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Properties: 

classical limit well defined
state dependent
      intrinsic reality

no need for external classical domain/observer!

strictly equivalent to Copenhagen QM
probability distribution (attractor) 

non local … 
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2nd order: is unstable…
ruled out!

S. Colin & A. Valentini, Proc. R. Soc. A 470, 20140288 (2014)
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1st order: can be tested? How????

2nd order: is unstable…
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1st order: can be tested? How????

2nd order: is unstable…
ruled out!

Primordial 
Perturbation 

Theory

S. Colin & A. Valentini, Proc. R. Soc. A 470, 20140288 (2014)
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Quantum equilibrium
(Valentini & Westman, 2005)

Particle in a box - 2D
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Dynamical origin of quantum probabilities
Proc. Roy. Soc. A 461, 253 (2005).

In this paper, Valentini and Westman show using explicit numerical simulations that
⇢! | |2 arises naturally even from a grossly non-equilibrium particle distribution.

• System is a single particle in a 2D box with configuration q = (x, y) and a (pure
state) wave function  (x, y, t) satisfying Schrödinger equation (h̄ = 1)
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Density of actual configurations
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~F = G
N

m
1

m
2

r2
~u
r

n
1

n
2

1

continuity equation

infinite square well - size ⇡

⇢ (x, y, t) =) @⇢

@t
+

@

@x
(⇢ẋ) +
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Initial configuration

Dynamical origin of quantum probabilities: numerical simulations

Starting conditions for the simulation: initial ⇢ 6= | |2

Want grossly non-equilibrium starting distribution
for particles. Choose distribution equal to square
of ground-state wave function:

⇢(x, y, 0) = |�
11

(x, y)|2

.

Initial  is superposition of first 16 modes,
m, n = 1, 2, 3, 4, . . . with equal amplitudes but
randomly chosen phases ✓mn:

 (x, y, 0) =

4X

m,n=1

1

4

�mn(x, y) exp(i✓mn)

 (x, y, t) =

4X

m,n=1

1

4

�mn(x, y) exp i(✓mn � Emnt)

Note  periodic in time with period 4⇡ (since
4⇡Emn is always an integer multiple of 2⇡).
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Note  periodic in time with period 4⇡ (since
4⇡Emn is always an integer multiple of 2⇡).
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Dynamical evolutions

Dynamical origin of quantum probabilities: numerical simulations

Results of evolution

⇢ | |2

Results for t = 0 (a,b), for t = 2⇡ (c,d) and for t = 4⇡ (e,f).

While | |2 recurs to its initial value, the smoothed particle distribution ⇢ shows a remarkable evolution towards quantum equilibrium!
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Typical quantum 
trajectory…
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chaotic mixing…
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relaxation towards 
equilibrium

chaotic mixing…

just like ordinary 
thermal equilibrium
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Quantum cosmology
Hamiltonian GR

N idt

nµ

dxi

x +i dxi
x i

d! = Ndt

"t+dt

"t

Fig. 1: The 3 + 1 decomposition of the manifold, with lapse function, N , and shift
vector, N i.

One can construct an intrinsic curvature tensor 3Ri
jkl(h) from the intrinsic

metric alone – this of course describes the curvature intrinsic to the hypersurfaces
⇥t. One can also define an extrinsic curvature, (or second fundamental form), which
describes how the spatial hypersurfaces ⇥t curve with respect to the 4-dimensional
spacetime manifold within which they are embedded. This is given by

Kij ⇥� ni;j = ��0
ijn0

=
1

2N

�
Ni|j +Nj|i �

�hij

�t

⇥
,

(2.5)

where a semicolon denotes covariant di⇤erentiation with respect to the 4-metric, gµ� ,
and a vertical bar denotes covariant di⇤erentiation with respect to the 3-metric, hij:
Ni|j ⇥ Ni,j ��k

ijNk etc.
For a given foliation ofM by spatial hypersurfaces, ⇥t, it is always possible to

choose Gaussian normal coordinates, in which

ds2 = �dt2 + hijdxidxj. (2.6)

These are comoving coordinates (N i = 0) with the additional property that t is
the proper time parameter (N = 1). This is the standard “gauge choice” that is
made in classical cosmology, and in such coordinates Kij = �ḣij, where dot denotes

9

Lapse function

Shift vector

Intrinsic metric 
= first fundamental form

Normal ton

µ

�t

ds

2 = gµ�dx

µdx

� = �N

2dt

2 + hij

�
dx

i + N

idt

� �
dx

j + N

jdt

�

1

n

µ

�t

ds

2 = gµ�dx

µdx

� = �N

2dt

2 + hij

�
dx

i + N

idt

� �
dx

j + N

jdt

�

1

Intrinsic curvature tensor

Extrinsic curvature 
= second fundamental form

Action:

�t

ds2 = gµ�dxµdx� = �N 2dt2 + hij

�
dxi +N idt

⇥ �
dxj +N jdt

⇥

3

⇥ or w ⌅ �1 perfect fluid ?

Kij ⇥ �⇧jni = ��0
ijn0

=
1

2N

�
⇧jNi +⇧iNj �

⇤hij

⇤t

⇥
(1)

(3)Ri
jkl(h)

Rµ� �
1

2
gµ�R = 8�GNTµ� + ⇥gµ�

⇥̇2 ⇤ V

⇥̈⇤ 3H⇥̇

⇥̈ + 3H⇥̇ +
dV

d⇥
= 0

1

⇥ or w ⌅ �1 perfect fluid ?

S =
1

16�GN

⇧⌥

M
d4x
⇧
�g

�
4R� 2⇥

⇥
+ 2

⌥

⇥M
d3x
⇧

hKi
i

⌃
+ Smatter

Kij ⇥ �⌃jni = ��0
ijn0

=
1

2N

⇤
⌃jNi +⌃iNj �

⇤hij

⇤t

⌅
(1)

3Ri
jkl(h)

Rµ� �
1

2
gµ�R = 8�GNTµ� + ⇥gµ�

⇥̇2 ⇤ V

⇥̈⇤ 3H⇥̇

1

3
Ri

jkl (h)

S ⇥
Z

dtL =
1

4�GN

Z
dtd3xN

⇤
h

⇣
KijK

ij �K2 +
3
R� 2�

⌘

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

4
R

S ⇥
Z

dtL =
1

4�GN

Z
dtd3xN

⇤
h

⇣
KijK

ij �K2 +
3
R� 2�

⌘

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1
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Relevant configuration space?

parameters

GR          invariance / diffeomorphisms

Conf =
Riem(�)

Di⇥0(�

=)

n

µ

�t

ds

2 = gµ�dx

µdx

� = �N

2dt

2 + hij

�
dx

i + N

idt

� �
dx

j + N

jdt

�

1

Conf =
Riem(�)

Di⇥0(�

=)

n

µ

�t

ds

2 = gµ�dx

µdx

� = �N

2dt

2 + hij

�
dx

i + N

idt

� �
dx

j + N

jdt

�

1

Conf =
Riem(�)

Di⇥0(�)

=)

n

µ

�t

ds

2 = gµ�dx

µdx

� = �N

2dt

2 + hij

�
dx

i + N

idt

� �
dx

j + N

jdt

�

1

superspace

Superspace & canonical quantisation

Wave functional ⇤ [hij(x), ⇥(x)]

Conf =
Riem(�)

Di⌅0(�)

=)

n

µ

�t

ds

2 = gµ�dx

µdx

� = �N

2dt

2 + hij

�
dx

i + N

idt

� �
dx

j + N

jdt

�

1

Dirac canonical quantisation

matter fields

Riem(�) �
n

hij (xµ), ⇥ (xµ) | x ⇥ �
o

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

⇥ij ! �i
�

�hij

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

⇥� ! �i
�

��

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

⇥0 ⇥ �i
�

�N
A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

⇥i ⇥ �i
�

�Ni

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)
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Minisuperspace
Restrict attention from an infinite dimensional configuration space to 2 dimensional space 
= mini-superspace 

hijdxidxj = a2(t)


dr2

1� kr2
+ r2

�
d⇥2 + sin2 ⇥d⇧2

��
⇥(x) = ⌅(t)

⇤̂⇤ = �i
�⇤

�N = 0

⇤̂i⇤ = �i
�⇤

�Ni
= 0

{hij(x), ⇥(x)}

⇤ [hij(x), ⇥(x)]

Conf =
Riem(�)

Di⌅0(�)

=⇥

1

WDW equation becomes Schrödinger-like for ⇤ [a(t), ⌅(t)]

hijdxidxj = a2(t)


dr2

1� kr2
+ r2

�
d⇥2 + sin2 ⇥d⇧2

��
⇥(x) = ⌅(t)

⇤̂⇤ = �i
�⇤

�N = 0

⇤̂i⇤ = �i
�⇤

�Ni
= 0

{hij(x), ⇥(x)}

⇤ [hij(x), ⇥(x)]

Conf =
Riem(�)

Di⌅0(�)

1

Conceptual and technical problems: 
!

Infinite number of dof       a few: mathematical consistency? 
Freeze momenta? Heisenberg uncertainties? 
QM = minisuperspace of QFT

⇤ � T [⇤]

|⇧⇤⇥⇧| �
⇤

d3xP (x)
|⇧

x

⇤⇥⇧
x

|
|| |⇧

x

⇤||2 = T [|⇧⇤⇥⇧|]

Li
x

=
��

⇥

⇥3/4

e��(qi�x)2/2

Prob[an; t] = |⇥an|⇧(t)⇤|2

i~ d

dt
|⇧(t)⇤ = Ĥ|⇧(t)⇤

A|an⇤ = an|an⇤

� [a(t), ⌅(t)]

1
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However, one can actually make calculations!
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Perfect fluid: Schutz formalism (’70)

Velocity potentials

canonical transformation: …

+ rescaling (volume…) + units… : simple Hamiltonian:

Exemple : Quantum cosmology of a perfect fluid
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Wheeler-De Witt

⇤ x(t)

m
d2x(t)

dt2
= �⌃ (V + Q)

⇤t0; ⇤ (x, t0) = |� (x, t0)|2

Q �⇥ 0

ds2 = N2(⌅)d⌅ � a2(⌅)�ijdxidxj
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⌃̇ + ⇥ṡ
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⌅ 1+�
�

(⌃, ⇥, s) =
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�
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a

4a
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⇥
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a
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−Ka +
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a3ω

)

N

a3ω

HΨ = 0

i
∂Ψ
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What do we do with the wave function of the Universe???

Gaussian wave packet

phase
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What do we do with the wave function of the Universe???
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dB trajectory
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quantum potential
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 �
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A simple bouncing quantum cosmological model 3

ds2 = �N2(t)dt2 +
3X

i=1

a2i (t)
�
dxi

�2
, (1)

and matter consisting in a radiation fluid with equation of state w ⌘ p/⇢ = 1
3 .

In full generality, one could choose any value for w , leaving, as we will see below,
the time parameter unfixed, but here we assume that we are considering extremely
early stages of the Universe during which, if a fluid description is to make any sense
at all (and that it questionable indeed), it will have to be a radiation fluid; setting
w = 1

3 is therefore, in our view, not restricting to a particular case but merely a
physically motivated statement.

In the framework above, one sees that the relevant Hamiltonian provided by the
gravitational part of the action (the fluid part is discussed in Sec. 3), assuming the
conformal time choice N ! a (and therefore t ! ⌘ in what follows), reads

H =
⇧2

a

24
� p2� + p2+

24a2
, (2)

in terms of the canonical variables a ⌘ (a1a2a3)
1
3 (average scale factor) and its

associated momentum ⇧a , and the momenta p� and p+ , respectively conjugate
of the shear-inducing variables �� ⌘ 1

2
p
3
ln (a1/a2) and �+ ⌘ 1

6 ln
�
a1a2/a

2
3

�
.

Quantization is achieved by promoting these variables to operators in a Hilbert
space (defined below) satisfying the usual canonical commutation relations [â, ⇧̂a] =
[�̂±, p̂±] = i (we work in geometrical units in which ~ = c = GN = 1 ).

2.1. Bianchi I

In order to move ahead, we first rescale the variables in such a way that they retain
their commutation relations and thus perform the replacements a ! â/(2

p
6) and

⇧a ! 2
p
6⇧̂a , leading to

Ĥ = ⇧̂2
a � �

p̂2� + p̂2+
�
â�2, (3)

which has to be compared with the usual FLRW case with no restriction on the
spatial curvature K for which the last term is proportional to Kâ2 (the di↵erence,
quartic in the scale factor, is the same that holds between the curvature and shear
terms appearing in the classical Friedman equation in which the curvature terms is
merely K/a2 while the shear energy density is / a�6 ; see Ref. 20 and references
therein).

We now work in a mixed representation for the wave function in which the
operators â and p̂± are multiplication operators, their action on the wave function
yielding mere multiplication by c� numbers, i.e., â = a and p̂± = p± ,
so that the conjugate operators read ⇧̂a = �i@/@a and �̂± = i@/@p± ; this is a
position representation for the scale factor part and the momentum representation
for the shear. Since the average scale factor a is, by construction, a positive quantity,
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+ (radiation) fluid / constant equation of state
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operators â and p̂± are multiplication operators, their action on the wave function
yielding mere multiplication by c� numbers, i.e., â = a and p̂± = p± ,
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yielding mere multiplication by c� numbers, i.e., â = a and p̂± = p± ,
so that the conjugate operators read ⇧̂a = �i@/@a and �̂± = i@/@p± ; this is a
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quartic in the scale factor, is the same that holds between the curvature and shear
terms appearing in the classical Friedman equation in which the curvature terms is
merely K/a2 while the shear energy density is / a�6 ; see Ref. 20 and references
therein).

We now work in a mixed representation for the wave function in which the
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contrary to p± which are a priori arbitrary real numbers, the Hilbert space H is
contained in the set of square integrable functions of R+ and R2 , namely

H ⇢
⇢
f (a, p+, p�) 2 C

����
Z 1

0
da

Z 1

�1
dp+

Z 1

�1
dp�|f (a, p+, p�) |2 < 1

�
. (4)

The eigenvalue equation Ĥ = `2 (we note `2 the eigenvalue of the Hamiltonian
operator for later convenience) then transforms into

� @2U (k)
`

@a2
� k2

4a2
U (k)
` = `2U (k)

` , (5)

where we set k2 ⌘ 4(p2+ + p2�) and we have expanded the total wave function in
terms of the eigenstates �(�±) of �̂± , i.e. � / exp[i(p+�+ + p���)] , as

 (a, p±) =
Z 1

0
d`

Z 1

�1
d�+

Z 1

�1
d�� ̃ (`,�±) ei[�+p++��p�]U (k)

` (a). (6)

Our Hilbert space will then be completed by obtaining the solutions for the energy
eigenmodes U (k)

` (a) .

2.2. Hilbert space and boundary conditions

We now implement the requirement that the Hamiltonian should be self-adjoint,
namely that

Z
da d2p (H )⇤ =

Z
da d2p ⇤ (H ) , (7)

with the limits of integration defined in (4). As already mentioned above, the set of
normalizable functions is too large and the actual Hilbert space Hmust be restricted
to those normalizable functions such that the condition above is satisfied. We note
that the condition (7) is automatically satisfied if the Hamiltonian eigenvectors form
an orthonormal basis, i.e.
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` (a)U (k)
`0 (a) = �(` � `0) (8)

and
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�1
d��| ̃ (`,�±) |2`2 < 1. (9)

We therefore define our Hilbert space H to be the set of square integrable functions
of the form (6) where the basis is orthonormal in the sense of (8) and the functions
 ̃ (`,�±) satisfy Eq. (9).

Setting ⌫ = 1
2

p
1 � k2 , we obtain the general solution for the energy eigenmodes

U (k)
` (a) = c+

p
a`J⌫(a`) + c�

p
a`J�⌫(a`), (10)

in terms of the Bessel functions J⌫ , with c± complex numbers satisfying |c+|2 +
|c�|2 = 1 . Imposing the condition (8) then demands that either c+ or c� vanishes.
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A simple bouncing quantum cosmological model 3

ds2 = �N2(t)dt2 +
3X

i=1

a2i (t)
�
dxi

�2
, (1)

and matter consisting in a radiation fluid with equation of state w ⌘ p/⇢ = 1
3 .

In full generality, one could choose any value for w , leaving, as we will see below,
the time parameter unfixed, but here we assume that we are considering extremely
early stages of the Universe during which, if a fluid description is to make any sense
at all (and that it questionable indeed), it will have to be a radiation fluid; setting
w = 1

3 is therefore, in our view, not restricting to a particular case but merely a
physically motivated statement.

In the framework above, one sees that the relevant Hamiltonian provided by the
gravitational part of the action (the fluid part is discussed in Sec. 3), assuming the
conformal time choice N ! a (and therefore t ! ⌘ in what follows), reads

H =
⇧2

a

24
� p2� + p2+

24a2
, (2)

in terms of the canonical variables a ⌘ (a1a2a3)
1
3 (average scale factor) and its

associated momentum ⇧a , and the momenta p� and p+ , respectively conjugate
of the shear-inducing variables �� ⌘ 1

2
p
3
ln (a1/a2) and �+ ⌘ 1

6 ln
�
a1a2/a

2
3

�
.

Quantization is achieved by promoting these variables to operators in a Hilbert
space (defined below) satisfying the usual canonical commutation relations [â, ⇧̂a] =
[�̂±, p̂±] = i (we work in geometrical units in which ~ = c = GN = 1 ).

2.1. Bianchi I

In order to move ahead, we first rescale the variables in such a way that they retain
their commutation relations and thus perform the replacements a ! â/(2

p
6) and

⇧a ! 2
p
6⇧̂a , leading to

Ĥ = ⇧̂2
a � �

p̂2� + p̂2+
�
â�2, (3)

which has to be compared with the usual FLRW case with no restriction on the
spatial curvature K for which the last term is proportional to Kâ2 (the di↵erence,
quartic in the scale factor, is the same that holds between the curvature and shear
terms appearing in the classical Friedman equation in which the curvature terms is
merely K/a2 while the shear energy density is / a�6 ; see Ref. 20 and references
therein).

We now work in a mixed representation for the wave function in which the
operators â and p̂± are multiplication operators, their action on the wave function
yielding mere multiplication by c� numbers, i.e., â = a and p̂± = p± ,
so that the conjugate operators read ⇧̂a = �i@/@a and �̂± = i@/@p± ; this is a
position representation for the scale factor part and the momentum representation
for the shear. Since the average scale factor a is, by construction, a positive quantity,
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quartic in the scale factor, is the same that holds between the curvature and shear
terms appearing in the classical Friedman equation in which the curvature terms is
merely K/a2 while the shear energy density is / a�6 ; see Ref. 20 and references
therein).

We now work in a mixed representation for the wave function in which the
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so that the conjugate operators read ⇧̂a = �i@/@a and �̂± = i@/@p± ; this is a
position representation for the scale factor part and the momentum representation
for the shear. Since the average scale factor a is, by construction, a positive quantity,

June 23, 2016 11:15 WSPC/INSTRUCTION FILE ProcCaliPP˙RED

A simple bouncing quantum cosmological model 3

ds2 = �N2(t)dt2 +
3X

i=1

a2i (t)
�
dxi

�2
, (1)

and matter consisting in a radiation fluid with equation of state w ⌘ p/⇢ = 1
3 .

In full generality, one could choose any value for w , leaving, as we will see below,
the time parameter unfixed, but here we assume that we are considering extremely
early stages of the Universe during which, if a fluid description is to make any sense
at all (and that it questionable indeed), it will have to be a radiation fluid; setting
w = 1

3 is therefore, in our view, not restricting to a particular case but merely a
physically motivated statement.

In the framework above, one sees that the relevant Hamiltonian provided by the
gravitational part of the action (the fluid part is discussed in Sec. 3), assuming the
conformal time choice N ! a (and therefore t ! ⌘ in what follows), reads

H =
⇧2

a

24
� p2� + p2+

24a2
, (2)

in terms of the canonical variables a ⌘ (a1a2a3)
1
3 (average scale factor) and its

associated momentum ⇧a , and the momenta p� and p+ , respectively conjugate
of the shear-inducing variables �� ⌘ 1

2
p
3
ln (a1/a2) and �+ ⌘ 1

6 ln
�
a1a2/a

2
3

�
.

Quantization is achieved by promoting these variables to operators in a Hilbert
space (defined below) satisfying the usual canonical commutation relations [â, ⇧̂a] =
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so that the conjugate operators read ⇧̂a = �i@/@a and �̂± = i@/@p± ; this is a
position representation for the scale factor part and the momentum representation
for the shear. Since the average scale factor a is, by construction, a positive quantity,

June 23, 2016 11:15 WSPC/INSTRUCTION FILE ProcCaliPP˙RED

A simple bouncing quantum cosmological model 3

ds2 = �N2(t)dt2 +
3X

i=1

a2i (t)
�
dxi

�2
, (1)

and matter consisting in a radiation fluid with equation of state w ⌘ p/⇢ = 1
3 .

In full generality, one could choose any value for w , leaving, as we will see below,
the time parameter unfixed, but here we assume that we are considering extremely
early stages of the Universe during which, if a fluid description is to make any sense
at all (and that it questionable indeed), it will have to be a radiation fluid; setting
w = 1

3 is therefore, in our view, not restricting to a particular case but merely a
physically motivated statement.

In the framework above, one sees that the relevant Hamiltonian provided by the
gravitational part of the action (the fluid part is discussed in Sec. 3), assuming the
conformal time choice N ! a (and therefore t ! ⌘ in what follows), reads

H =
⇧2

a

24
� p2� + p2+

24a2
, (2)

in terms of the canonical variables a ⌘ (a1a2a3)
1
3 (average scale factor) and its

associated momentum ⇧a , and the momenta p� and p+ , respectively conjugate
of the shear-inducing variables �� ⌘ 1

2
p
3
ln (a1/a2) and �+ ⌘ 1

6 ln
�
a1a2/a

2
3

�
.

Quantization is achieved by promoting these variables to operators in a Hilbert
space (defined below) satisfying the usual canonical commutation relations [â, ⇧̂a] =
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contrary to p± which are a priori arbitrary real numbers, the Hilbert space H is
contained in the set of square integrable functions of R+ and R2 , namely

H ⇢
⇢
f (a, p+, p�) 2 C

����
Z 1

0
da

Z 1

�1
dp+

Z 1

�1
dp�|f (a, p+, p�) |2 < 1

�
. (4)

The eigenvalue equation Ĥ = `2 (we note `2 the eigenvalue of the Hamiltonian
operator for later convenience) then transforms into

� @2U (k)
`

@a2
� k2

4a2
U (k)
` = `2U (k)

` , (5)

where we set k2 ⌘ 4(p2+ + p2�) and we have expanded the total wave function in
terms of the eigenstates �(�±) of �̂± , i.e. � / exp[i(p+�+ + p���)] , as

 (a, p±) =
Z 1

0
d`

Z 1

�1
d�+

Z 1

�1
d�� ̃ (`,�±) ei[�+p++��p�]U (k)

` (a). (6)

Our Hilbert space will then be completed by obtaining the solutions for the energy
eigenmodes U (k)

` (a) .

2.2. Hilbert space and boundary conditions

We now implement the requirement that the Hamiltonian should be self-adjoint,
namely that

Z
da d2p (H )⇤ =

Z
da d2p ⇤ (H ) , (7)

with the limits of integration defined in (4). As already mentioned above, the set of
normalizable functions is too large and the actual Hilbert space Hmust be restricted
to those normalizable functions such that the condition above is satisfied. We note
that the condition (7) is automatically satisfied if the Hamiltonian eigenvectors form
an orthonormal basis, i.e.

Z 1

0
daU (k)⇤

` (a)U (k)
`0 (a) = �(` � `0) (8)

and
Z 1

0
d`

Z 1

�1
d�+

Z 1

�1
d��| ̃ (`,�±) |2`2 < 1. (9)

We therefore define our Hilbert space H to be the set of square integrable functions
of the form (6) where the basis is orthonormal in the sense of (8) and the functions
 ̃ (`,�±) satisfy Eq. (9).

Setting ⌫ = 1
2

p
1 � k2 , we obtain the general solution for the energy eigenmodes

U (k)
` (a) = c+

p
a`J⌫(a`) + c�

p
a`J�⌫(a`), (10)

in terms of the Bessel functions J⌫ , with c± complex numbers satisfying |c+|2 +
|c�|2 = 1 . Imposing the condition (8) then demands that either c+ or c� vanishes.
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operator for later convenience) then transforms into

� @2U (k)
`

@a2
� k2

4a2
U (k)
` = `2U (k)

` , (5)

where we set k2 ⌘ 4(p2+ + p2�) and we have expanded the total wave function in
terms of the eigenstates �(�±) of �̂± , i.e. � / exp[i(p+�+ + p���)] , as

 (a, p±) =
Z 1

0
d`

Z 1

�1
d�+

Z 1

�1
d�� ̃ (`,�±) ei[�+p++��p�]U (k)
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A simple bouncing quantum cosmological model 3

ds2 = �N2(t)dt2 +
3X

i=1

a2i (t)
�
dxi

�2
, (1)

and matter consisting in a radiation fluid with equation of state w ⌘ p/⇢ = 1
3 .

In full generality, one could choose any value for w , leaving, as we will see below,
the time parameter unfixed, but here we assume that we are considering extremely
early stages of the Universe during which, if a fluid description is to make any sense
at all (and that it questionable indeed), it will have to be a radiation fluid; setting
w = 1

3 is therefore, in our view, not restricting to a particular case but merely a
physically motivated statement.

In the framework above, one sees that the relevant Hamiltonian provided by the
gravitational part of the action (the fluid part is discussed in Sec. 3), assuming the
conformal time choice N ! a (and therefore t ! ⌘ in what follows), reads

H =
⇧2

a

24
� p2� + p2+

24a2
, (2)

in terms of the canonical variables a ⌘ (a1a2a3)
1
3 (average scale factor) and its

associated momentum ⇧a , and the momenta p� and p+ , respectively conjugate
of the shear-inducing variables �� ⌘ 1

2
p
3
ln (a1/a2) and �+ ⌘ 1

6 ln
�
a1a2/a

2
3

�
.

Quantization is achieved by promoting these variables to operators in a Hilbert
space (defined below) satisfying the usual canonical commutation relations [â, ⇧̂a] =
[�̂±, p̂±] = i (we work in geometrical units in which ~ = c = GN = 1 ).

2.1. Bianchi I

In order to move ahead, we first rescale the variables in such a way that they retain
their commutation relations and thus perform the replacements a ! â/(2

p
6) and

⇧a ! 2
p
6⇧̂a , leading to

Ĥ = ⇧̂2
a � �

p̂2� + p̂2+
�
â�2, (3)

which has to be compared with the usual FLRW case with no restriction on the
spatial curvature K for which the last term is proportional to Kâ2 (the di↵erence,
quartic in the scale factor, is the same that holds between the curvature and shear
terms appearing in the classical Friedman equation in which the curvature terms is
merely K/a2 while the shear energy density is / a�6 ; see Ref. 20 and references
therein).

We now work in a mixed representation for the wave function in which the
operators â and p̂± are multiplication operators, their action on the wave function
yielding mere multiplication by c� numbers, i.e., â = a and p̂± = p± ,
so that the conjugate operators read ⇧̂a = �i@/@a and �̂± = i@/@p± ; this is a
position representation for the scale factor part and the momentum representation
for the shear. Since the average scale factor a is, by construction, a positive quantity,
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operators â and p̂± are multiplication operators, their action on the wave function
yielding mere multiplication by c� numbers, i.e., â = a and p̂± = p± ,
so that the conjugate operators read ⇧̂a = �i@/@a and �̂± = i@/@p± ; this is a
position representation for the scale factor part and the momentum representation
for the shear. Since the average scale factor a is, by construction, a positive quantity,

{
June 23, 2016 11:15 WSPC/INSTRUCTION FILE ProcCaliPP˙RED

4 P. Peter & S. Vitenti

contrary to p± which are a priori arbitrary real numbers, the Hilbert space H is
contained in the set of square integrable functions of R+ and R2 , namely

H ⇢
⇢
f (a, p+, p�) 2 C

����
Z 1

0
da

Z 1

�1
dp+

Z 1

�1
dp�|f (a, p+, p�) |2 < 1

�
. (4)

The eigenvalue equation Ĥ = `2 (we note `2 the eigenvalue of the Hamiltonian
operator for later convenience) then transforms into

� @2U (k)
`

@a2
� k2

4a2
U (k)
` = `2U (k)

` , (5)

where we set k2 ⌘ 4(p2+ + p2�) and we have expanded the total wave function in
terms of the eigenstates �(�±) of �̂± , i.e. � / exp[i(p+�+ + p���)] , as
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` (a). (6)

Our Hilbert space will then be completed by obtaining the solutions for the energy
eigenmodes U (k)
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2.2. Hilbert space and boundary conditions

We now implement the requirement that the Hamiltonian should be self-adjoint,
namely that

Z
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Z
da d2p ⇤ (H ) , (7)
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normalizable functions is too large and the actual Hilbert space Hmust be restricted
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terms of the eigenstates �(�±) of �̂± , i.e. � / exp[i(p+�+ + p���)] , as
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Our Hilbert space will then be completed by obtaining the solutions for the energy
eigenmodes U (k)

` (a) .

2.2. Hilbert space and boundary conditions

We now implement the requirement that the Hamiltonian should be self-adjoint,
namely that

Z
da d2p (H )⇤ =

Z
da d2p ⇤ (H ) , (7)

with the limits of integration defined in (4). As already mentioned above, the set of
normalizable functions is too large and the actual Hilbert space Hmust be restricted
to those normalizable functions such that the condition above is satisfied. We note
that the condition (7) is automatically satisfied if the Hamiltonian eigenvectors form
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We therefore define our Hilbert space H to be the set of square integrable functions
of the form (6) where the basis is orthonormal in the sense of (8) and the functions
 ̃ (`,�±) satisfy Eq. (9).

Setting ⌫ = 1
2

p
1 � k2 , we obtain the general solution for the energy eigenmodes

U (k)
` (a) = c+

p
a`J⌫(a`) + c�

p
a`J�⌫(a`), (10)

in terms of the Bessel functions J⌫ , with c± complex numbers satisfying |c+|2 +
|c�|2 = 1 . Imposing the condition (8) then demands that either c+ or c� vanishes.
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A simple bouncing quantum cosmological model 5

Apart from an irrelevant phase factor, one can therefore, without lack of generality,
set c+ = 1 and c� = 0 , or the opposite c+ = 0 and c� = 1 ; given the initial wave
function choice, this will lead to impose di↵erent boundary conditions.

3. Time Evolution

As alluded to in the introduction, the existence of a fluid implies that of a preferred
time slicing, and hence of a natural time parameter t for the Schrödinger equation.
Following Schutz formalism,18,19 the velocity potential of the fluid allows to define
a field whose properties are similar to that expected for a time variable. One then
needs to fix the coordinate time variable appearing in (1) through a clever choice
of the lapse function N(t) adapted to the fluid. The most appropriate choice in
(1) happens to depend on the equation of state of the fluid, and for a radiation
dominated universe, one can set N = a , so the relevant time is the usual conformal
time ⌘ , in terms of which the fluid canonical momentum reads P̂fluid = �i@⌘ . This
momentum enters the Hamiltonian linearly, so that the Wheeler-De Witt equation
reads like a simple Schödinger equation, resulting in an evolution operator U(⌘, ⌘0)
satisfying

i
@U

@⌘
= ĤU =) U(⌘, ⌘0) = e�i(⌘�⌘0)Ĥ , (11)

with ⌘0 an arbitrary initial time. Anticipating on the dBB trajectory, we note that,
contrary to previous works, we do not intend here to impose initial condition at
the expected bounce time at which da/d⌘ = 0 , assuming such a time to exist, but
we will instead demand arbitrary initial condition in a contracting stage da/d⌘ < 0
and actually evolve the universe until it bounces (again anticipating that it will do
so).

3.1. Propagator

Our ultimate goal is, starting from an arbitrary initial wave function  0(a) =
 (a; ⌘0) , to follow its time development  (a; ⌘) , whose phase S(a; ⌘) provides the
dBB trajectory through

da

d⌘
=

@S

@a
=

i

2| |2
✓
 
@ ⇤

@a
� @ 

@a
 ⇤

◆
, (12)

and to figure under which conditions this time evolution, starting from a contracting
scale factor, leads to a regular bouncing solution. We shall deal with the initial
condition in the forthcoming section, and for now on concentrate on the propagator
G(a, p±, a0, p0±) ⌘ ha, p±|U |a0, p0±i evolving the state |a0, p0±i at time ⌘0 into |a, p±i
at time ⌘ .

In order to obtain this propagator, we first express the time evolution operator
on the Fourier modes as

U =

Z
d2�

Z 1

0
d`U(⌘, ⌘0)|`,�±ih`,�±| =

Z
d2�

Z 1

0
d` e�i`2�⌘|`,�±ih`,�±|, (13)
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G(a, p±, a0, p0±) ⌘ ha, p±|U |a0, p0±i evolving the state |a0, p0±i at time ⌘0 into |a, p±i
at time ⌘ .

In order to obtain this propagator, we first express the time evolution operator
on the Fourier modes as

U =

Z
d2�

Z 1

0
d`U(⌘, ⌘0)|`,�±ih`,�±| =

Z
d2�

Z 1

0
d` e�i`2�⌘|`,�±ih`,�±|, (13)
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with �⌘ ⌘ ⌘ � ⌘0 . This leads to

G(a, p±, a0, p0±) = �(2)(p± � p0±)
Z 1

0
d` e�i`2�⌘U (k)

` (a)U (k)⇤
` (a0), (14)

where we have used ha, p±|`,�±i = U (k)
` (a) exp[�i(p+�+ + p���)]/(2⇡) . As ex-

pected, we see that if one starts with an eigenstate of p̂± , the subsequent time
evolution remains on this state. From now on, we shall therefore discard the shear
contribution insofar as it does not contribute to the equation of motion and merely
assume the value of the shear to be fixed; we therefore simply denote the propagator
by G(a, a0; ⌘) in what follows.

The propagator (14) needs be regularized, which is done by replacing �⌘ by
f�⌘ = �⌘(1 + i✏) , with ✏ ⌧ 1 . Then, using Eq. (10.22.67) of Ref. 23, one finds

G(a, a0; ⌘) = � i
p
aa0

2f�⌘
e

i
4 (a

2+a2
0)/

f�⌘�i↵⇡/2J⌫

 
aa0

2f�⌘

!
, (15)

thanks to which we are now in a position to derive the wave function at an arbitrary
time.

3.2. Wave function

Having set the general framework for Bianchi I, we now simplify once more the
model to restrict attention to the flat FLRW case, which represents a subset of
Bianchi I; the complete analysis of the Bianchi I case will be presented elsewhere
in a future work.24 As we discuss below, the wave function proposed in Ref. 1 can
be generalized to yield new bouncing solutions. We shall accordingly consider an
initial wave function at time ⌘0 which we demand to be localized around a certain
initial value aini of the scale factor and having a complex phase in order to account
for a possible initial velocity. Generalizing Ref. 1, we set the normalized form

 0(a) = ha, p±| 0i = 2(1�2↵)/4 a↵

�↵+1/2
q
�
�
↵+ 1

2

� exp

�1

2
a2
✓

1

2�2
� iHini

◆�
, (16)

where ↵ , � and � are real but otherwise arbitrary parameters. The wave
function (16) peaks at aini =

p
2↵� (maximum of | 0|2 ), has a mean

value at ā = hai =
p
2�� (1 + ↵) /�

�
1
2 + ↵

�
and variance h(a � ā)2i =

�2
⇥
1 + 2↵ � 2�2 (1 + ↵) /�2

�
1
2 + ↵

�⇤
. As shown on Fig. 1, the peak localization is

essentially given by ↵ while the spread mostly stems from the value of � . Finally,
applying (12) to the initial  0 (16), one finds that the coe�cient Hini actually rep-
resents the initial value of the conformal Hubble parameter, hence the name of the
parameter.

Equipped with the initial wave function (16) and the propagator (15), we are
now in position to derive the equation of motion for the dBB scale factor. The wave
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time.
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Having set the general framework for Bianchi I, we now simplify once more the
model to restrict attention to the flat FLRW case, which represents a subset of
Bianchi I; the complete analysis of the Bianchi I case will be presented elsewhere
in a future work.24 As we discuss below, the wave function proposed in Ref. 1 can
be generalized to yield new bouncing solutions. We shall accordingly consider an
initial wave function at time ⌘0 which we demand to be localized around a certain
initial value aini of the scale factor and having a complex phase in order to account
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applying (12) to the initial  0 (16), one finds that the coe�cient Hini actually rep-
resents the initial value of the conformal Hubble parameter, hence the name of the
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Equipped with the initial wave function (16) and the propagator (15), we are
now in position to derive the equation of motion for the dBB scale factor. The wave
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Fig. 1. Initial wave function and its time evolution for various values of the localization ↵ and
spread � . We used Hini = �0.1 for all wave functions and ⌫ = 1

2 , sticking to the FLRW case
to evolve the wave functions. As expected, the wave form changes dramatically during the time
evolution, as in particular the mode, depending on its initial localization and spread, eventually
reaches the potential wall at a = 0 at which point the wave function bounces o↵. Oscillations then
appear, due to the reflection on the wall, inducing a significant change in the subsequent time
evolution; these changes are responsible, as we show below, for the completely new behavior of the
scale factor exhibited on Fig. 2

function at time ⌘ is

 (a; ⌘) = ha|U(⌘, ⌘0)| 0i /
Z 1

0
db

p
abe

i
4 (a

2+b2)/f�⌘J⌫

 
ab

2f�⌘

!
b↵e�

1
2 b

2( 1
2�2 �iHini),

(17)
which, although it happens to be explicitly integrable in terms of hypergeometric
functions, is not particularly illuminating. Figure 1 also shows the typical time
evolution (17) for the modulus of the wave function. This evolution clearly di↵ers
from that of Ref. 1 where it would hold its analytical shape at all times with time-
dependent parameters. Here, one sees that the boundary condition at a = 0 acts as
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Fig. 2. Illustration, for the shearless case ⌫ = 1
2 , of typical bouncing models obtained as solutions

of the dBB equation of motion for the scale factor. The curves are labeled with the initial condition
assumed for Hini , and the solutions are obtained for values of ↵ and � as in Fig. 1. One clearly
sees that not only are such bouncing solutions not necessarily symmetric in time, but also that
they can produce many bounces and not just one, even in the oversimplified situation of the flat
shearless FLRW.

apparent that the very simple solution of Ref. 1, is merely an exceptional case. In
the cases studied here, we find that not only is the bounce often non symmetric in
time, but also that many bounces can naturally occur, and in a way which is quite
sensitive to the initial condition one sets on aini and Hini .

Our study opens a wide range of new studies that need now be done for a com-
plete understanding of such bouncing scenarios. First, the case with non vanishing
shear must be investigated in details, with particular emphasis on the so-called BKL
instability (see again Ref. 20 for a thorough discussion of bounce models and their
problems) according to which a pre-existing shear can spontaneously lead to many
new Kasner-like singularities.

The second point that should be examined in details concerns the propagation
of perturbations through such a complicated bounce. In models such as those based
on dBB trajectories, it was found that perturbations can be easily evaluated in a
way reminiscent the ordinary perturbation theory based on general relativity, but
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Classical temperature fluctuations
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Inflationary perturbations: quantum fluctuations / expanding background
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Classical temperature fluctuations promoted to quantum operators
w = 1
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Classical temperature fluctuations promoted to quantum operators
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second order perturbed Einstein action

5

The next step consists in deriving an equation of mo-
tion for v(⌅,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(⌅,x). Expanding the action of
the system (i.e. Einstein-Hilbert action plus the action of
a scalar field) up to second order in the perturbations,
one obtains [12]

(2)⇥S =
1
2

�
d4x

⇤
(v⇤)2 � ⇥ij�iv�jv +

�
a
⇧
⇤1

⇥⇤⇤

a
⇧
⇤1

v2

⌅
,

(6)
where ⇤1 = 1 � H⇤/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H2(1 � ⇤1) shows,
the condition ⇤1 < 1 is in fact su⇤cient to have infla-
tion. Moreover, we have slow-roll inflation [19, 86–89]
if ⇤1 ⇤ 1. In this case, it is easy to show that ⇤1 ⌅
(M2

Pl
/2V 2)(dV/d⌥)2, i.e. ⇤1 is in fact a measure of how

much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has ⇤1 = (2 + �)/(1 + �) and,
of course, ⇤1 = 0 when � = �2 (de Sitter solution). The
scale factor can also be rewritten as a(⌅) ⌅  0(�⌅)�1��1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with � � �2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(⌅,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
modes evolve independently. We have

v (⌅,x) =
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(2⇧)3/2
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with v�k = v⇥k because v(⌅,x) is real. Then inserting
this expansion into Eq. (6), one arrives at [12]
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where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
conjugate to vk
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where L is the Lagrangian density in Fourier space that
can be derived from Eq. (8). This allows us to calculate

the Hamiltonian which reads

H =
�

d3k

⇧
pkp⇥k + vkv⇥k

⇤
k2 �

�
a
⇧
⇤1

⇥⇤⇤

a
⇧
⇤1

⌅⌃
. (10)

This Hamiltonian represents a collection of paramet-
ric oscillators (i.e. one oscillator per mode), the time-
dependent frequency of which can be expressed as
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
di⇥erent inflationary backgrounds (i.e. di⇥erent inflaton
potentials) lead to di⇥erent ⌃(⌅,k) and, therefore, to dif-
ferent behaviors for vk(⌅). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v⇤⇤k + ⌃2 (⌅,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (⌥) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ⌃2(⌅,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.

B. Quantization in the Schrödinger Picture

In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
is more convenient for the problem we want to investigate
in this article. In order to quantize the system, it is also
more convenient to work with real variables. Therefore,
we introduce the following definitions

vk ⇥
1⇧
2

�
vR

k + ivI
k

⇥
, pk ⇥

1⇧
2

�
pR

k + ipI
k

⇥
. (13)

In the Schrödinger approach, the quantum state of the
system is described by a wavefunctional, � [v(⌅,x)].
Since we work in Fourier space (and since the theory is
still free in the sense that it does not contain terms with
power higher than two in the Lagrangian), the wavefunc-
tional can also be factorized into mode components as
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The next step consists in deriving an equation of mo-
tion for v(⌅,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(⌅,x). Expanding the action of
the system (i.e. Einstein-Hilbert action plus the action of
a scalar field) up to second order in the perturbations,
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of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with � � �2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.
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space only. Next, we define pk, the variable canonically
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
di⇥erent inflationary backgrounds (i.e. di⇥erent inflaton
potentials) lead to di⇥erent ⌃(⌅,k) and, therefore, to dif-
ferent behaviors for vk(⌅). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v⇤⇤k + ⌃2 (⌅,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (⌥) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ⌃2(⌅,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.
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is done in the Heisenberg picture. Here, we carry out the
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in this article. In order to quantize the system, it is also
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where ⇤1 = 1 � H⇤/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H2(1 � ⇤1) shows,
the condition ⇤1 < 1 is in fact su⇤cient to have infla-
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Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has ⇤1 = (2 + �)/(1 + �) and,
of course, ⇤1 = 0 when � = �2 (de Sitter solution). The
scale factor can also be rewritten as a(⌅) ⌅  0(�⌅)�1��1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with � � �2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(⌅,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
modes evolve independently. We have
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where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
conjugate to vk
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
di⇥erent inflationary backgrounds (i.e. di⇥erent inflaton
potentials) lead to di⇥erent ⌃(⌅,k) and, therefore, to dif-
ferent behaviors for vk(⌅). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v⇤⇤k + ⌃2 (⌅,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (⌥) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ⌃2(⌅,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.

B. Quantization in the Schrödinger Picture

In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
is more convenient for the problem we want to investigate
in this article. In order to quantize the system, it is also
more convenient to work with real variables. Therefore,
we introduce the following definitions
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In the Schrödinger approach, the quantum state of the
system is described by a wavefunctional, � [v(⌅,x)].
Since we work in Fourier space (and since the theory is
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The next step consists in deriving an equation of mo-
tion for v(⌅,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(⌅,x). Expanding the action of
the system (i.e. Einstein-Hilbert action plus the action of
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where ⇤1 = 1 � H⇤/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H2(1 � ⇤1) shows,
the condition ⇤1 < 1 is in fact su⇤cient to have infla-
tion. Moreover, we have slow-roll inflation [19, 86–89]
if ⇤1 ⇤ 1. In this case, it is easy to show that ⇤1 ⌅
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much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has ⇤1 = (2 + �)/(1 + �) and,
of course, ⇤1 = 0 when � = �2 (de Sitter solution). The
scale factor can also be rewritten as a(⌅) ⌅  0(�⌅)�1��1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with � � �2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
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that we work with a linear theory and, hence, all the
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
di⇥erent inflationary backgrounds (i.e. di⇥erent inflaton
potentials) lead to di⇥erent ⌃(⌅,k) and, therefore, to dif-
ferent behaviors for vk(⌅). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v⇤⇤k + ⌃2 (⌅,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (⌥) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ⌃2(⌅,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.
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In this section, we review how the cosmological pertur-
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is done in the Heisenberg picture. Here, we carry out the
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in this article. In order to quantize the system, it is also
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The next step consists in deriving an equation of mo-
tion for v(⌅,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(⌅,x). Expanding the action of
the system (i.e. Einstein-Hilbert action plus the action of
a scalar field) up to second order in the perturbations,
one obtains [12]
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where ⇤1 = 1 � H⇤/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H2(1 � ⇤1) shows,
the condition ⇤1 < 1 is in fact su⇤cient to have infla-
tion. Moreover, we have slow-roll inflation [19, 86–89]
if ⇤1 ⇤ 1. In this case, it is easy to show that ⇤1 ⌅
(M2
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/2V 2)(dV/d⌥)2, i.e. ⇤1 is in fact a measure of how

much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has ⇤1 = (2 + �)/(1 + �) and,
of course, ⇤1 = 0 when � = �2 (de Sitter solution). The
scale factor can also be rewritten as a(⌅) ⌅  0(�⌅)�1��1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with � � �2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(⌅,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
modes evolve independently. We have

v (⌅,x) =
1

(2⇧)3/2

�

R3
d3k vk (⌅)eik·x , (7)

with v�k = v⇥k because v(⌅,x) is real. Then inserting
this expansion into Eq. (6), one arrives at [12]
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where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
conjugate to vk

pk =
⇥L
⇥v⇥k

⇤ = v⇤k , (9)

where L is the Lagrangian density in Fourier space that
can be derived from Eq. (8). This allows us to calculate

the Hamiltonian which reads
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This Hamiltonian represents a collection of paramet-
ric oscillators (i.e. one oscillator per mode), the time-
dependent frequency of which can be expressed as

⌃2 (⌅,k) = k2 �
�
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⇧
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a
⇧
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. (11)

We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
di⇥erent inflationary backgrounds (i.e. di⇥erent inflaton
potentials) lead to di⇥erent ⌃(⌅,k) and, therefore, to dif-
ferent behaviors for vk(⌅). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v⇤⇤k + ⌃2 (⌅,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (⌥) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ⌃2(⌅,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.

B. Quantization in the Schrödinger Picture

In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
is more convenient for the problem we want to investigate
in this article. In order to quantize the system, it is also
more convenient to work with real variables. Therefore,
we introduce the following definitions
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In the Schrödinger approach, the quantum state of the
system is described by a wavefunctional, � [v(⌅,x)].
Since we work in Fourier space (and since the theory is
still free in the sense that it does not contain terms with
power higher than two in the Lagrangian), the wavefunc-
tional can also be factorized into mode components as
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The next step consists in deriving an equation of mo-
tion for v(⌅,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(⌅,x). Expanding the action of
the system (i.e. Einstein-Hilbert action plus the action of
a scalar field) up to second order in the perturbations,
one obtains [12]
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where ⇤1 = 1 � H⇤/H2 is the first slow-roll parame-
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if ⇤1 ⇤ 1. In this case, it is easy to show that ⇤1 ⌅
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/2V 2)(dV/d⌥)2, i.e. ⇤1 is in fact a measure of how

much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has ⇤1 = (2 + �)/(1 + �) and,
of course, ⇤1 = 0 when � = �2 (de Sitter solution). The
scale factor can also be rewritten as a(⌅) ⌅  0(�⌅)�1��1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with � � �2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(⌅,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
modes evolve independently. We have
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where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
conjugate to vk

pk =
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
di⇥erent inflationary backgrounds (i.e. di⇥erent inflaton
potentials) lead to di⇥erent ⌃(⌅,k) and, therefore, to dif-
ferent behaviors for vk(⌅). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v⇤⇤k + ⌃2 (⌅,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (⌥) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ⌃2(⌅,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.
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In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
is more convenient for the problem we want to investigate
in this article. In order to quantize the system, it is also
more convenient to work with real variables. Therefore,
we introduce the following definitions
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In the Schrödinger approach, the quantum state of the
system is described by a wavefunctional, � [v(⌅,x)].
Since we work in Fourier space (and since the theory is
still free in the sense that it does not contain terms with
power higher than two in the Lagrangian), the wavefunc-
tional can also be factorized into mode components as
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Quantization is achieved by promoting vk and pk to
quantum operators, v̂k and p̂k, and by requiring the
canonical commutation relations

�
v̂R

k , p̂R
q

⇥
= i� (k � q) ,

�
v̂I

k, p̂I
q

⇥
= i� (k � q) . (15)

These relations admit the following representation

v̂R,I
k � = vR,I

k � , p̂R,I
k � = �i

⇧�
⇧vR,I

k

. (16)

The wavefunctional � [v(⇥,x)] obeys the Schrödinger
equation which, in this context, is a functional di⇤er-
ential equation. However, since each mode evolves in-
dependently, this functional di⇤erential equation can be
reduced to an infinite number of di⇤erential equations for
each �k. Concretely, we have

i
�R,I

k

⇧⇥
= ĤR,I

k �R,I
k , (17)

where the Hamiltonian densities ĤR,I
k , are related to the

Hamiltonian by Ĥ =
⌥

d3k
⇤
ĤR

k + ĤI
k

⌅
. They can be

expressed as
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⇧
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⌅2 +
1
2
⌅2(⇥,k)

⇤
v̂R,I

k

⌅2
, (18)

where we have made use of the representations (16).
We are now in a position where we can solve the

Schrödinger equation. Let us consider the following
Gaussian state

�R,I
k

⇤
⇥, vR,I

k

⌅
= Nk(⇥)e��k(�)(vR,I

k )2

. (19)

The functions Nk(⇥) and ⇥k(⇥) are time dependent and
do not carry the subscripts “R” and/or “I” because they
are the same for the wavefunctions of the real and imagi-
nary parts of the Mukhanov-Sasaki variable (see below).
Then, inserting �k given by Eq. (19) into the Schrödinger
equation (17) implies that Nk and ⇥k obey the di⇤eren-
tial equations

i
N ⌅

k

Nk
= ⇥k, ⇥⌅k = �2i⇥2

k +
i

2
⌅2(⇥,k). (20)

The solutions can be easily found and read

|Nk| =
⇧

2⇧e ⇥k

⇤

⌃1/4

, ⇥k = � i

2
f ⌅k
fk

, (21)

where fk is a function obeying the equation f ⌅⌅k +⌅2fk =
0, that is to say exactly Eq. (12). The first equation (21)

guarantees that the wavefunction is properly normalized,
i.e.

�
�R,I

k �R,I
k

⇥dvR,I
k = 1. (22)

Let us now discuss the initial conditions. The funda-
mental assumption of inflation is that the perturbations
are initially in their ground state. At the beginning of in-
flation, all the modes of astrophysical interest today have
a physical wavelength smaller than the Hubble radius,
i.e. k/(aH)⇤⌅. In this regime, one has ⌅2(⇥,k)⇤ k2

and each mode now behaves as an harmonic oscillator (as
opposed to a parametric oscillator in the generic case)
with frequency ⌅ = k. As a consequence, the di⇤erential
equation for fk(⇥) can easily be solved and the solution
reads fk = Akeik� + Bke�ik�, Ak and Bk being integra-
tion constants. Upon using the second equation (21), one
has

⇥k ⇤
k

2
Akeik� �Bke�ik�

Akeik� + Bke�ik�
. (23)

The wavefunction (19) represents the ground state wave-
function of an harmonic oscillator if ⇥k = k/2. There-
fore, one must choose the initial conditions such that
Bk = 0. Moreover, it is easy to check that the Wronskian
W ⇥ f ⌅kf⇥k � f ⌅⇥k fk is a conserved quantity, dW/d⇥ = 0,
thanks to the equation of motion of fk. Straightforward
calculation leads to W = 2ik |Ak|2. In the Heisenberg
picture the canonical commutation relations require that
W = i. Even if in the Schrödinger picture presently used,
the specific value of W is irrelevant since it cancels out
on all calculable physical quantities, this value is conven-
tionally adopted, which amounts to setting Ak = 1/

⌃
2k.

As announced, requiring the initial state to be the ground
state has completely fixed the initial conditions. We
see that Eq. (12) (or, equivalently, the equation for fk)
should thus be solved with the boundary condition

lim
k/(aH)⇤+⇧

fk =
1⌃
2k

eik�. (24)

This choice of initial conditions is referred to as the
Bunch-Davies vacuum.

C. The Power Spectrum

Let us now turn to the calculation of the power spec-
trum and first introduce the two-point correlation func-
tion, defined by
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The next step consists in deriving an equation of mo-
tion for v(⌅,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(⌅,x). Expanding the action of
the system (i.e. Einstein-Hilbert action plus the action of
a scalar field) up to second order in the perturbations,
one obtains [12]
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where ⇤1 = 1 � H⇤/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H2(1 � ⇤1) shows,
the condition ⇤1 < 1 is in fact su⇤cient to have infla-
tion. Moreover, we have slow-roll inflation [19, 86–89]
if ⇤1 ⇤ 1. In this case, it is easy to show that ⇤1 ⌅
(M2

Pl
/2V 2)(dV/d⌥)2, i.e. ⇤1 is in fact a measure of how

much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has ⇤1 = (2 + �)/(1 + �) and,
of course, ⇤1 = 0 when � = �2 (de Sitter solution). The
scale factor can also be rewritten as a(⌅) ⌅  0(�⌅)�1��1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with � � �2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(⌅,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
modes evolve independently. We have

v (⌅,x) =
1

(2⇧)3/2
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d3k vk (⌅)eik·x , (7)

with v�k = v⇥k because v(⌅,x) is real. Then inserting
this expansion into Eq. (6), one arrives at [12]
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where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
conjugate to vk

pk =
⇥L
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⇤ = v⇤k , (9)

where L is the Lagrangian density in Fourier space that
can be derived from Eq. (8). This allows us to calculate

the Hamiltonian which reads
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This Hamiltonian represents a collection of paramet-
ric oscillators (i.e. one oscillator per mode), the time-
dependent frequency of which can be expressed as
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
di⇥erent inflationary backgrounds (i.e. di⇥erent inflaton
potentials) lead to di⇥erent ⌃(⌅,k) and, therefore, to dif-
ferent behaviors for vk(⌅). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v⇤⇤k + ⌃2 (⌅,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (⌥) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ⌃2(⌅,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.

B. Quantization in the Schrödinger Picture

In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
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Primordial Power Spectrum 
Standard case 

Quantization in the 
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Usual treatment of the perturbations?

conformal time

Einstein-Hilbert action up to 2nd order

Bardeen (Newton) gravitational potential
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V. F. Mukhanov, H. A. Feldman & R. H. Brandenberger, Phys. Rep. 215, 203 (1992) 

Both background and perturbations are quantum
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Self-consistent treatment of the perturbations?

Hamiltonian up to 2nd order

factorization of the wave function

comes from 0th order
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Use dBB...

Self-consistent treatment of the perturbations?
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The next step consists in deriving an equation of mo-
tion for v(⌅,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(⌅,x). Expanding the action of
the system (i.e. Einstein-Hilbert action plus the action of
a scalar field) up to second order in the perturbations,
one obtains [12]

(2)⇥S =
1
2

�
d4x

⇤
(v⇤)2 � ⇥ij�iv�jv +

�
a
⇧
⇤1

⇥⇤⇤

a
⇧
⇤1

v2

⌅
,

(6)
where ⇤1 = 1 � H⇤/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H2(1 � ⇤1) shows,
the condition ⇤1 < 1 is in fact su⇤cient to have infla-
tion. Moreover, we have slow-roll inflation [19, 86–89]
if ⇤1 ⇤ 1. In this case, it is easy to show that ⇤1 ⌅
(M2

Pl
/2V 2)(dV/d⌥)2, i.e. ⇤1 is in fact a measure of how

much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has ⇤1 = (2 + �)/(1 + �) and,
of course, ⇤1 = 0 when � = �2 (de Sitter solution). The
scale factor can also be rewritten as a(⌅) ⌅  0(�⌅)�1��1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with � � �2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(⌅,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
modes evolve independently. We have

v (⌅,x) =
1

(2⇧)3/2

�

R3
d3k vk (⌅)eik·x , (7)

with v�k = v⇥k because v(⌅,x) is real. Then inserting
this expansion into Eq. (6), one arrives at [12]
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�

d⌅
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d3k

⇧
v⇤kv⇥k

⇤ + vkv⇥k

⇤�
a
⇧
⇤1

⇥⇤⇤

a
⇧
⇤1

� k2

⌅⌃
,

(8)

where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
conjugate to vk

pk =
⇥L
⇥v⇥k

⇤ = v⇤k , (9)

where L is the Lagrangian density in Fourier space that
can be derived from Eq. (8). This allows us to calculate

the Hamiltonian which reads

H =
�

d3k

⇧
pkp⇥k + vkv⇥k

⇤
k2 �

�
a
⇧
⇤1

⇥⇤⇤

a
⇧
⇤1

⌅⌃
. (10)

This Hamiltonian represents a collection of paramet-
ric oscillators (i.e. one oscillator per mode), the time-
dependent frequency of which can be expressed as

⌃2 (⌅,k) = k2 �
�
a
⇧
⇤1

⇥⇤⇤

a
⇧
⇤1

. (11)

We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
di⇥erent inflationary backgrounds (i.e. di⇥erent inflaton
potentials) lead to di⇥erent ⌃(⌅,k) and, therefore, to dif-
ferent behaviors for vk(⌅). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v⇤⇤k + ⌃2 (⌅,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (⌥) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ⌃2(⌅,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.

B. Quantization in the Schrödinger Picture

In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
is more convenient for the problem we want to investigate
in this article. In order to quantize the system, it is also
more convenient to work with real variables. Therefore,
we introduce the following definitions

vk ⇥
1⇧
2

�
vR

k + ivI
k

⇥
, pk ⇥

1⇧
2

�
pR

k + ipI
k

⇥
. (13)

In the Schrödinger approach, the quantum state of the
system is described by a wavefunctional, � [v(⌅,x)].
Since we work in Fourier space (and since the theory is
still free in the sense that it does not contain terms with
power higher than two in the Lagrangian), the wavefunc-
tional can also be factorized into mode components as
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k
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(⇢ẏ) = 0

H ⌘
Z

dq ⇢ ln

✓

⇢

| |2

◆

R
µ⌫

� 1

2
g
µ⌫

R = 8⇡G
N
T
µ⌫

i
d

dt
| i = Ĥ| i
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the system (i.e. Einstein-Hilbert action plus the action of
a scalar field) up to second order in the perturbations,
one obtains [12]

(2)⇥S =
1
2

�
d4x

⇤
(v⇤)2 � ⇥ij�iv�jv +

�
a
⇧
⇤1

⇥⇤⇤

a
⇧
⇤1

v2

⌅
,

(6)
where ⇤1 = 1 � H⇤/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H2(1 � ⇤1) shows,
the condition ⇤1 < 1 is in fact su⇤cient to have infla-
tion. Moreover, we have slow-roll inflation [19, 86–89]
if ⇤1 ⇤ 1. In this case, it is easy to show that ⇤1 ⌅
(M2

Pl
/2V 2)(dV/d⌥)2, i.e. ⇤1 is in fact a measure of how

much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has ⇤1 = (2 + �)/(1 + �) and,
of course, ⇤1 = 0 when � = �2 (de Sitter solution). The
scale factor can also be rewritten as a(⌅) ⌅  0(�⌅)�1��1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with � � �2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(⌅,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
modes evolve independently. We have

v (⌅,x) =
1

(2⇧)3/2

�

R3
d3k vk (⌅)eik·x , (7)

with v�k = v⇥k because v(⌅,x) is real. Then inserting
this expansion into Eq. (6), one arrives at [12]
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�

d⌅
�

d3k

⇧
v⇤kv⇥k

⇤ + vkv⇥k

⇤�
a
⇧
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⇥⇤⇤

a
⇧
⇤1

� k2

⌅⌃
,

(8)

where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
conjugate to vk

pk =
⇥L
⇥v⇥k

⇤ = v⇤k , (9)

where L is the Lagrangian density in Fourier space that
can be derived from Eq. (8). This allows us to calculate

the Hamiltonian which reads

H =
�

d3k

⇧
pkp⇥k + vkv⇥k

⇤
k2 �

�
a
⇧
⇤1

⇥⇤⇤

a
⇧
⇤1

⌅⌃
. (10)

This Hamiltonian represents a collection of paramet-
ric oscillators (i.e. one oscillator per mode), the time-
dependent frequency of which can be expressed as

⌃2 (⌅,k) = k2 �
�
a
⇧
⇤1

⇥⇤⇤

a
⇧
⇤1

. (11)

We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
di⇥erent inflationary backgrounds (i.e. di⇥erent inflaton
potentials) lead to di⇥erent ⌃(⌅,k) and, therefore, to dif-
ferent behaviors for vk(⌅). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v⇤⇤k + ⌃2 (⌅,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (⌥) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ⌃2(⌅,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.

B. Quantization in the Schrödinger Picture

In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
is more convenient for the problem we want to investigate
in this article. In order to quantize the system, it is also
more convenient to work with real variables. Therefore,
we introduce the following definitions

vk ⇥
1⇧
2

�
vR

k + ivI
k

⇥
, pk ⇥

1⇧
2

�
pR

k + ipI
k

⇥
. (13)

In the Schrödinger approach, the quantum state of the
system is described by a wavefunctional, � [v(⌅,x)].
Since we work in Fourier space (and since the theory is
still free in the sense that it does not contain terms with
power higher than two in the Lagrangian), the wavefunc-
tional can also be factorized into mode components as

� [v(⌅,x)] =
⌥

k

�k
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vR

k , vI
k
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k
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.
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dBB trajectory of the field component q̇
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Out-of-equilibrium time evolution

Usual behaviour = evolves towards equilibrium 
    (Minkowski or slowly expanding Universe)

expansion: there is a retarded time…

Freezing the pdf 
out of equilibrium
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without expansion with expansion

S. Colin & A. Valentini,!
Phys. Rev. D88 103515 (2013)
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Initial out-of-equilibrium conditions P(k) = P(k)
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small 
angular 
scales
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scales
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scales
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small 
angular 
scales

large 
angular 
scales

Better fit???

CosmoMC chains
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with only one parameter added, others held fixed: ⇠(k) = tan�1
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with only one parameter added, others held fixed: ⇠(k) = tan�1
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with only one parameter added, others held fixed: ⇠(k) = tan�1
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work in progress!

with S. Vitenti & A. Valentini

Usual Planck best-fit
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The GRW dynamical collapse model
Ghirardi - Rimini - Weber
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non linear
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BONUS: Amplification mechanism

Big objects are classical 
small objects are quantum!

Modified Schrödinger 
equation with collapse 
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d|�⌅ = �iĤ|�⌅dt +
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Conclusions

dBB = testable formulation of QM(1)

quantum non-equilibrium may produce new effects(2)

most systems did reach equilibrium(3)

primordial perturbations maybe not…(4)

specific shape for the primordial spectrum(5)

comparable with data!(6)

not incompatible with Planck… for the time being!(7)

more work still needs be done 
(other modifications of QM can be tested…)
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Conclusions

dBB = testable formulation of QM(1)

quantum non-equilibrium may produce new effects(2)

most systems did reach equilibrium(3)

primordial perturbations maybe not…(4)

specific shape for the primordial spectrum(5)

comparable with data!(6)

not incompatible with Planck… for the time being!(7)

more work still needs be done 
(other modifications of QM can be tested…)

Dziękuję!


