilon_1})''}{a\sqrt{\epsilon_1}} v^2 \right|$ 

variable-mass scalar field in Minkowski spacetime

+ Fourier transform 
$$v(\eta, \mathbf{x}) = \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} d^3 \mathbf{k} \, v_{\mathbf{k}} (\eta) e^{i\mathbf{k} \cdot \mathbf{x}}$$



$$(2)\delta S = \int d\eta \int d^3 \mathbf{k} \left\{ v_{\mathbf{k}}' v_{\mathbf{k}}^{*\prime} + v_{\mathbf{k}} v_{\mathbf{k}}^* \left[ \frac{(a\sqrt{\epsilon_1})''}{a\sqrt{\epsilon_1}} - k^2 \right] \right\}$$

Lagrangian formulation...

### Hamiltonian

$$H = \int d^3 \mathbf{k} \left\{ p_{\mathbf{k}} p_{\mathbf{k}}^* + v_{\mathbf{k}} v_{\mathbf{k}}^* \left[ k^2 - \frac{(a\sqrt{\epsilon_1})''}{a\sqrt{\epsilon_1}} \right] \right\}$$

collection of parametric oscillators with time dependent frequency

factorization of the full wave function

 $\omega^2\left(\eta, oldsymbol{k}
ight)$ 

$$\Psi \left[ v(\eta, \boldsymbol{x}) \right] = \prod_{\boldsymbol{k}} \Psi_{\boldsymbol{k}} \left( v_{\boldsymbol{k}}^{\mathrm{R}}, v_{\boldsymbol{k}}^{\mathrm{I}} \right) = \prod_{\boldsymbol{k}} \Psi_{\boldsymbol{k}}^{\mathrm{R}} \left( v_{\boldsymbol{k}}^{\mathrm{R}} \right) \Psi_{\boldsymbol{k}}^{\mathrm{I}} \left( v_{\boldsymbol{k}}^{\mathrm{I}} \right)$$

$$i\frac{\Psi_{\mathbf{k}}^{\mathrm{R,I}}}{\partial \eta} = \hat{\mathcal{H}}_{\mathbf{k}}^{\mathrm{R,I}} \Psi_{\mathbf{k}}^{\mathrm{R,I}}$$

$$\hat{\mathcal{H}}_{\boldsymbol{k}}^{\mathrm{R,I}} = -\frac{1}{2} \frac{\partial^{2}}{\partial \left(v_{\boldsymbol{k}}^{\mathrm{R,I}}\right)^{2}} + \frac{1}{2} \omega^{2}(\eta, \boldsymbol{k}) \left(\hat{v}_{\boldsymbol{k}}^{\mathrm{R,I}}\right)^{2}$$

Gaussian state solution 
$$\Psi(\eta, v_{\mathbf{k}}) = \left[\frac{2\Re e \Omega_{\mathbf{k}}(\eta)}{\pi}\right]^{1/4} e^{-\Omega_{\mathbf{k}}(\eta)v_{\mathbf{k}}^2}$$

Wigner function 
$$W(v_{\mathbf{k}}, p_{\mathbf{k}}) = \int \frac{\mathrm{d}x}{2\pi^2} \Psi^* \left( v_{\mathbf{k}} - \frac{x}{2} \right) e^{-ip_{\mathbf{k}}x} \Psi \left( v_{\mathbf{k}} + \frac{x}{2} \right)$$



large squeezing limit 
$$W \propto \delta (p_{\mathbf{k}} + k \tan \phi_{\mathbf{k}} v_{\mathbf{k}})$$



Stochastic distribution of classical processes

realization spatial direction  $\left\langle \frac{\Delta T(\xi, \boldsymbol{e})}{T} \right\rangle_{\boldsymbol{\xi}} \simeq \left\langle \frac{\Delta T(\xi, \boldsymbol{e})}{T} \right\rangle_{\boldsymbol{e}}$ 

Gaussian state solution 
$$\Psi(\eta, v_{\mathbf{k}}) = \left[\frac{2\Re e \Omega_{\mathbf{k}}(\eta)}{\pi}\right]^{1/4} e^{-\Omega_{\mathbf{k}}(\eta)v_{\mathbf{k}}^2}$$

Wigner function 
$$W(v_{\mathbf{k}}, p_{\mathbf{k}}) = \int \frac{\mathrm{d}x}{2\pi^2} \Psi^* \left( v_{\mathbf{k}} - \frac{x}{2} \right) e^{-ip_{\mathbf{k}}x} \Psi \left( v_{\mathbf{k}} + \frac{x}{2} \right)$$



large squeezing limit 
$$W \propto \delta (p_{\mathbf{k}} + k \tan \phi_{\mathbf{k}} v_{\mathbf{k}})$$



Stochastic distribution of classical processes

realization spatial direction  $\left\langle \frac{\Delta T(\xi,e)}{T} \right\rangle_{\xi} \simeq \left\langle \frac{\Delta T(\xi,e)}{T} \right\rangle_{z}$  Ergodicity

Animation provided by V. Vennin

# Primordial Power Spectrum

Standard case

Quantization in the Schrödinger picture (functional representation)

$$\Psi_{\mathbf{k}}(\eta, v_{\mathbf{k}}) = \left[\frac{2 \Re e \Omega_{\mathbf{k}}(\eta)}{\pi}\right]^{1/4} e^{-\Omega_{\mathbf{k}}(\eta) v_{\mathbf{k}}^{2}}$$

$$irac{\mathrm{d}|\Psi_{m{k}}\rangle}{\mathrm{d}\eta}=\hat{\mathcal{H}}_{m{k}}\left|\Psi_{m{k}}
ight
angle \qquad \mathrm{with}$$

$$\hat{\mathcal{H}}_{\boldsymbol{k}} = \frac{\hat{p}_{\boldsymbol{k}}^2}{2} + \omega^2(\boldsymbol{k}, \eta)\hat{v}_{\boldsymbol{k}}^2$$

$$\Omega_{\boldsymbol{k}}' = -2i\Omega_{\boldsymbol{k}}^2 + \frac{i}{2}\omega^2(\eta, \boldsymbol{k})$$

$$\Omega_{m{k}} = -rac{i}{2} rac{f_{m{k}}'}{f_{m{k}}}$$

$$f_{\mathbf{k}}^{\prime\prime\prime} + \omega^2(\mathbf{k}, \eta) f_{\mathbf{k}} = 0$$



Banach center - Warsaw- June 30, 2016



Harmonic oscillator fundamental state

$$\Psi_{\mathbf{k}} = \left(\frac{k}{\pi}\right)^{\frac{1}{4}} e^{-\frac{k}{2}v_{\mathbf{k}}^2}$$

Banach center - Warsaw- June 30, 2016



Banach center - Warsaw- June 30, 2016



Banach center - Warsaw- June 30, 2016

## Primordial Power Spectrum

Standard case

Two physical scales

Hubble radius 
$$H^{-1}=rac{a^2}{a'}\underset{eta\sim-2}{\simeq}\ell_0$$

wavelength 
$$\lambda = \frac{a}{k} \underset{\beta \sim -2}{\simeq} \frac{\ell_0}{-k\eta}$$



Banach center - Warsaw- June 30, 2016



Theoretical prediction (quantum vacuum fluctuations)



• Both background and perturbations are quantum Usual treatment of the perturbations?

Einstein-Hilbert action up to 2<sup>nd</sup> order

$$S_{E-H} = \int d^4x \left[ R^{(0)} + \delta^{(2)} R \right]$$

Bardeen (Newton) gravitational potential

$$ds^{2} = a^{2}(\eta) \left\{ (1 + 2\Phi) d\eta^{2} - \left[ (1 - 2\Phi) \gamma_{ij} + h_{ij} \right] dx^{i} dx^{j} \right\}$$

$$d\eta = a(t)^{-1}dt$$

$$\Delta \Phi = -\frac{3\ell_{\rm Pl}^2}{2} \sqrt{\frac{\rho + p}{\omega}} a \frac{\mathrm{d}}{\mathrm{d}\eta} \left( \frac{v}{a} \right)$$

$$\int d^4x \, \delta^{(2)} \mathcal{L} = \frac{1}{2} \int \sqrt{\gamma} d^3 \boldsymbol{x} \, d\eta \, \left[ (\partial_{\eta} v)^2 - \gamma^{ij} \partial_i v \partial_j v + \frac{z''}{z} v^2 \right]$$

Mukhanov-Sasaki variable

V. F. Mukhanov, H. A. Feldman & R. H. Brandenberger, *Phys. Rep.* **215**, 203 (1992)

Simple scalar field with varying mass in Minkowski space!!!

$$z = z[a(\eta)]$$

• Both background and perturbations are quantum Usual treatment of the perturbations?

Einstein-Hilbert action up to 2<sup>nd</sup> order

$$\mathcal{S}_{\mathrm{E-H}} = \int \mathrm{d}^4 x \, \left[ R^{(0)} + \delta^{(2)} R \right]$$
Classical

Bardeen (Newton) gravitational potential

$$ds^{2} = a^{2}(\eta) \left\{ (1 + 2\Phi) d\eta^{2} - \left[ (1 - 2\Phi) \gamma_{ij} + h_{ij} \right] dx^{i} dx^{j} \right\}$$

conformal time

$$d\eta = a(t)^{-1}dt$$

$$\Delta \Phi = -\frac{3\ell_{\rm Pl}^2}{2} \sqrt{\frac{\rho + p}{\omega}} a \frac{\mathrm{d}}{\mathrm{d}\eta} \left( \frac{v}{a} \right)$$

$$\int d^4x \, \delta^{(2)} \mathcal{L} = \frac{1}{2} \int \sqrt{\gamma} d^3 \boldsymbol{x} \, d\eta \, \left[ (\partial_{\eta} v)^2 - \gamma^{ij} \partial_i v \partial_j v + \frac{z''}{z} v^2 \right]$$

Mukhanov-Sasaki variable

V. F. Mukhanov, H. A. Feldman & R. H. Brandenberger, *Phys. Rep.* **215**, 203 (1992)

Simple scalar field with varying mass in Minkowski space!!!

$$z = z[a(\eta)]$$

• Both background and perturbations are quantum Usual treatment of the perturbations?

Einstein-Hilbert action up to 2<sup>nd</sup> order

$$\mathcal{S}_{\mathrm{E-H}} = \int \mathrm{d}^4 x \, \left[ R^{(0)} + \delta^{(2)} R \right]$$
Classical Quantum

Bardeen (Newton) gravitational potential

$$ds^{2} = a^{2}(\eta) \left\{ (1 + 2\Phi) d\eta^{2} - \left[ (1 - 2\Phi) \gamma_{ij} + h_{ij} \right] dx^{i} dx^{j} \right\}$$

conformal time 
$$d\eta$$

$$d\eta = a(t)^{-1}dt$$

$$\Delta \Phi = -\frac{3\ell_{\rm Pl}^2}{2} \sqrt{\frac{\rho + p}{\omega}} a \frac{\mathrm{d}}{\mathrm{d}\eta} \left( \frac{v}{a} \right)$$

$$\int d^4x \, \delta^{(2)} \mathcal{L} = \frac{1}{2} \int \sqrt{\gamma} d^3 \boldsymbol{x} \, d\eta \, \left[ (\partial_{\eta} v)^2 - \gamma^{ij} \partial_i v \partial_j v + \frac{z''}{z} v^2 \right]$$

Mukhanov-Sasaki variable

V. F. Mukhanov, H. A. Feldman & R. H. Brandenberger, *Phys. Rep.* **215**, 203 (1992)

Simple scalar field with varying mass in Minkowski space!!!

$$z = z[a(\eta)]$$

Self-consistent treatment of the perturbations?

Hamiltonian up to 2<sup>nd</sup> order  $H = H_{(0)} + H_{(2)} + \cdots$ 

$$\Delta \Phi = -\frac{3\ell_{\rm Pl}^2}{2} \sqrt{\frac{\rho + p}{\omega}} a \frac{\mathrm{d}}{\mathrm{d}\eta} \left(\frac{v}{a}\right)$$

factorization of the wave function

$$\Psi = \Psi_{(0)}(a,T) \Psi_{(2)}[v,T;a(T)]$$

$$\text{comes from 0}^{\text{th}} \text{ order}$$

Self-consistent treatment of the perturbations?

Hamiltonian up to 2<sup>nd</sup> order  $H = H_{(0)} + H_{(2)} + \cdots$ 

$$\Delta \Phi = -\frac{3\ell_{\rm Pl}^2}{2} \sqrt{\frac{\rho + p}{\omega}} a \frac{\mathrm{d}}{\mathrm{d}\eta} \left(\frac{v}{a}\right)$$

factorization of the wave function

$$\Psi = \Psi_{(0)}(a, T) \Psi_{(2)}[v, T; a(T)]$$

comes from 0th order

Use dBB...

Self-consistent treatment of the perturbations?

Hamiltonian up to 2<sup>nd</sup> order  $H = H_{(0)} + H_{(2)} + \cdots$ 

$$\Delta \Phi = -\frac{3\ell_{\rm Pl}^2}{2} \sqrt{\frac{\rho + p}{\omega}} a \frac{\mathrm{d}}{\mathrm{d}\eta} \left(\frac{v}{a}\right)$$

factorization of the wave function

$$\Psi = \Psi_{(0)}(a, T) \Psi_{(2)}[v, T; a(T)]$$

comes from 0th order

Use dBB...

Question: what if initial perturbation out of quantum equilibrium?

### Recall: Hamiltonian

$$H = \int d^3 \mathbf{k} \left\{ p_{\mathbf{k}} p_{\mathbf{k}}^* + v_{\mathbf{k}} v_{\mathbf{k}}^* \left[ k^2 - \frac{(a\sqrt{\epsilon_1})''}{a\sqrt{\epsilon_1}} \right] \right\}$$

collection of parametric oscillators with time dependent frequency

Simpler model: spectator scalar field in an expanding and finite size Universe

$$\phi_{\mathbf{k}} = \frac{\sqrt{V}}{(2\pi)^{3/2}} \left( q_{\mathbf{k}1} + iq_{\mathbf{k}2} \right) \qquad H = \sum_{\mathbf{k}, r=1,2} \frac{1}{2a^3} \pi_{\mathbf{k}r}^2 + \frac{1}{2} a k^2 q_{\mathbf{k}r}^2$$

$$a^{3} \to m$$

$$k/a \to \omega$$

$$i\frac{\partial \psi}{\partial t} = \sum_{r=1}^{2} \left( -\frac{1}{2m} \frac{\partial^{2}}{\partial q_{r}^{2}} + \frac{1}{2} m\omega^{2} q_{r}^{2} \right) \psi$$

### Recall: Hamiltonian

$$H = \int d^3 \mathbf{k} \left\{ p_{\mathbf{k}} p_{\mathbf{k}}^* + v_{\mathbf{k}} v_{\mathbf{k}}^* \left[ k^2 - \frac{(a\sqrt{\epsilon_1})''}{a\sqrt{\epsilon_1}} \right] \right\}$$

collection of parametric oscillators with time dependent frequency

Simpler model: spectator scalar field in an expanding and finite size Universe

$$\phi_{\mathbf{k}} = \frac{\sqrt{V}}{(2\pi)^{3/2}} \left( q_{\mathbf{k}1} + i q_{\mathbf{k}2} \right) \qquad H = \sum_{\mathbf{k}, \ r=1,2} \frac{1}{2a^3} \pi_{\mathbf{k}r}^2 + \frac{1}{2} a k^2 q_{\mathbf{k}r}^2$$

$$a^{3} \to m$$

$$k/a \to \omega$$

$$i\frac{\partial \psi}{\partial t} = \sum_{r=1}^{2} \left( -\frac{1}{2m} \frac{\partial^{2}}{\partial q_{r}^{2}} + \frac{1}{2} m\omega^{2} q_{r}^{2} \right) \psi$$

dBB trajectory of the field component 
$$\dot{q}_r = m^{-1} \Im \frac{\dot{\partial}_r \psi}{\psi}$$

Statistical distribution 
$$\frac{\partial \rho}{\partial t} + \sum_r \partial_r \left( \frac{\rho}{m} \Im \frac{\partial_r \psi}{\psi} \right) = 0$$

$$i\frac{\partial\psi}{\partial t} = \sum_{r=1}^{2} \left( -\frac{1}{2m} \frac{\partial^{2}}{\partial q_{r}^{2}} + \frac{1}{2} m\omega^{2} q_{r}^{2} \right) \psi$$

Relaxation of a 2D harmonic oscillator (time dependent mass & frequency)



(constant mass & frequency)

### Out-of-equilibrium time evolution

- Usual behaviour = evolves towards equilibrium
   (Minkowski or slowly expanding Universe)
- expansion: there is a retarded time...



Freezing the pdf out of equilibrium

Banach center - Warsaw- June 30, 2016



without expansion

with expansion
S. Colin & A. Valen

S. Colin & A. Valentini, 2016 Phys. Rev. **D88** 103515 (2013)

$$H \equiv \int \mathrm{d}q \, \rho \ln \left( \frac{\rho}{|\Psi|^2} \right)$$

measures "out-of-equilibrium-ness"



Banach center - Warsaw- June 30, 2016

## Initial out-of-equilibrium conditions

S. Colin & A. Valentini, Int. J. Mod. Phys. D 25, 1650068 (2016)

$$\mathcal{P}(k) = \mathcal{P}(k)_{QE} \xi(k)$$

width deficit





Harmonic oscillator fundamental state

$$\Psi_{\mathbf{k}} = \left(\frac{k}{\pi}\right)^{\frac{1}{4}} e^{-\frac{k}{2}v_{\mathbf{k}}^2}$$



Harmonic oscillator fundamental state

$$\Psi_{\mathbf{k}} = \left(\frac{k}{\pi}\right)^{\frac{1}{4}} e^{-\frac{k}{2}v_{\mathbf{k}}^2}$$

Out-of-Equilibrium initial density: less quantum noise



 $\rightarrow \log\left(\frac{a}{a_{\rm in}}\right) \equiv N$ 

Harmonic oscillator fundamental state

$$\Psi_{\mathbf{k}} = \left(\frac{k}{\pi}\right)^{\frac{1}{4}} e^{-\frac{k}{2}v_{\mathbf{k}}^2}$$

Out-of-Equilibrium initial density: less quantum noise

radiation

matter

inflation



Harmonic oscillator fundamental state

$$\Psi_{\mathbf{k}} = \left(\frac{k}{\pi}\right)^{\frac{1}{4}} e^{-\frac{k}{2}v_{\mathbf{k}}^2}$$

Out-of-Equilibrium initial density: less quantum noise



Banach center - Warsaw- June 30, 2016



Banach center - Warsaw- June 30, 2016



Banach center - Warsaw- June 30, 2016



Better fit???

Banach center - Warsaw- June 30, 2016



Banach center - Warsaw- June 30, 2016

with only one parameter added, others held fixed:  $\xi(k) = \tan^{-1} \left[ c_1 \left( \frac{k}{k_{\star}} \right) + c_2 \right] + c_3 - \frac{\pi}{2}$ 0.85  $\xi(k)$ 0.100 0.050 fiducial 0.010 0.005 running & 0.001 running of running 0.001

with only one parameter added, others held fixed:  $\xi(k) = \tan^{-1} \left[ c_1 \left( \frac{k}{k_{\star}} \right) + c_2 \right] + c_3 - \frac{\pi}{2}$ 

0.85



Banach center - Warsaw- June 30, 2016

with only one parameter added, others held fixed:  $\xi(k) = \tan^{-1} \left[ c_1 \left( \frac{k}{k_{\star}} \right) + c_2 \right] + c_3 - \frac{\pi}{2}$ 0.85 with S. Vitenti & A. Valentini Results... work in progress!

Usual Planck best-fit

## The GRW dynamical collapse model

Ghirardi - Rimini - Weber

Modified Schrödinger equation with collapse towards  $\hat{C}$  eigenstates



 $\langle \hat{C} \rangle \equiv \langle \Psi | \hat{C} | \Psi \rangle^{\text{HO}}$  break superposition principle

non linear stochastic  $\longrightarrow$  random outcomes  $\mathbb{E}(\mathrm{d}W_t) = 0$   $\mathbb{E}(\mathrm{d}W_t\mathrm{d}W_{t'}) = \mathrm{d}t\mathrm{d}t'\delta(t-t')$  Born rule Wiener process

BONUS: Amplification mechanism

Big objects are classical small objects are quantum!

Primordial perturbations

## Conclusions

- (1) dBB = testable formulation of QM
- (2) quantum non-equilibrium may produce new effects
- (3) most systems did reach equilibrium
- (4) primordial perturbations maybe not...
- (5) specific shape for the primordial spectrum
- (6) comparable with data!
- (7) not incompatible with Planck... for the time being!

more work still needs be done (other modifications of QM can be tested...)

Banach center - Warsaw- June 30, 2016

## Conclusions

- (1) dBB = testable formulation of QM
- (2) quantum non-equilibrium may produce new effects
- (3) most systems did reach equilibrium
- (4) primordial perturbations maybe not...
- (5) specific shape for the primordial spectrum
- (6) comparable with data!
- (7) not incompatible with Planck... for the time being!

Dziękuję!

more work still needs be done (other modifications of QM can be tested...)