

Patrick Peter (w/S. Vitenti & A. Valentini) Institut d'Astrophysique de Paris

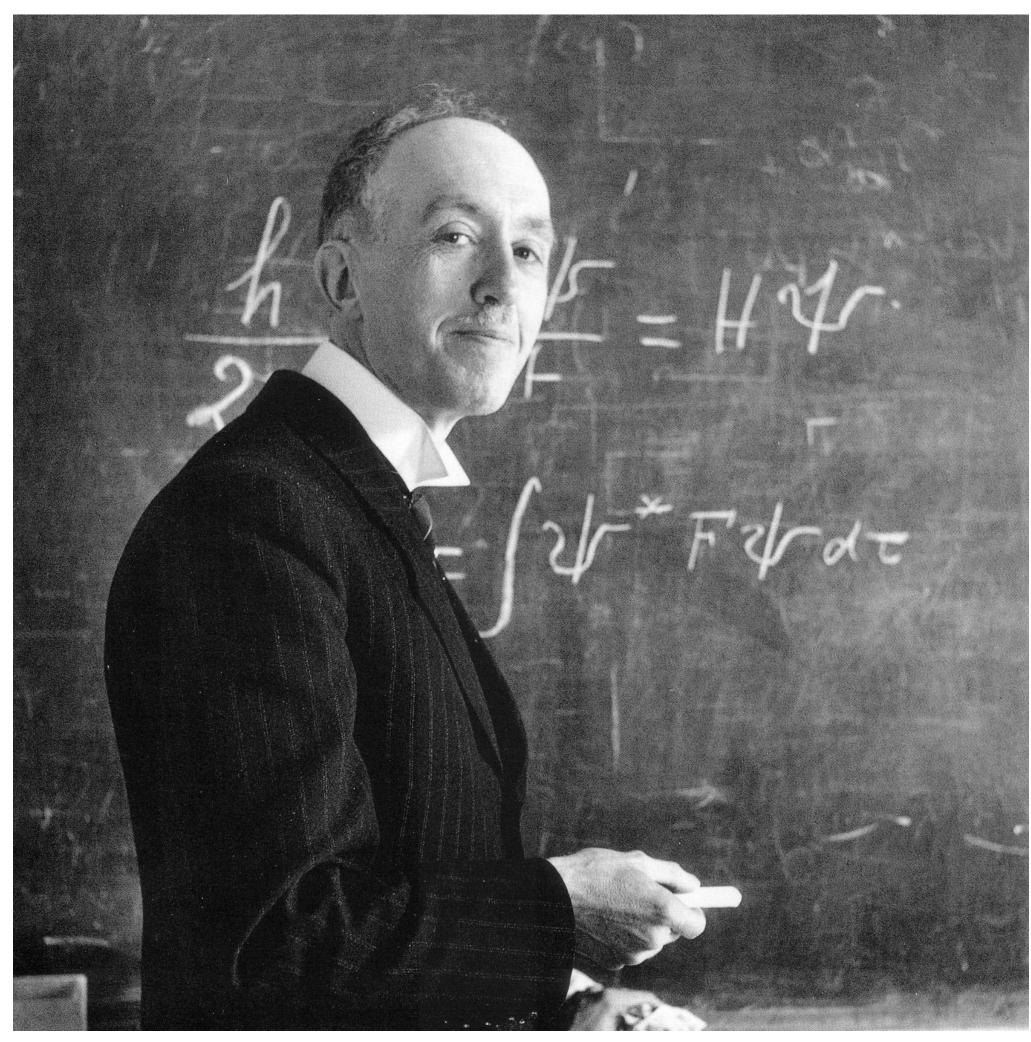
Bouncing quantum cosmological solutions in the dBB approach

Singularities of general relativity and their quantum fate

Instytut Matematyczny

Polskiej Akademii Nauk

Ontological interpretation (dBB)

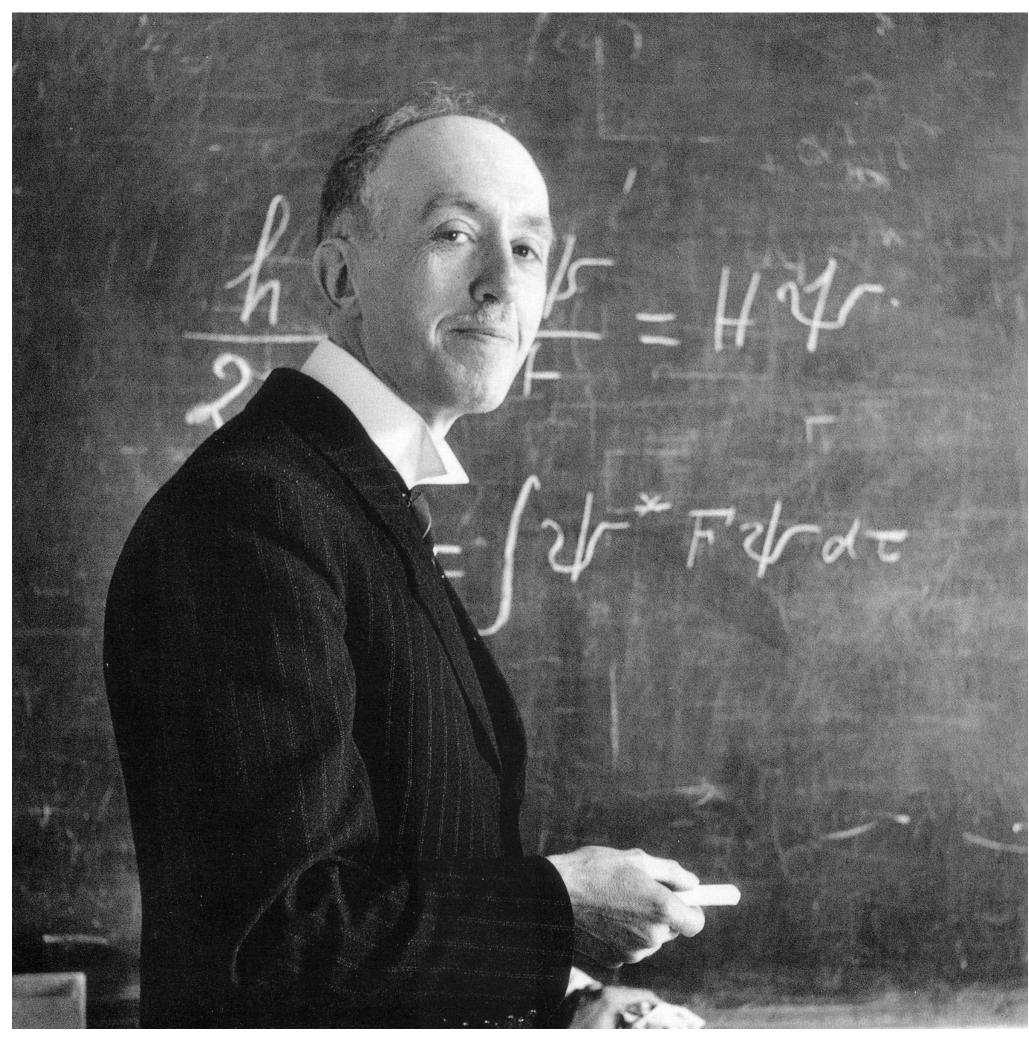


Louis de Broglie

David Bohm

1927 Solvay meeting and von Neuman mistake ... 'In 1952, I saw the impossible done' (J. Bell)

Ontological interpretation (dBB)

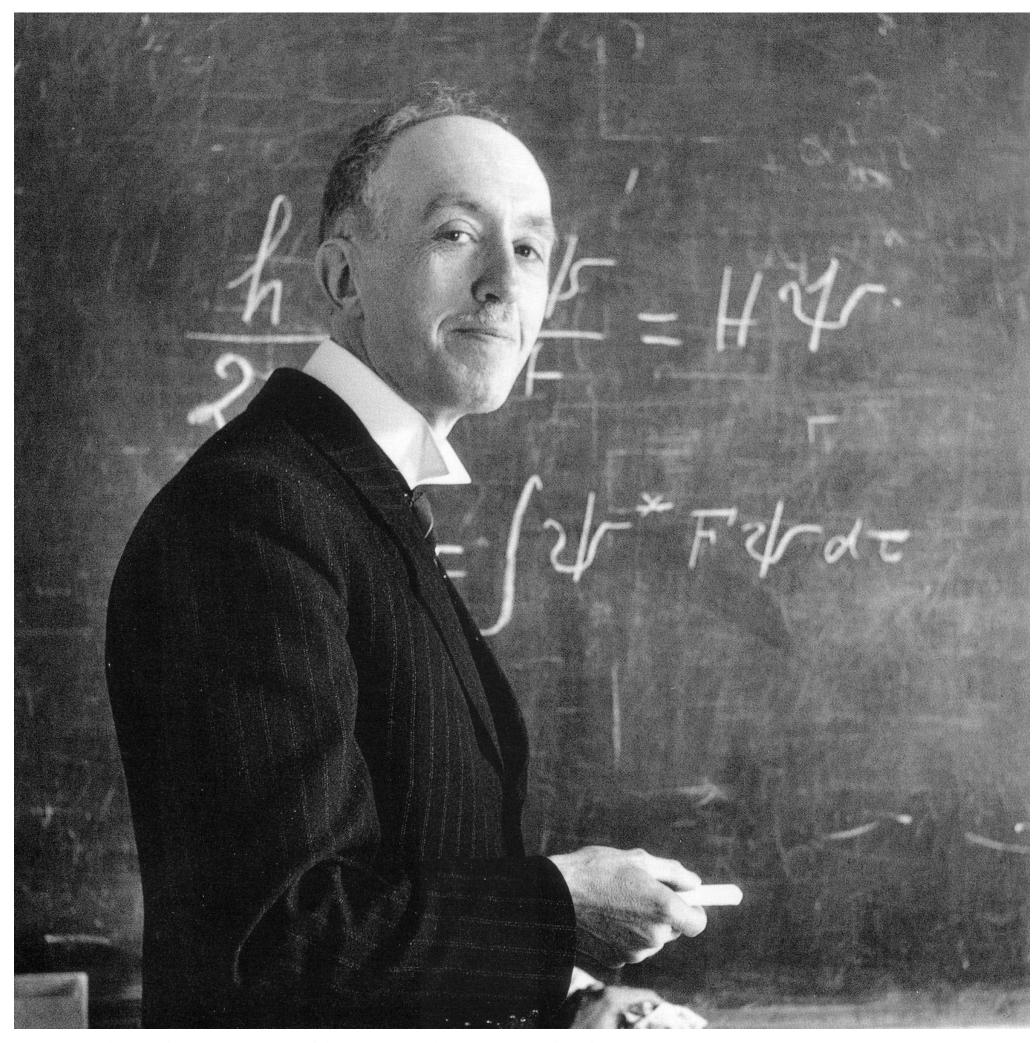


Louis de Broglie (Prince, duke ...)

David Bohm

1927 Solvay meeting and von Neuman mistake ... 'In 1952, I saw the impossible done' (J. Bell)

Ontological interpretation (dBB)

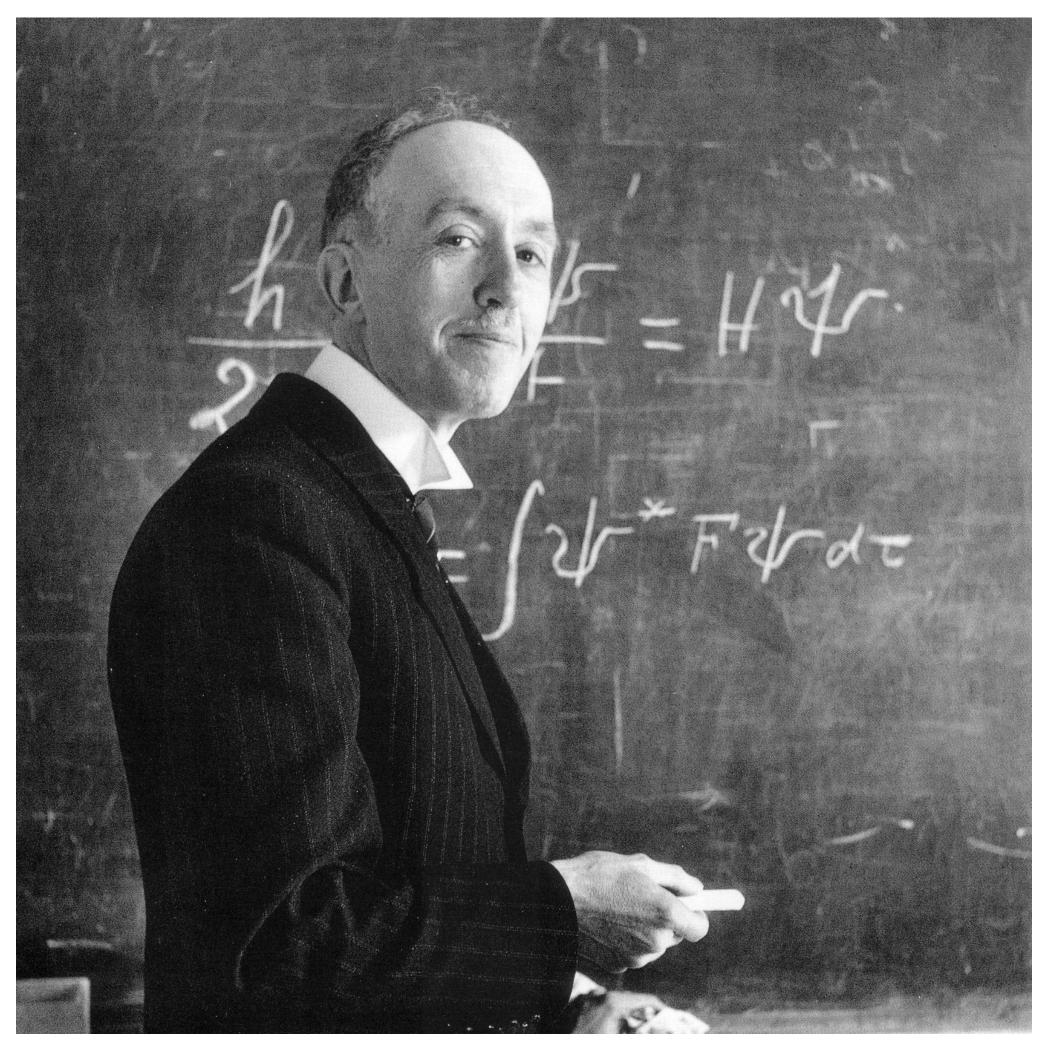


Louis de Broglie (Prince, duke ...)

David Bohm (Communist)

1927 Solvay meeting and von Neuman mistake ... 'In 1952, I saw the impossible done' (J. Bell)

Ontological formulation (dBB)



Louis de Broglie (Prince, duke ...)

David Bohm (Communist)

1927 Solvay meeting and von Neuman mistake ... 'In 1952, I saw the impossible done' (J. Bell)

 $\Psi = A(\mathbf{r}, t) e^{iS(\mathbf{r}, t)}$

Trajectories satisfy (de Broglie)
$$m \frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} t} = \Im m \, \frac{\Psi^* \nabla \Psi}{|\Psi(\boldsymbol{x},t)|^2} = \nabla S$$

 $\exists \, \boldsymbol{x}(t)$

 $\Psi = A(\mathbf{r}, t) e^{iS(\mathbf{r}, t)}$

Trajectories satisfy (Bohm)

$$m \frac{\mathrm{d}^2 \boldsymbol{x}}{\mathrm{d}t^2} = -\boldsymbol{\nabla}(V+Q)$$
 $Q \equiv -\frac{1}{2m} \frac{\boldsymbol{\nabla}^2 |\Psi|}{|\Psi|}$

 $\exists \, \boldsymbol{x}(t)$

$$Q \equiv -\frac{1}{2m} \frac{\nabla^2 |\Psi|}{|\Psi|}$$

 $\Psi = A(\mathbf{r}, t) e^{iS(\mathbf{r}, t)}$

Trajectories satisfy (de Broglie)
$$m \frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} t} = \Im m \, \frac{\Psi^* \nabla \Psi}{|\Psi(\boldsymbol{x},t)|^2} = \nabla S$$

 $\exists \, \boldsymbol{x}(t)$

$$\Psi = A(\mathbf{r}, t) e^{iS(\mathbf{r}, t)}$$

Trajectories satisfy (de Broglie)
$$m \frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} t} = \Im m \, \frac{\Psi^* \nabla \Psi}{|\Psi(\boldsymbol{x},t)|^2} = \nabla S$$

 $\exists \, \boldsymbol{x}(t)$

strictly equivalent to Copenhagen QM

probability distribution (attractor)

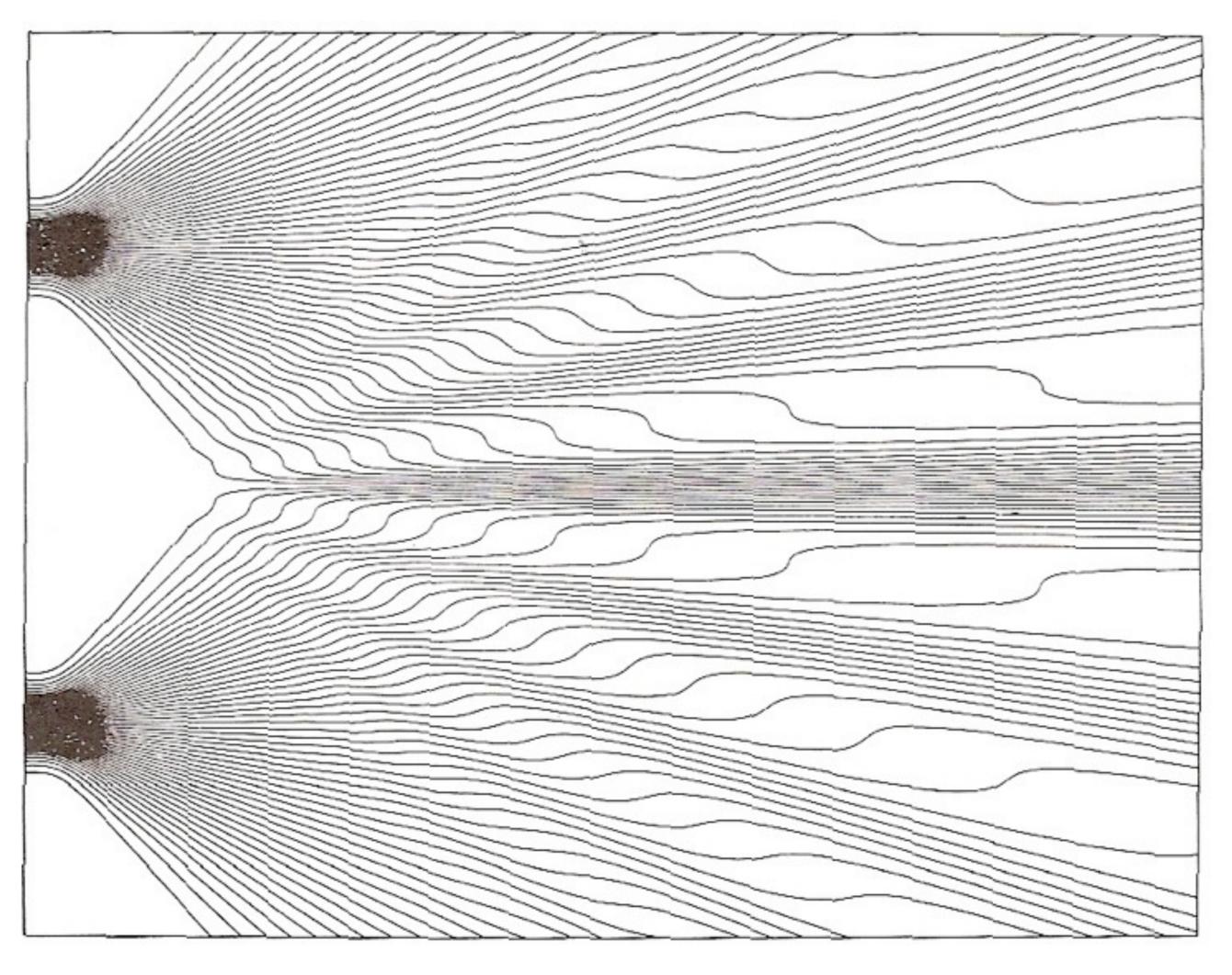
$$\exists t_0; \rho\left(\boldsymbol{x}, t_0\right) = \left|\Psi\left(\boldsymbol{x}, t_0\right)\right|^2$$

$$Q \equiv -\frac{1}{2m} \frac{\nabla^2 |\Psi|}{|\Psi|}$$

Properties:

- classical limit well defined $Q \longrightarrow 0$
- state dependent
- intrinsic reality
 - non local ...
- no need for external classical domain/observer!

The two-slit experiment:



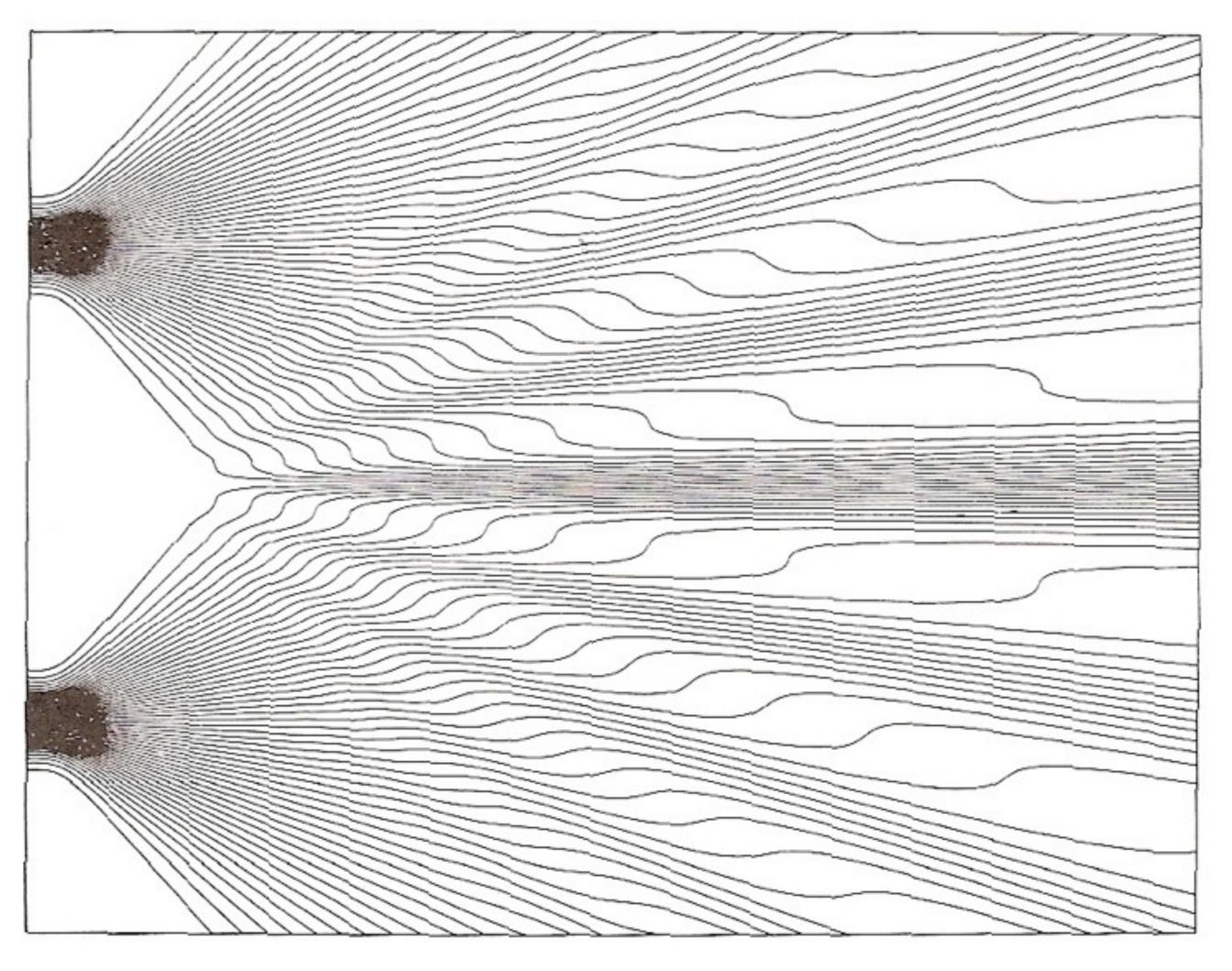
Surrealistic trajectories?

Non straight in vacuum...

$$m\frac{\mathrm{d}^2x(t)}{\mathrm{d}t^2} = -\nabla\left(V + Q\right)$$

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.

The two-slit experiment:



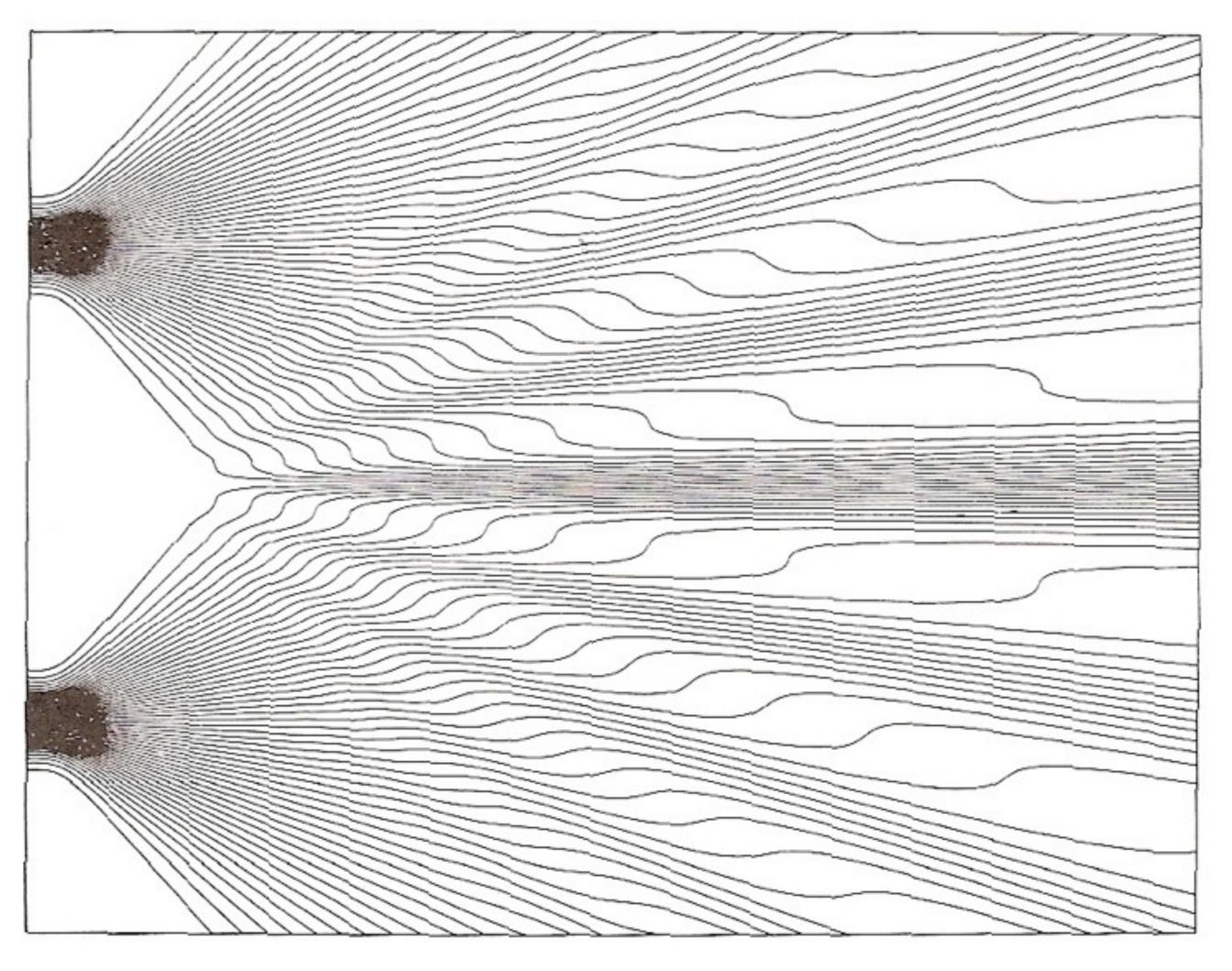
Surrealistic trajectories?

Non straight in vacuum...

$$m\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} = -\nabla (X + Q)$$

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.

The two-slit experiment:

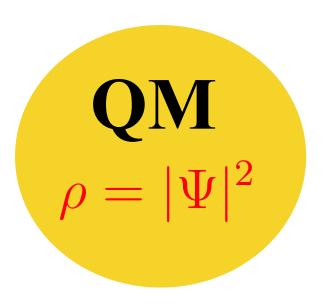


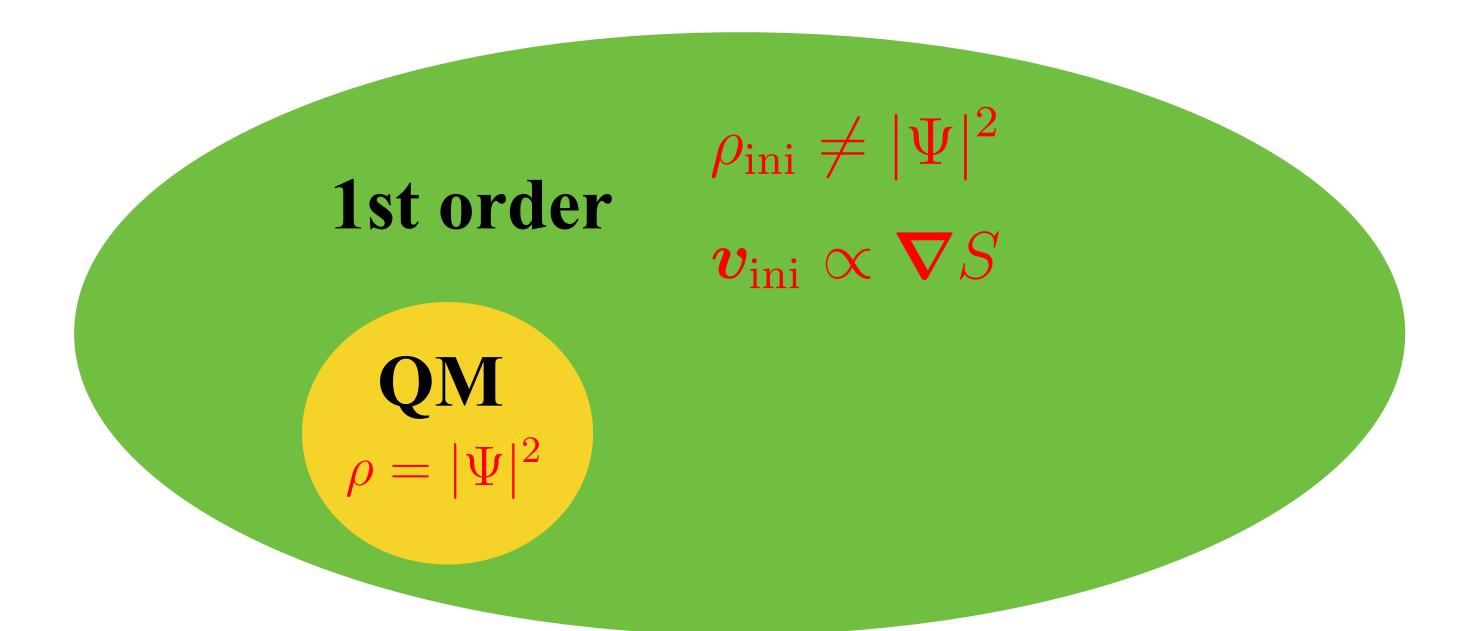
Surrealistic trajectories?

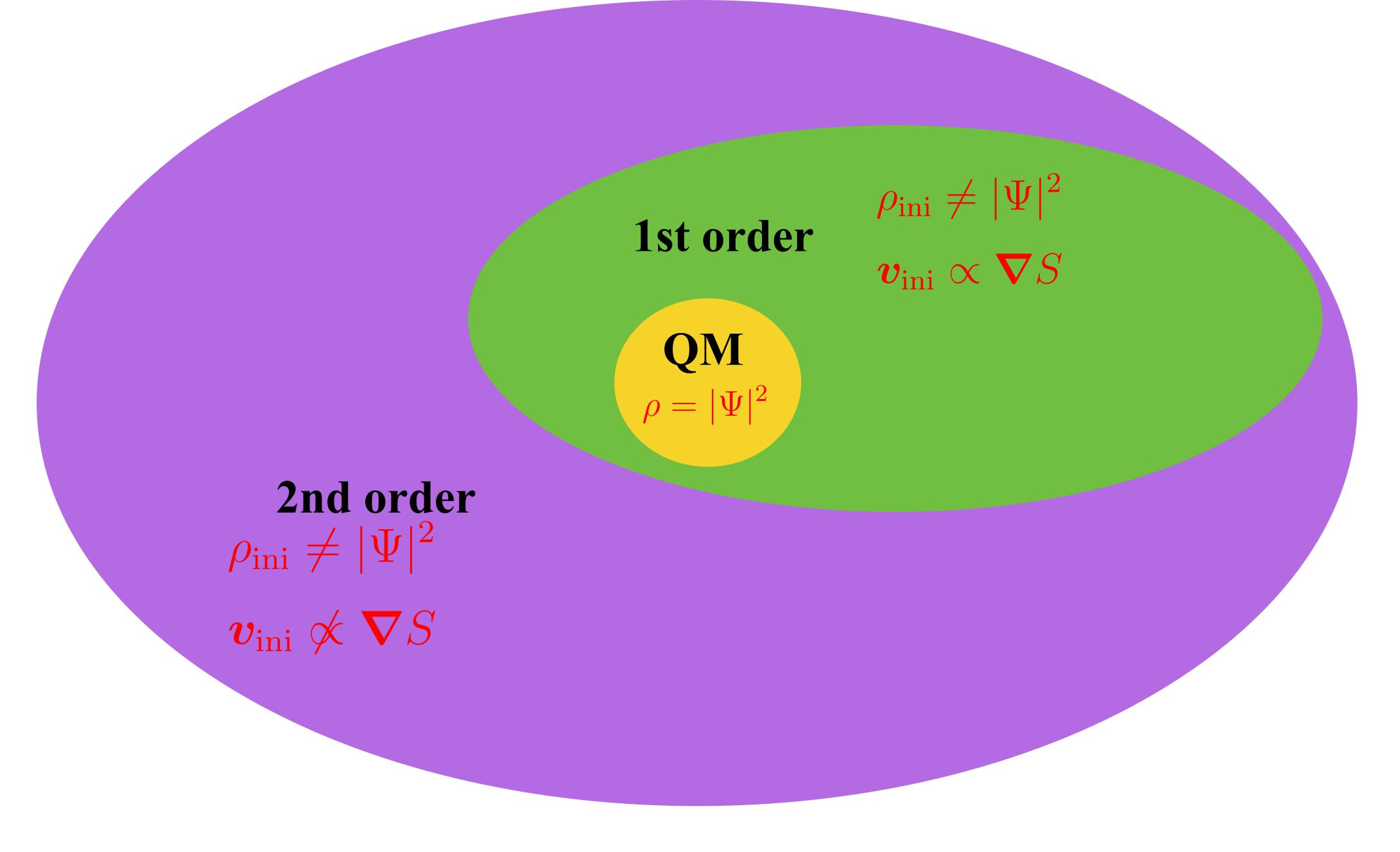
Non straight in vacuum...

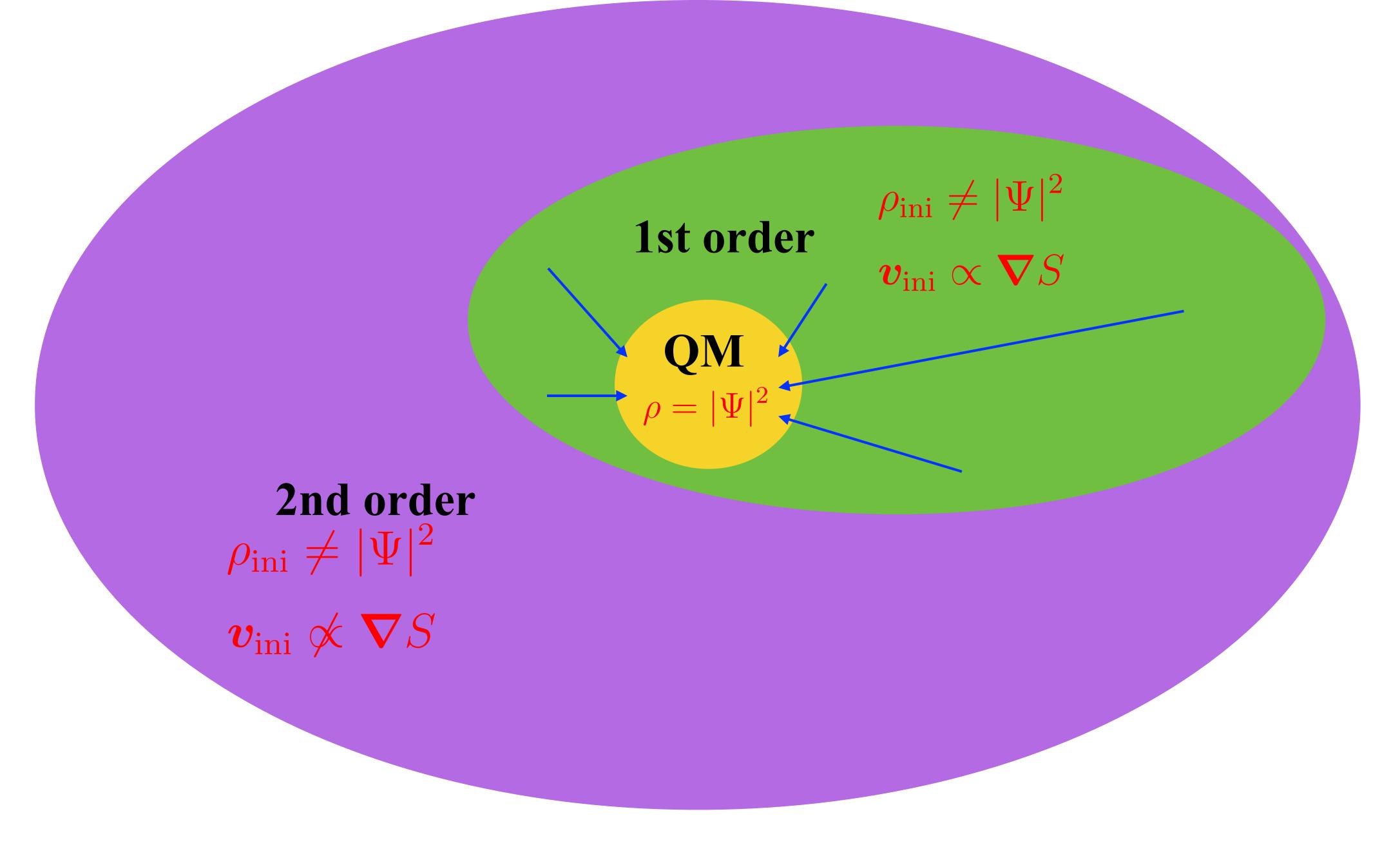
$$m\frac{\mathrm{d}^2x(t)}{\mathrm{d}t^2} = -\nabla (X + Q)$$

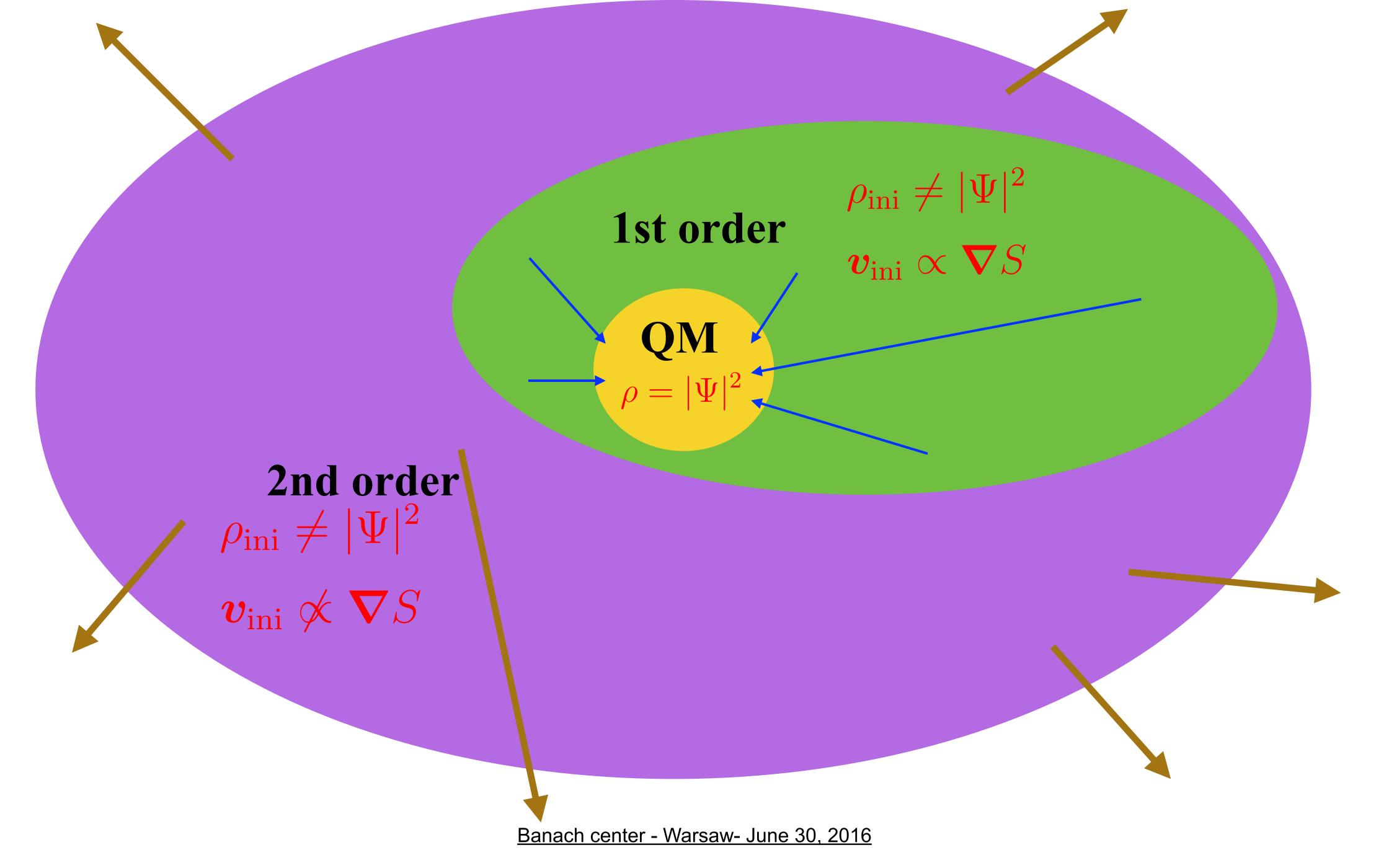
... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.











2nd order: is unstable...

S. Colin & A. Valentini, Proc. R. Soc. A 470, 20140288 (2014)

1st order: can be tested?

2nd order: is unstable...

S. Colin & A. Valentini, Proc. R. Soc. A 470, 20140288 (2014)

1st order: can be tested?

How????

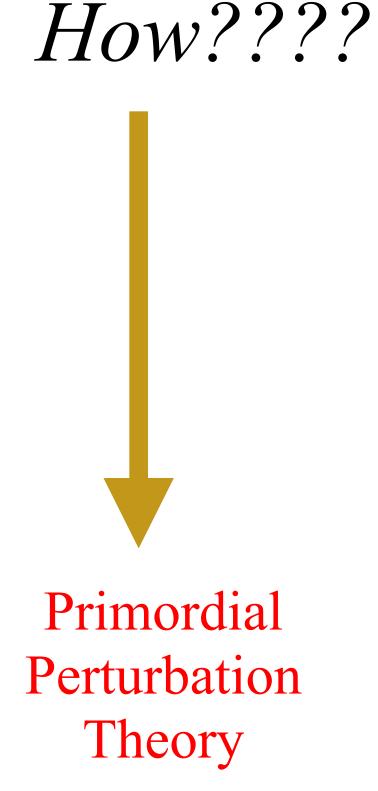
2nd order: is unstable...

S. Colin & A. Valentini, Proc. R. Soc. A 470, 20140288 (2014)

1st order: can be tested?

2nd order: is unstable...

S. Colin & A. Valentini, Proc. R. Soc. A 470, 20140288 (2014)



Quantum equilibrium

(Valentini & Westman, 2005)

$$i\frac{\mathrm{d}}{\mathrm{d}t}|\Psi\rangle = \hat{H}|\Psi\rangle$$

Particle in a box - 2D

$$i\frac{\partial\psi}{\partial t} = -\frac{1}{2}\frac{\partial^2\psi}{\partial x^2} - \frac{1}{2}\frac{\partial^2\psi}{\partial y^2} + V\psi$$

infinite square well - size π

Density of actual configurations

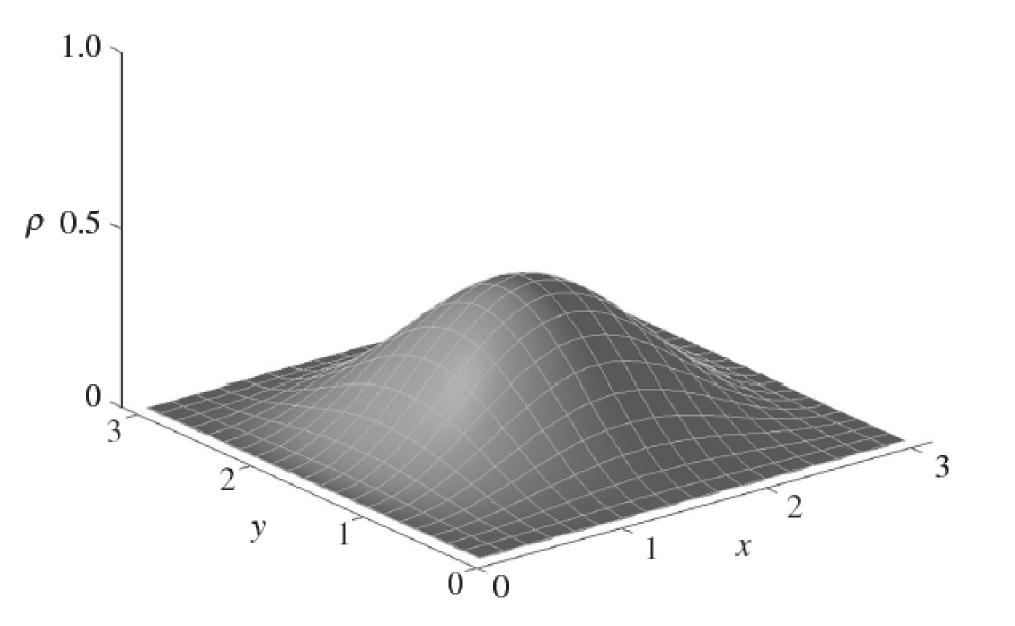
$$\rho(x,y,t) \implies \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho \dot{x}) + \frac{\partial}{\partial y}(\rho \dot{y}) = 0$$
 continuity equation

Energy eigenfunctions
$$\phi_{mn}(x,y) = \frac{2}{\pi}\sin(mx)\sin(ny)$$

Energy levels $E_{mn} = \frac{1}{2}(m^2 + n^2)$

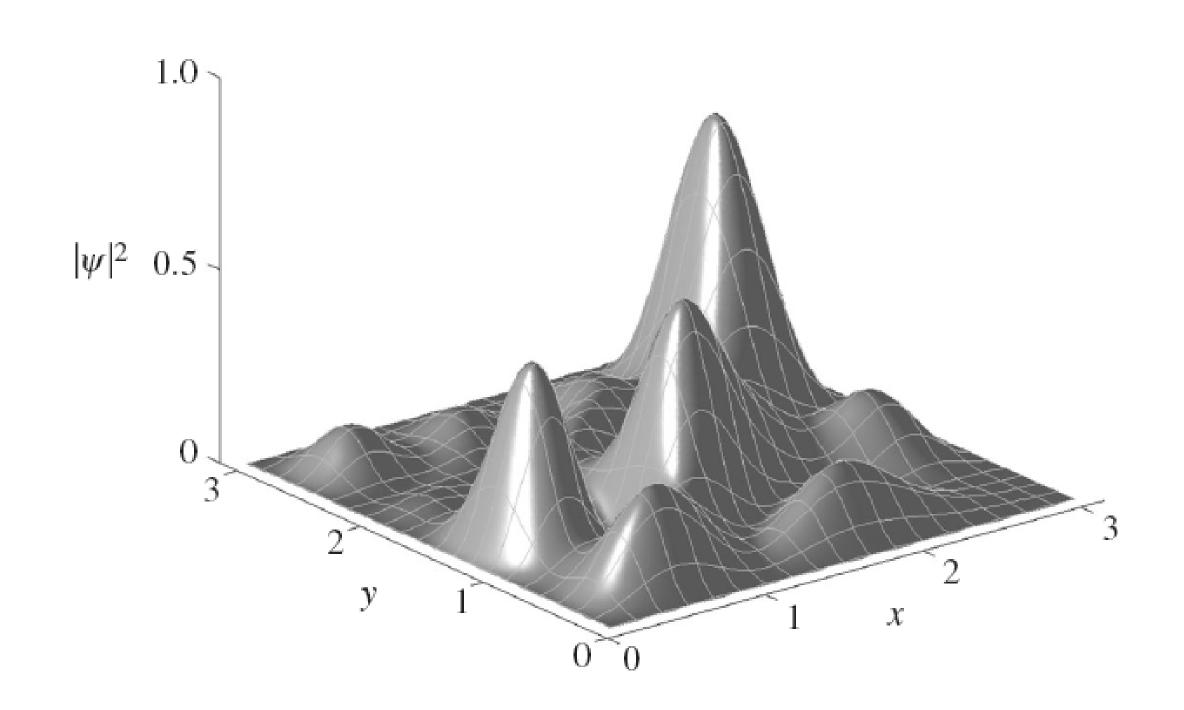
Initial configuration

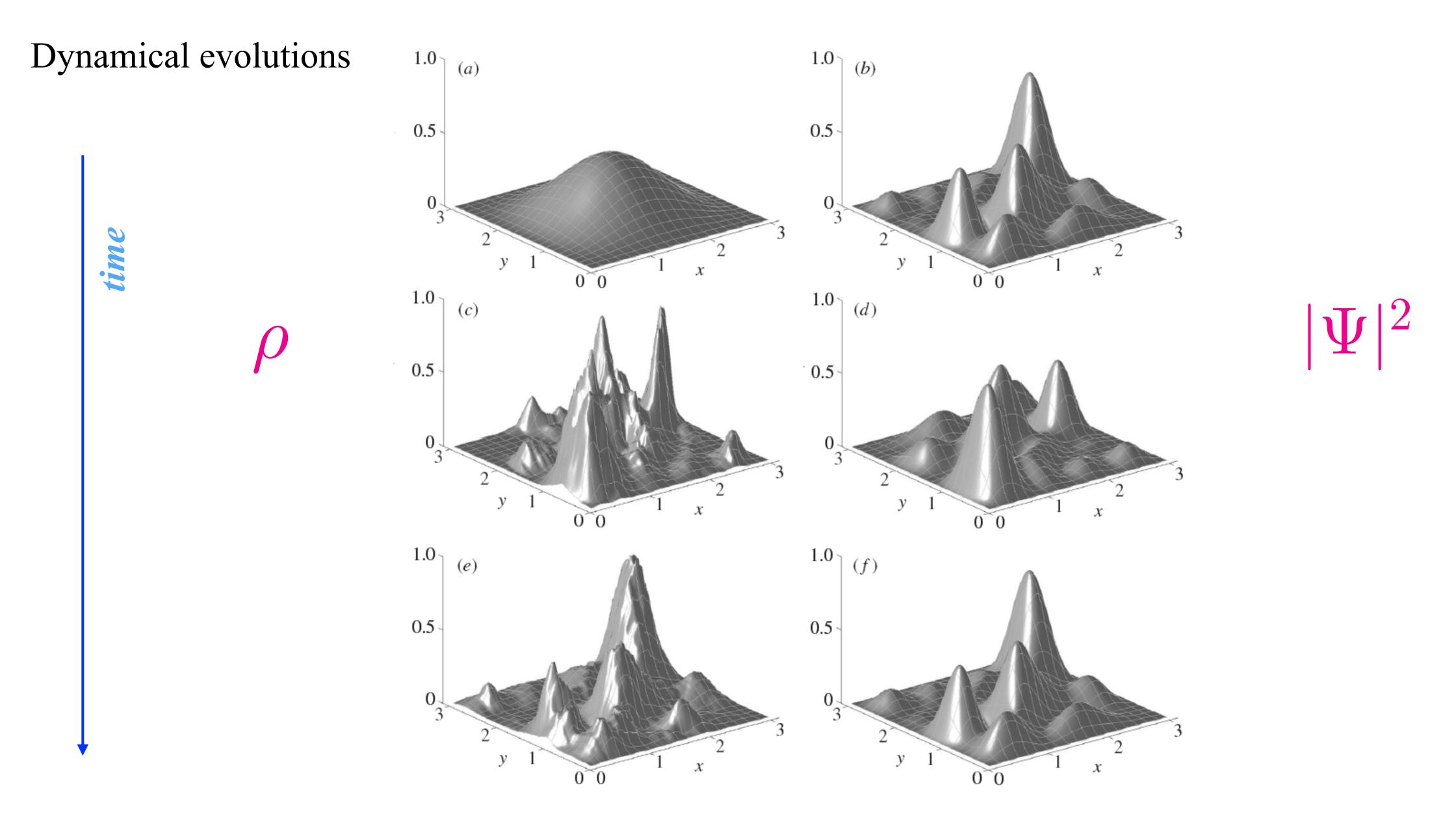
$$\rho(x, y, 0) = |\phi_{11}(x, y)|^2$$



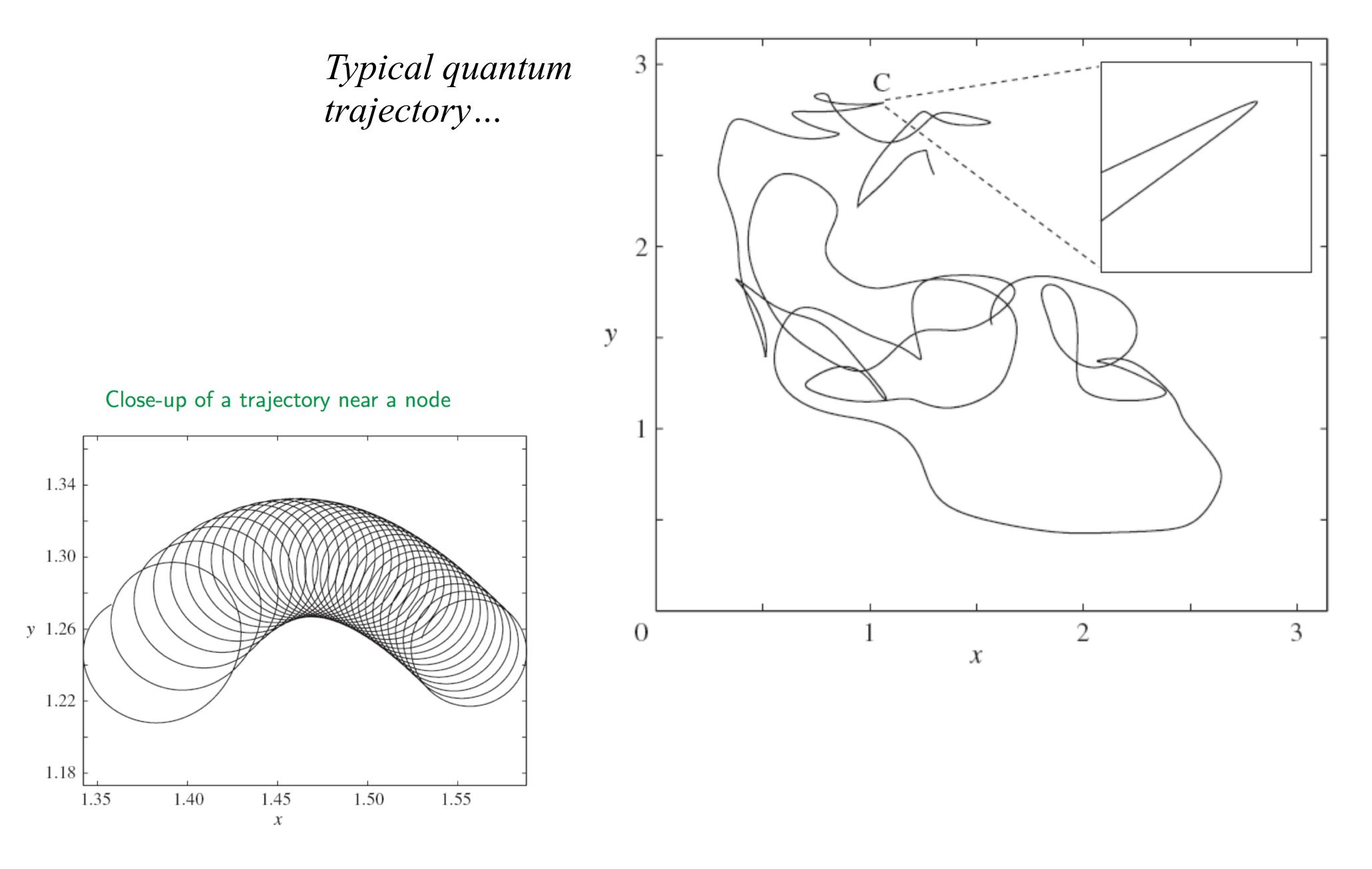
$$\psi(x, y, 0) = \sum_{m,n=1}^{4} \frac{1}{4} \phi_{mn}(x, y) \exp(i\theta_{mn})$$

$$\psi(x, y, t) = \sum_{m,n=1}^{4} \frac{1}{4} \phi_{mn}(x, y) \exp i(\theta_{mn} - E_{mn}t)$$

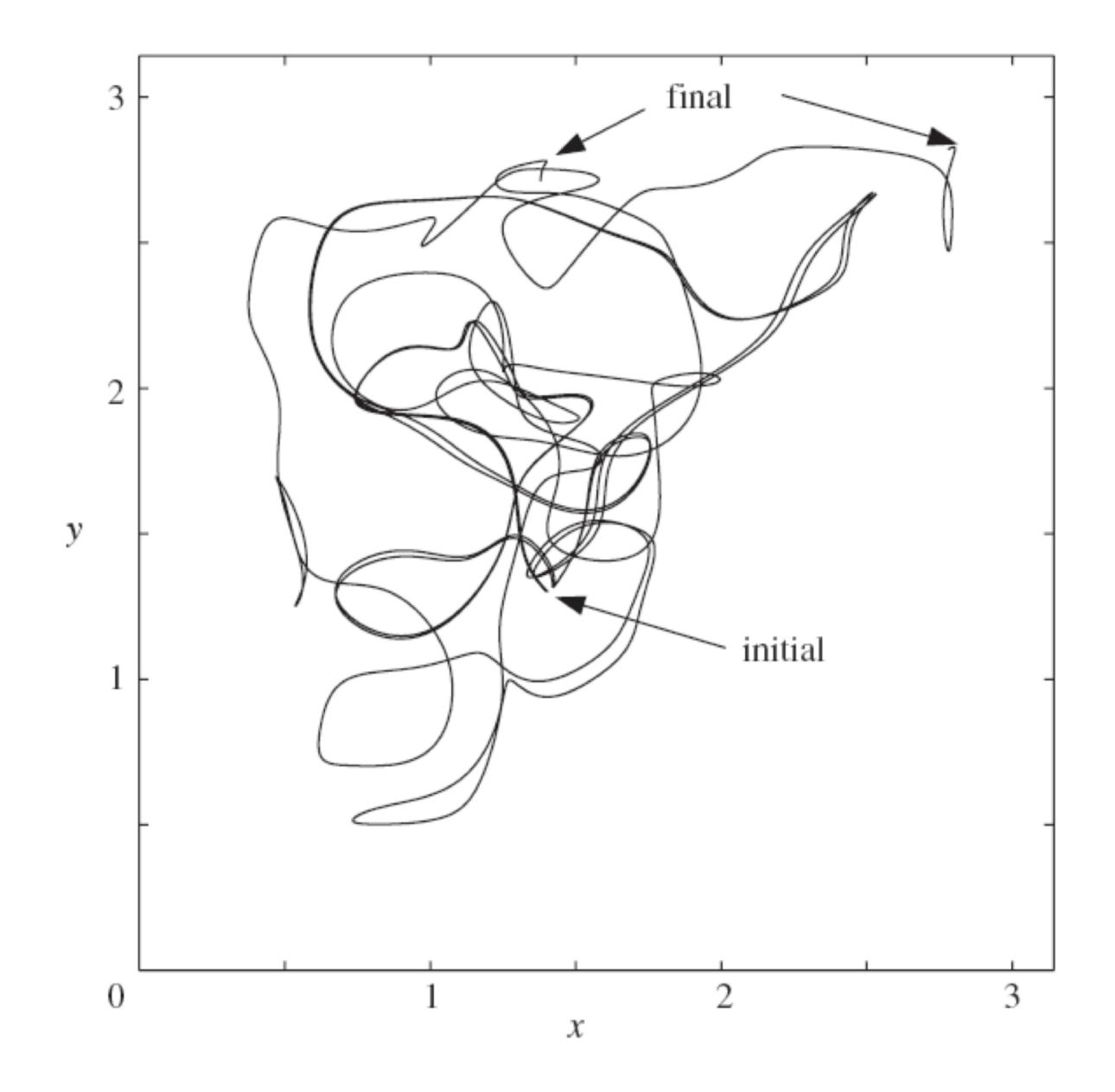




Banach center - Warsaw- June 30, 2016

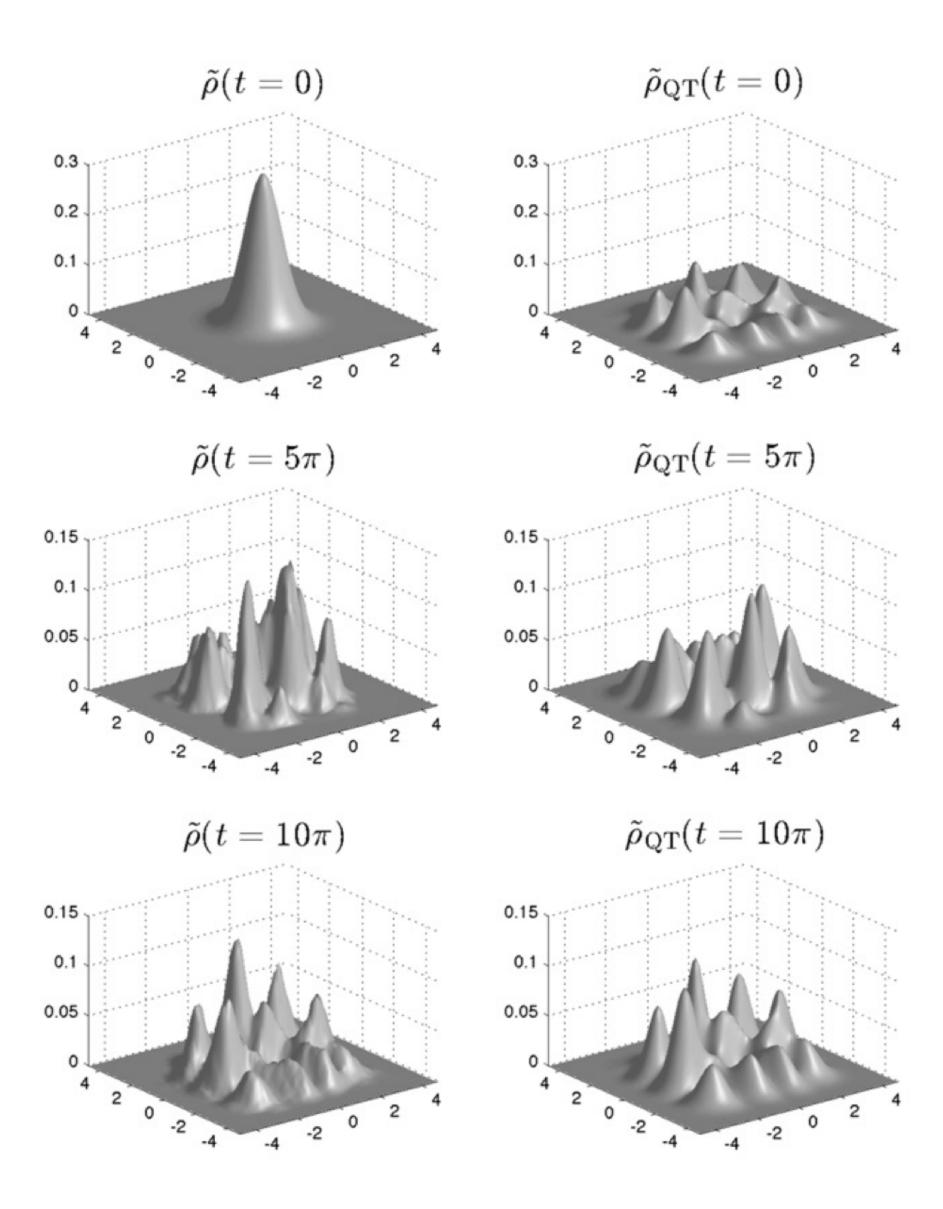


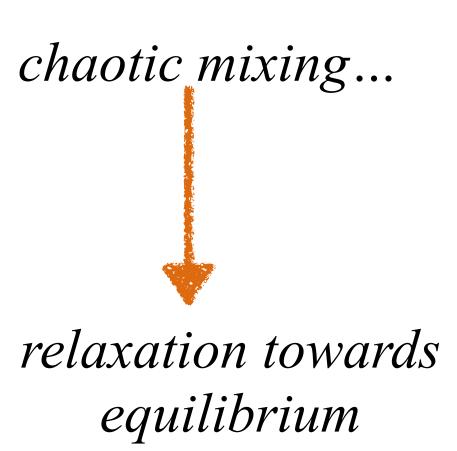
Banach center - Warsaw- June 30, 2016



chaotic mixing...

Banach center - Warsaw- June 30, 2016





just like ordinary thermal equilibrium



chaotic mixing...

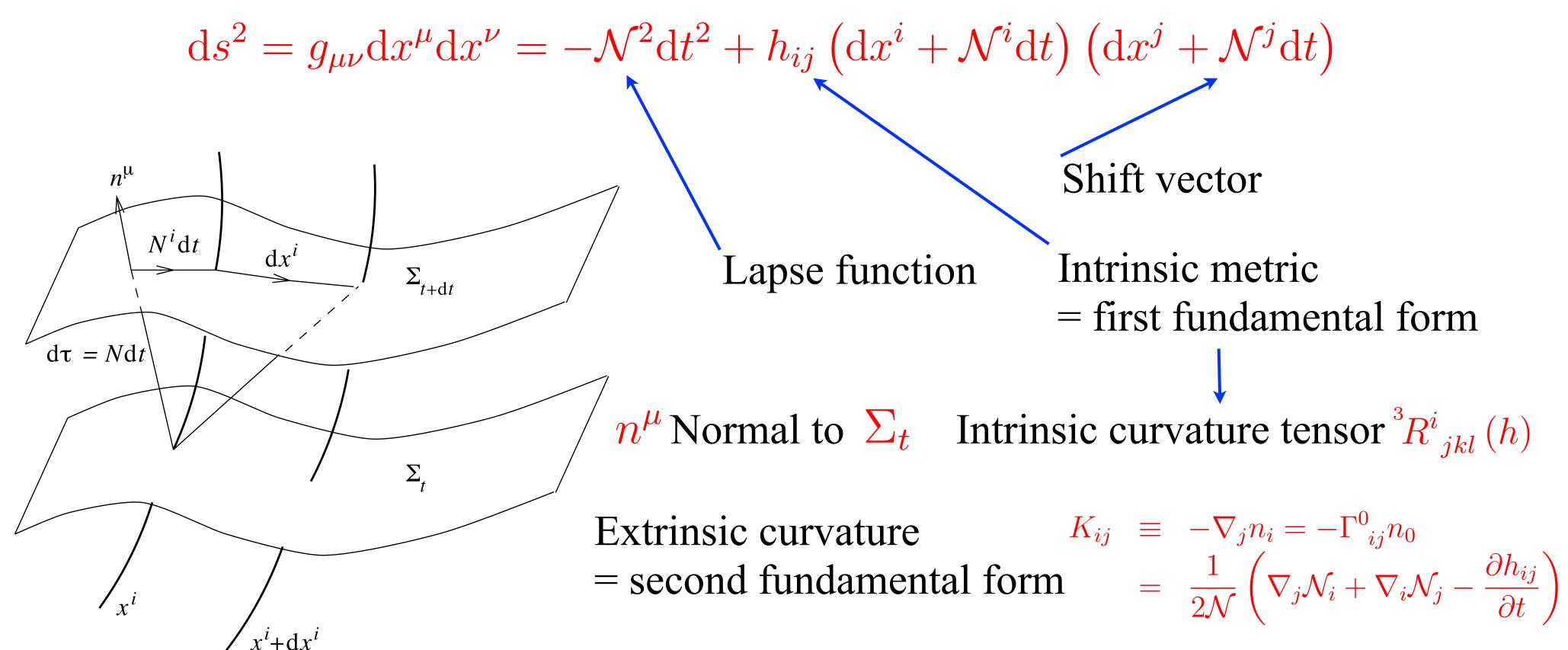
relaxation towards

equilibrium

just like ordinary thermal equilibrium

Quantum cosmology

Hamiltonian GR



Action:
$$S = \frac{1}{16\pi G_{\rm N}} \left[\int_{\mathcal{M}} \mathrm{d}^4 x \sqrt{-g} \left({}^4R - 2\Lambda \right) + 2 \int_{\partial \mathcal{M}} \mathrm{d}^3 x \sqrt{h} K^i_{\ i} \right] + S_{\rm matter}$$

• Superspace & canonical quantisation

$$\mathrm{Riem}(\Sigma) \equiv \left\{ h_{ij} \left(x^{\mu} \right), \Phi \left(x^{\mu} \right) \mid x \in \Sigma \right\}$$
 parameters

$$GR \Longrightarrow invariance / diffeomorphisms \Longrightarrow Conf = \frac{Riem(\Sigma)}{Diff_0(\Sigma)}$$
 superspace

Wave functional $\Psi[h_{ij}(x), \Phi(x)]$

Dirac canonical quantisation

$$\pi^{ij} \to -i\frac{\delta}{\delta h_{ij}}$$
 $\pi_{\Phi} \to -i\frac{\delta}{\delta \Phi}$

$$\pi_{\Phi} \to -i \frac{\delta}{\delta \Phi}$$

$$\pi^0 \to -i \frac{\delta}{\delta \mathcal{N}}$$
 $\pi^i \to -i \frac{\delta}{\delta \mathcal{N}_i}$

$$-i \frac{\delta}{\delta \mathcal{N}_i}$$

Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space = mini-superspace

$$h_{ij} dx^i dx^j = a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2 \left(d\theta^2 + \sin^2 \theta d\varphi^2 \right) \right] \qquad \Phi(x) = \phi(t)$$

WDW equation becomes Schrödinger-like for $\Psi[a(t), \phi(t)]$

Conceptual and technical problems:

Infinite number of dof → a few: mathematical consistency? Freeze momenta? Heisenberg uncertainties? QM = minisuperspace of QFT

Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space = mini-superspace

$$h_{ij} dx^i dx^j = a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2 \left(d\theta^2 + \sin^2 \theta d\varphi^2 \right) \right] \qquad \Phi(x) = \phi(t)$$

WDW equation becomes Schrödinger-like for $\Psi[a(t), \phi(t)]$

However, one can actually make calculations!

Exemple: Quantum cosmology of a perfect fluid

$$ds^{2} = N^{2}(\tau)d\tau - a^{2}(\tau)\gamma_{ij}dx^{i}dx^{j}$$

Perfect fluid: Schutz formalism ('70)

$$p = p_0 \left[\frac{\dot{\varphi} + \theta \dot{s}}{N(1+\omega)} \right]^{\frac{1+\omega}{\omega}}$$

 (φ, θ, s) = Velocity potentials

canonical transformation: $T = -p_s e^{-s/s_0} p_{\varphi}^{-(1+\omega)} s_0 \rho_0^{-\omega}$...

+ rescaling (volume...) + units...: simple Hamiltonian:

$$H = \left(-\frac{p_a^2}{4a} - \mathcal{K}a + \frac{p_T}{a^{3\omega}}\right) N$$

Wheeler-De Witt
$$H\Psi=0$$

$$H\Psi = 0$$

$$\mathcal{K} = 0 \Longrightarrow \chi \equiv \frac{2a^{3(1-\omega)/2}}{3(1-\omega)} \Longrightarrow i\frac{\partial\Psi}{\partial T} = \frac{1}{4}\frac{\partial^2\Psi}{\partial\chi^2}$$

$$\bar{\Psi} \frac{\partial \Psi}{\partial \chi} = \Psi \frac{\partial \bar{\Psi}}{\partial \chi}$$

Gaussian wave packet

$$\Psi = \left[\frac{8T_0}{\pi \left(T_0^2 + T^2 \right)^2} \right]^{\frac{1}{4}} \exp\left(-\frac{T_0 \chi^2}{T_0^2 + T^2} \right) e^{-iS(\chi, T)}$$

$$\text{phase} \quad S = \frac{T\chi^2}{T_0^2 + T^2} + \frac{1}{2} \arctan \frac{T_0}{T} - \frac{\pi}{4}$$

What do we do with the wave function of the Universe???

Gaussian wave packet

$$\Psi = \left[\frac{8T_0}{\pi \left(T_0^2 + T^2 \right)^2} \right]^{\frac{1}{4}} \exp\left(-\frac{T_0 \chi^2}{T_0^2 + T^2} \right) e^{-iS(\chi, T)}$$

$$\text{phase} \quad S = \frac{T\chi^2}{T_0^2 + T^2} + \frac{1}{2} \arctan \frac{T_0}{T} - \frac{\pi}{4}$$

What do we do with the wave function of the Universe???

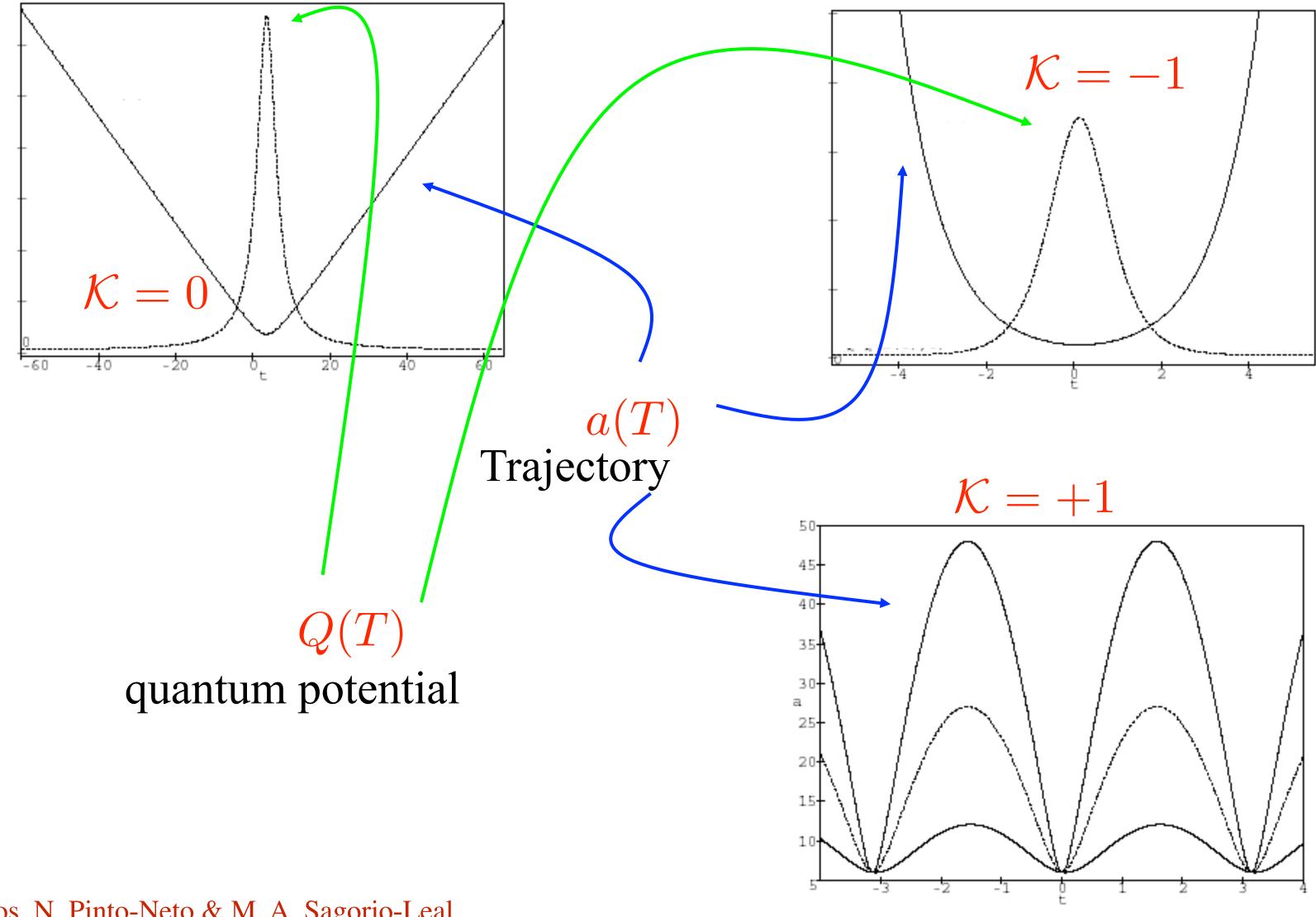
Gaussian wave packet

$$\Psi = \left[\frac{8T_0}{\pi (T_0^2 + T^2)^2} \right]^{\frac{1}{4}} \exp\left(-\frac{T_0 \chi^2}{T_0^2 + T^2}\right) e^{-iS(\chi, T)}$$

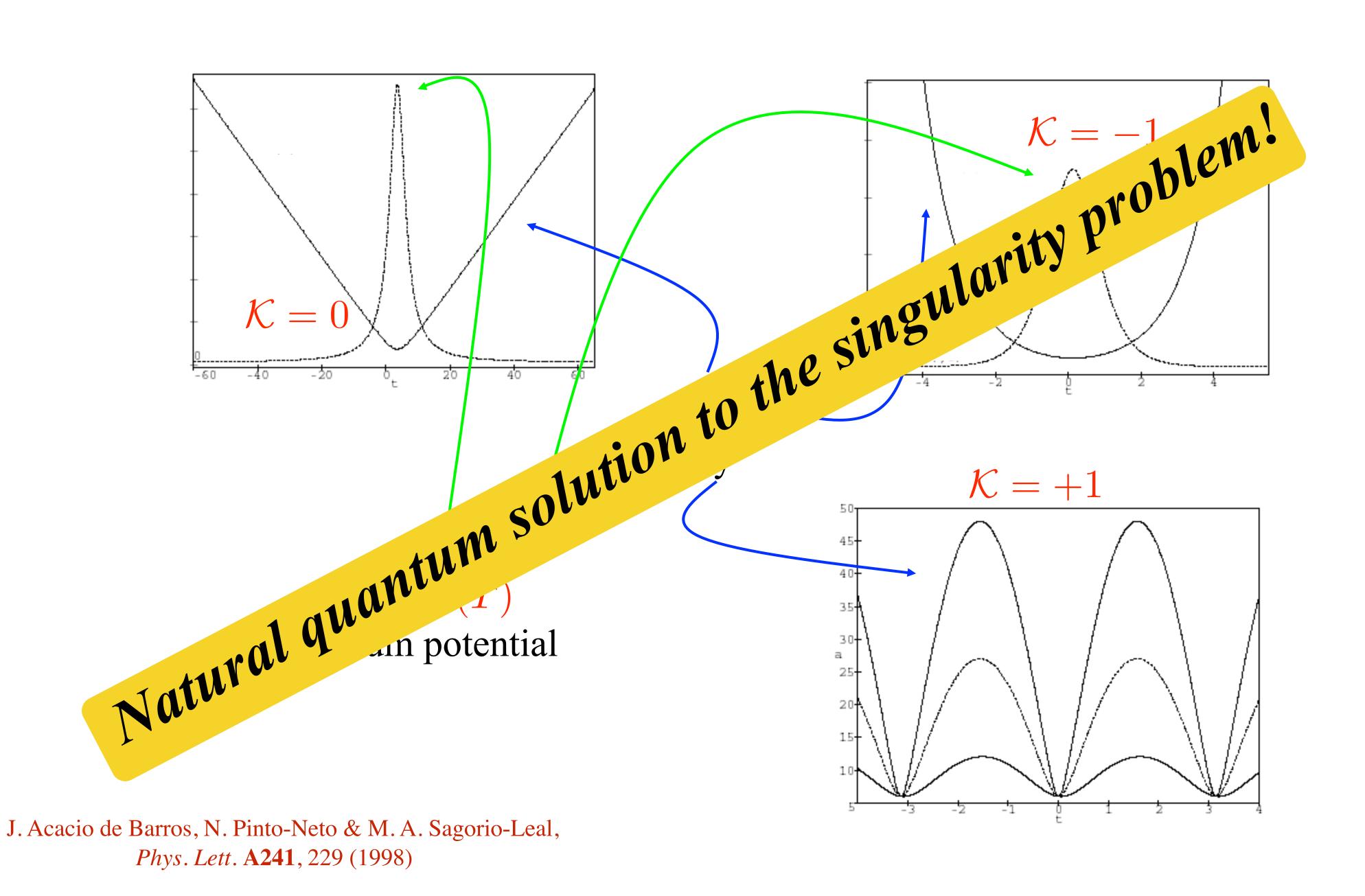
phase
$$S = \frac{T\chi^2}{T_0^2 + T^2} + \frac{1}{2}\arctan\frac{T_0}{T} - \frac{\pi}{4}$$

dB trajectory

$$a = a_0 \left[1 + \left(\frac{T}{T_0} \right)^2 \right]^{\frac{1}{3(1-\omega)}}$$



J. Acacio de Barros, N. Pinto-Neto & M. A. Sagorio-Leal, Phys. Lett. A241, 229 (1998)



A simple Bianchi I model

$$ds^{2} = -N^{2}(t)dt^{2} + \sum_{i=1}^{3} a_{i}^{2}(t) (dx^{i})^{2}$$

+ (radiation) fluid / constant equation of state

$$w \equiv p/\rho = \frac{1}{3}$$

conformal time choice $N \to a$

$$t \rightarrow \eta$$

$$H = \frac{\Pi_a^2}{24} - \frac{p_-^2 + p_+^2}{24a^2}$$

$$a \equiv (a_1 a_2 a_3)^{\frac{1}{3}}$$

$$\beta_{-} \equiv \frac{1}{2\sqrt{3}} \ln \left(a_1/a_2 \right)$$

$$\beta_{+} \equiv \frac{1}{6} \ln \left(a_1 a_2 / a_3^2 \right)$$

$$[\hat{a}, \hat{\Pi}_a] = [\hat{\beta}_{\pm}, \hat{p}_{\pm}] = i$$

Rescaling:

$$\hat{H} = \hat{\Pi}_a^2 - (\hat{p}_-^2 + \hat{p}_+^2) \,\hat{a}^{-2}$$

mixed representation for the wave function

$$\hat{a}\Psi = a\Psi$$

$$\hat{p}_{\pm}\Psi = p_{\pm}\Psi$$

$$\hat{\Pi}_{a} = -i\partial/\partial a$$

$$\hat{\beta}_{\pm} = i\partial/\partial p_{\pm}$$

Hilbert space H

$$\mathbb{H} \subset \left\{ f(a, p_{+}, p_{-}) \in \mathbb{C} \mid \int_{0}^{\infty} da \int_{-\infty}^{\infty} dp_{+} \int_{-\infty}^{\infty} dp_{-} |f(a, p_{+}, p_{-})|^{2} < \infty \right\}$$

eigenvalue equation
$$\hat{H}\Psi = \ell^2\Psi$$

$$-\frac{\partial^2 \mathcal{U}_{\ell}^{(k)}}{\partial a^2} - \frac{k^2}{4a^2}\mathcal{U}_{\ell}^{(k)} = \ell^2 \mathcal{U}_{\ell}^{(k)}$$

mixed representation for the wave function

$$\hat{a}\Psi = a\Psi$$

$$\hat{p}_{\pm}\Psi = p_{\pm}\Psi$$

$$\hat{\Pi}_a = -i\partial/\partial a$$

$$\hat{\beta}_{\pm} = i\partial/\partial p_{\pm}$$

 $k^2 \equiv 4(p_\perp^2 + p^2)$

Hilbert space H

$$\mathbb{H} \subset \left\{ f(a, p_{+}, p_{-}) \in \mathbb{C} \middle| \int_{0}^{\infty} da \int_{-\infty}^{\infty} dp_{+} \int_{-\infty}^{\infty} dp_{-} |f(a, p_{+}, p_{-})|^{2} < \infty \right\}$$

eigenvalue equation
$$\hat{H}\Psi = \ell^2\Psi$$

$$-\frac{\partial^2 \mathcal{U}_{\ell}^{(\kappa)}}{\partial a^2} - \frac{k^2}{4a^2} \mathcal{U}_{\ell}^{(k)} = \ell^2 \mathcal{U}_{\ell}^{(k)}$$

mixed representation for the wave function

$$\hat{a}\Psi = a\Psi$$

$$\hat{p}_{\pm}\Psi = p_{\pm}\Psi$$

$$\hat{\Pi}_{a} = -i\partial/\partial a$$

$$\hat{\beta}_{\pm} = i\partial/\partial p_{\pm}$$

 $k^2 \equiv 4(p_{\perp}^2 + p_{\parallel}^2)$

Hilbert space H

$$\mathbb{H} \subset \left\{ f(a, p_{+}, p_{-}) \in \mathbb{C} \middle| \int_{0}^{\infty} da \int_{-\infty}^{\infty} dp_{+} \int_{-\infty}^{\infty} dp_{-} |f(a, p_{+}, p_{-})|^{2} < \infty \right\}$$

eigenvalue equation
$$\hat{H}\Psi=\ell^2\Psi$$

$$-\frac{\partial^2\mathcal{U}_\ell^{(k)}}{\partial a^2} -\frac{k^2}{4a^2}\mathcal{U}_\ell^{(k)}=\ell^2\mathcal{U}_\ell^{(k)}$$

$$\Psi(a, p_{\pm}) = \int_{0}^{\infty} d\ell \int_{-\infty}^{\infty} d\beta_{+} \int_{-\infty}^{\infty} d\beta_{-} \tilde{\Psi}(\ell, \beta_{\pm}) e^{i[\beta_{+}p_{+} + \beta_{-}p_{-}]} \mathcal{U}_{\ell}^{(k)}(a)$$

Self-adjoint Hamiltonian

$$\int da d^2p (H\Psi)^* \Psi = \int da d^2p \Psi^* (H\Psi)$$

automatically satisfied if

$$\int_0^\infty da \, \mathcal{U}_{\ell}^{(k)*}(a) \mathcal{U}_{\ell'}^{(k)}(a) = \delta(\ell - \ell')$$

$$\int_{0}^{\infty} d\ell \int_{-\infty}^{\infty} d\beta_{+} \int_{-\infty}^{\infty} d\beta_{-} |\tilde{\Psi}(\ell, \beta_{\pm})|^{2} \ell^{2} < \infty$$

$$\nu = \frac{1}{2}\sqrt{1-k^2}$$
 general solution for the energy eigenmodes

general solution for the energy eigenmodes
$$\mathcal{U}_{\ell}^{(k)}(a) = c_{+}\sqrt{a\ell}J_{\nu}(a\ell) + c_{-}\sqrt{a\ell}J_{-\nu}(a\ell)$$

$$c_{+} = 1 \text{ and } c_{-} = 0$$

$$c_{+} = 0 \text{ and } c_{-} = 1$$

$$c_{+} = 1 \text{ and } c_{-} = 0$$

Linear fluid momentum

$$\hat{P}_{\text{fluid}} = -i\partial_{\eta}$$

Schödinger — Evolution operator

$$i\frac{\partial U}{\partial \eta} = \hat{H}U$$

Initial gaussian wave function

$$\Psi_0(a) = \langle a, p_{\pm} | \Psi_0 \rangle = \frac{2^{(1-2\alpha)/4} a^{\alpha}}{\sigma^{\alpha+1/2} \sqrt{\Gamma\left(\alpha + \frac{1}{2}\right)}} \exp\left[-\frac{1}{2}a^2 \left(\frac{1}{2\sigma^2} - i\mathcal{H}_{\text{ini}}\right)\right]$$

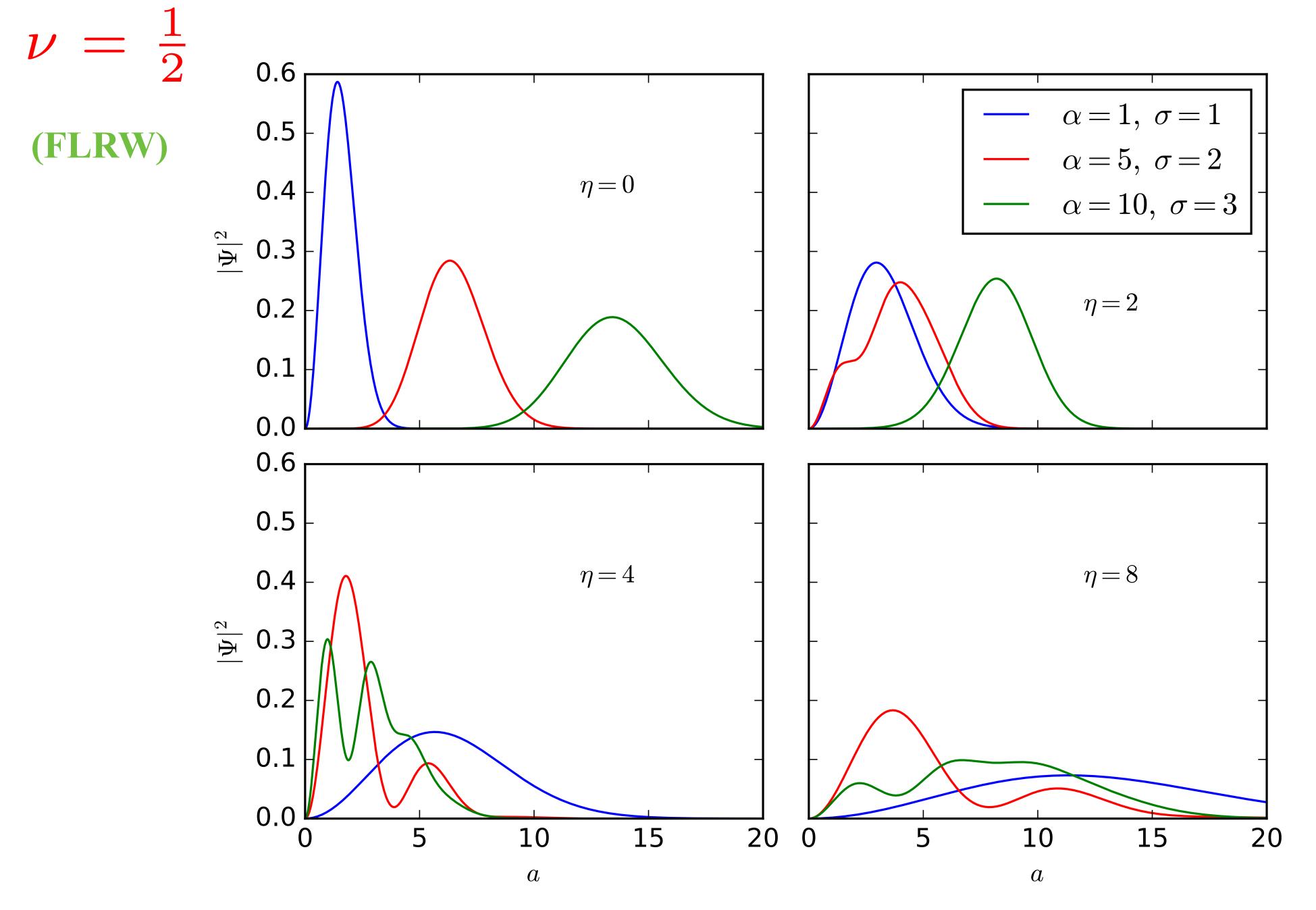
Propagator
$$G(a, p_{\pm}, a_0, p_{\pm}^0) \equiv \langle a, p_{\pm} | U | a_0, p_{\pm}^0 \rangle$$

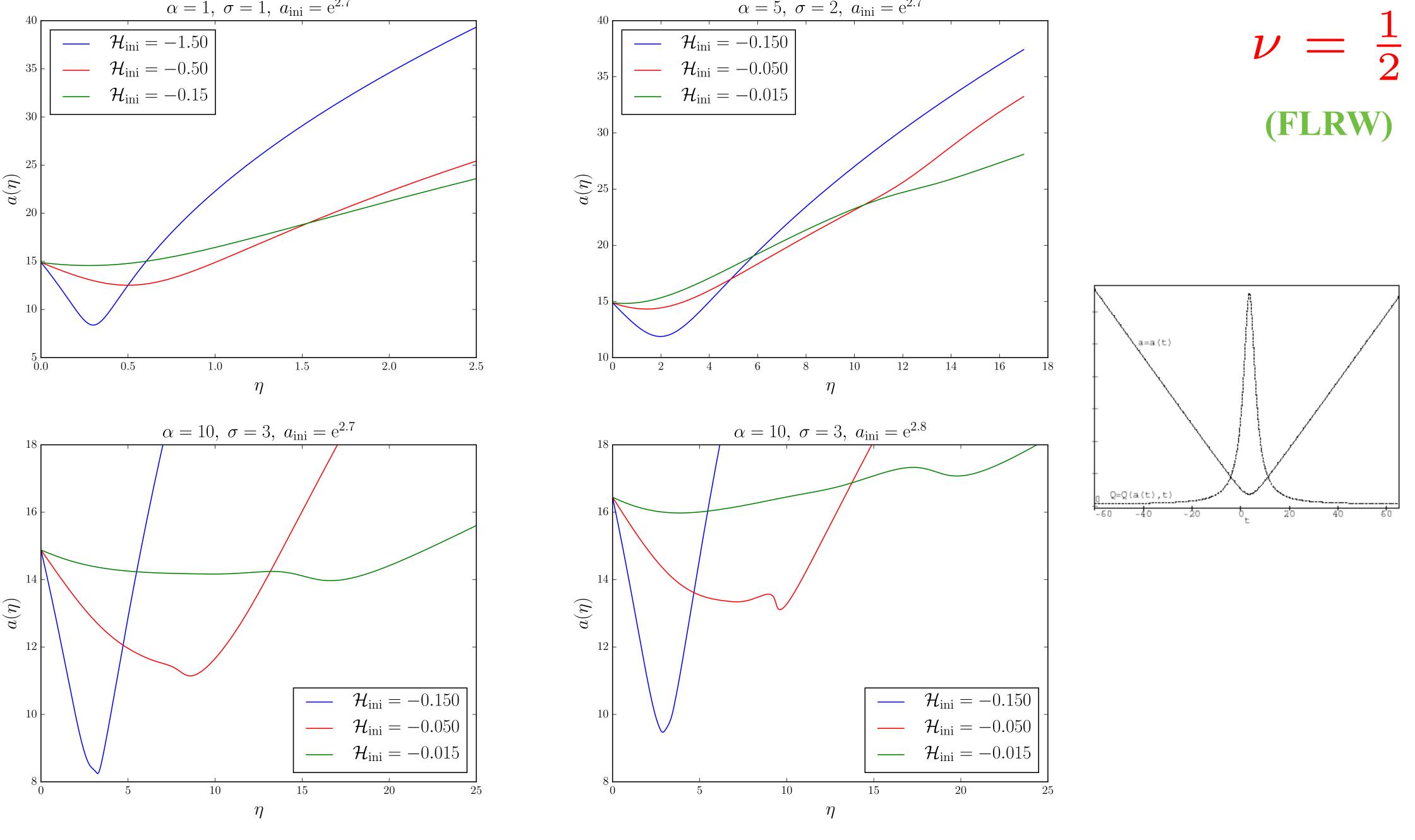
= $\delta^{(2)}(p_{\pm} - p_{\pm}') \int_0^{\infty} d\ell \, e^{-i\ell^2 \Delta \eta} \mathcal{U}_{\ell}^{(k)}(a) \mathcal{U}_{\ell}^{(k)*}(a')$

+ regularisation $\widetilde{\Delta \eta} = \Delta \eta (1 + i\epsilon)$

$$G(a, a_0; \eta) = -\frac{i\sqrt{aa_0}}{2\widetilde{\Delta\eta}} e^{\frac{i}{4}(a^2 + a_0^2)/\widetilde{\Delta\eta} - i\alpha\pi/2} J_{\nu} \left(\frac{aa_0}{2\widetilde{\Delta\eta}}\right)$$

dBB trajectory
$$\frac{\mathrm{d}a}{\mathrm{d}\eta} = \frac{\partial S}{\partial a} = \frac{i}{2|\Psi|^2} \left(\Psi \frac{\partial \Psi^*}{\partial a} - \frac{\partial \Psi}{\partial a} \Psi^* \right)$$

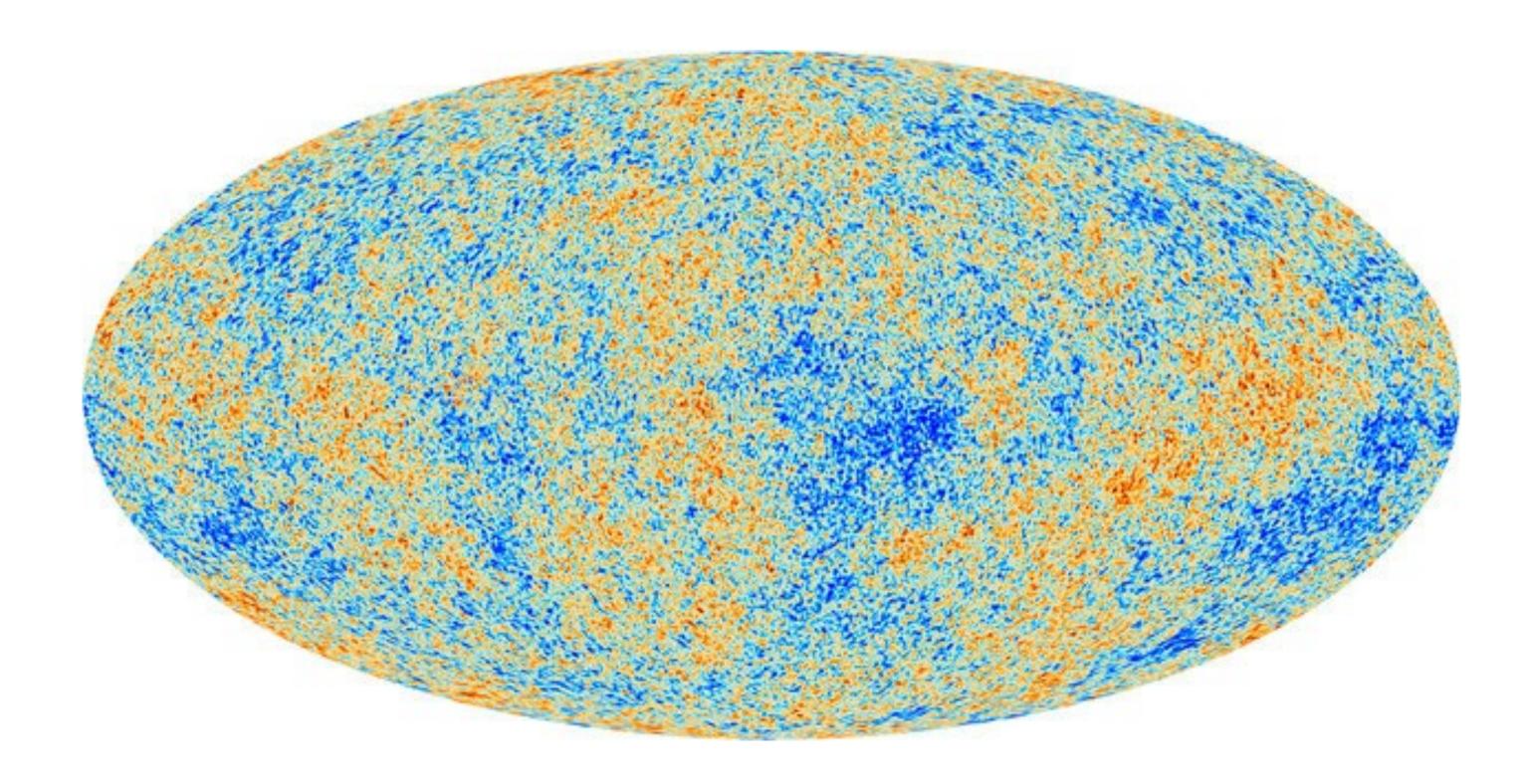




Banach center - Warsaw- June 30, 2016

$$ds^{2} = a^{2}(\eta) \left\{ (1 + 2\Phi) d\eta^{2} - \left[(1 - 2\Phi) \gamma_{ij} + h_{ij} \right] dx^{i} dx^{j} \right\}$$

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$



Inflationary perturbations: quantum fluctuations / expanding background

Classical temperature fluctuations

$$\frac{\Delta T}{T} \propto v \sim \Phi \sim \delta g_{00}$$

Inflationary perturbations: quantum fluctuations / expanding background

Classical temperature fluctuations promoted to quantum operators

$$\frac{\widehat{\Delta T}}{T} \propto \hat{v} \sim \Phi \sim \delta g_{00}$$

Inflationary perturbations: quantum fluctuations / expanding background

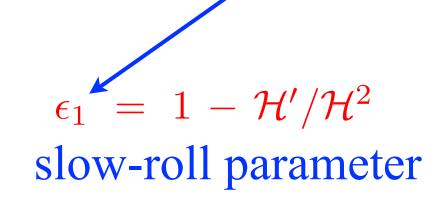
Classical temperature fluctuations promoted to quantum operators

$$\frac{\widehat{\Delta T}}{T} \propto \widehat{v} \sim \Phi \sim \delta g_{00}$$

second order perturbed Einstein action $^{(2)}\delta S = \frac{1}{2} \int d^4x \left| (v')^2 - \delta^{ij}\partial_i v \partial_j v + \frac{(a\sqrt{\epsilon_1})''}{a\sqrt{\epsilon_1}} v^2 \right|$

variable-mass scalar field in Minkowski spacetime

+ Fourier transform
$$v(\eta, \mathbf{x}) = \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} d^3 \mathbf{k} \, v_{\mathbf{k}} (\eta) e^{i\mathbf{k} \cdot \mathbf{x}}$$



$$(2)\delta S = \int d\eta \int d^3 \mathbf{k} \left\{ v_{\mathbf{k}}' v_{\mathbf{k}}^{*\prime} + v_{\mathbf{k}} v_{\mathbf{k}}^* \left[\frac{(a\sqrt{\epsilon_1})''}{a\sqrt{\epsilon_1}} - k^2 \right] \right\}$$

Lagrangian formulation...

Hamiltonian

$$H = \int d^3 \mathbf{k} \left\{ p_{\mathbf{k}} p_{\mathbf{k}}^* + v_{\mathbf{k}} v_{\mathbf{k}}^* \left[k^2 - \frac{(a\sqrt{\epsilon_1})''}{a\sqrt{\epsilon_1}} \right] \right\}$$

collection of parametric oscillators with time dependent frequency

factorization of the full wave function

 $\omega^2\left(\eta, oldsymbol{k}
ight)$

$$\Psi \left[v(\eta, \boldsymbol{x}) \right] = \prod_{\boldsymbol{k}} \Psi_{\boldsymbol{k}} \left(v_{\boldsymbol{k}}^{\mathrm{R}}, v_{\boldsymbol{k}}^{\mathrm{I}} \right) = \prod_{\boldsymbol{k}} \Psi_{\boldsymbol{k}}^{\mathrm{R}} \left(v_{\boldsymbol{k}}^{\mathrm{R}} \right) \Psi_{\boldsymbol{k}}^{\mathrm{I}} \left(v_{\boldsymbol{k}}^{\mathrm{I}} \right)$$

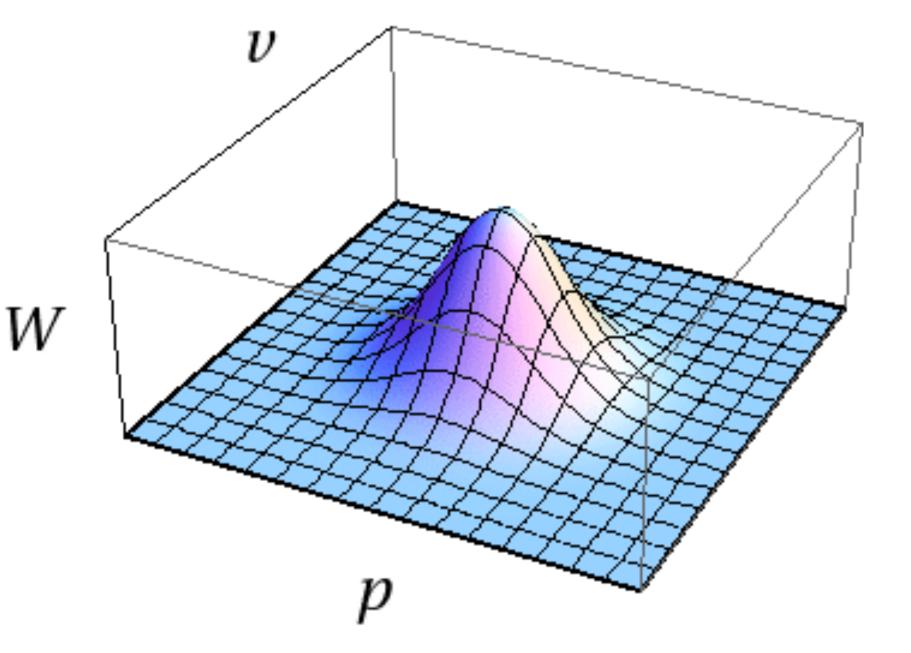
$$i\frac{\Psi_{\mathbf{k}}^{\mathrm{R,I}}}{\partial \eta} = \hat{\mathcal{H}}_{\mathbf{k}}^{\mathrm{R,I}} \Psi_{\mathbf{k}}^{\mathrm{R,I}}$$

$$\hat{\mathcal{H}}_{\boldsymbol{k}}^{\mathrm{R,I}} = -\frac{1}{2} \frac{\partial^{2}}{\partial \left(v_{\boldsymbol{k}}^{\mathrm{R,I}}\right)^{2}} + \frac{1}{2} \omega^{2}(\eta, \boldsymbol{k}) \left(\hat{v}_{\boldsymbol{k}}^{\mathrm{R,I}}\right)^{2}$$

Gaussian state solution
$$\Psi(\eta, v_{\mathbf{k}}) = \left[\frac{2\Re e \Omega_{\mathbf{k}}(\eta)}{\pi}\right]^{1/4} e^{-\Omega_{\mathbf{k}}(\eta)v_{\mathbf{k}}^2}$$

Wigner function
$$W(v_{\mathbf{k}}, p_{\mathbf{k}}) = \int \frac{\mathrm{d}x}{2\pi^2} \Psi^* \left(v_{\mathbf{k}} - \frac{x}{2} \right) e^{-ip_{\mathbf{k}}x} \Psi \left(v_{\mathbf{k}} + \frac{x}{2} \right)$$

large squeezing limit
$$W \propto \delta (p_{\mathbf{k}} + k \tan \phi_{\mathbf{k}} v_{\mathbf{k}})$$



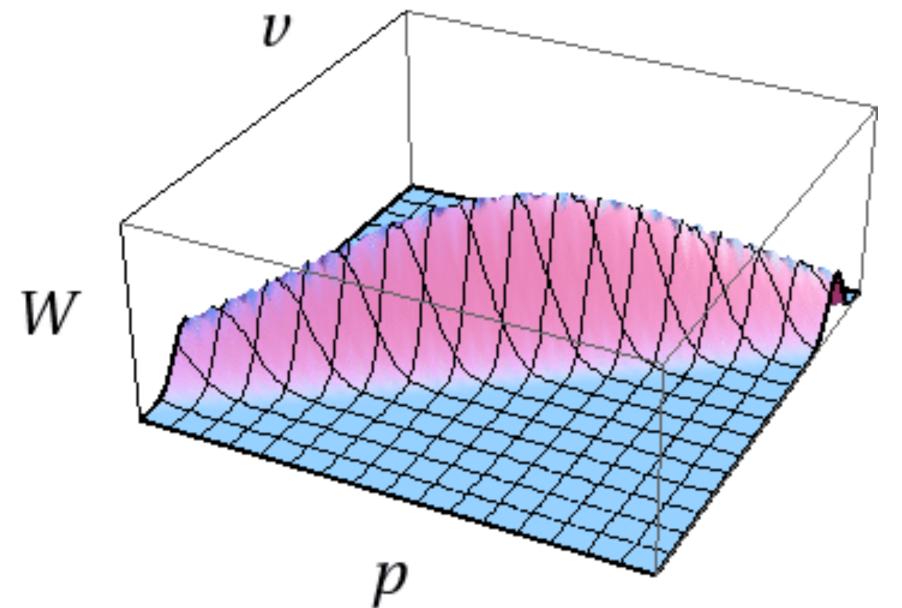
Stochastic distribution of classical processes

realization spatial direction $\left\langle \frac{\Delta T(\xi, \boldsymbol{e})}{T} \right\rangle_{\boldsymbol{\xi}} \simeq \left\langle \frac{\Delta T(\xi, \boldsymbol{e})}{T} \right\rangle_{\boldsymbol{e}}$

Gaussian state solution
$$\Psi(\eta, v_{\mathbf{k}}) = \left[\frac{2\Re e \Omega_{\mathbf{k}}(\eta)}{\pi}\right]^{1/4} e^{-\Omega_{\mathbf{k}}(\eta)v_{\mathbf{k}}^2}$$

Wigner function
$$W(v_{\mathbf{k}}, p_{\mathbf{k}}) = \int \frac{\mathrm{d}x}{2\pi^2} \Psi^* \left(v_{\mathbf{k}} - \frac{x}{2} \right) e^{-ip_{\mathbf{k}}x} \Psi \left(v_{\mathbf{k}} + \frac{x}{2} \right)$$

large squeezing limit
$$W \propto \delta (p_{\mathbf{k}} + k \tan \phi_{\mathbf{k}} v_{\mathbf{k}})$$



Stochastic distribution of classical processes

realization spatial direction $\left\langle \frac{\Delta T(\xi,e)}{T} \right\rangle_{\xi} \simeq \left\langle \frac{\Delta T(\xi,e)}{T} \right\rangle_{z}$ Ergodicity

Animation provided by V. Vennin

Primordial Power Spectrum

Standard case

Quantization in the Schrödinger picture (functional representation)

$$\Psi_{\mathbf{k}}(\eta, v_{\mathbf{k}}) = \left[\frac{2 \Re e \Omega_{\mathbf{k}}(\eta)}{\pi}\right]^{1/4} e^{-\Omega_{\mathbf{k}}(\eta) v_{\mathbf{k}}^{2}}$$

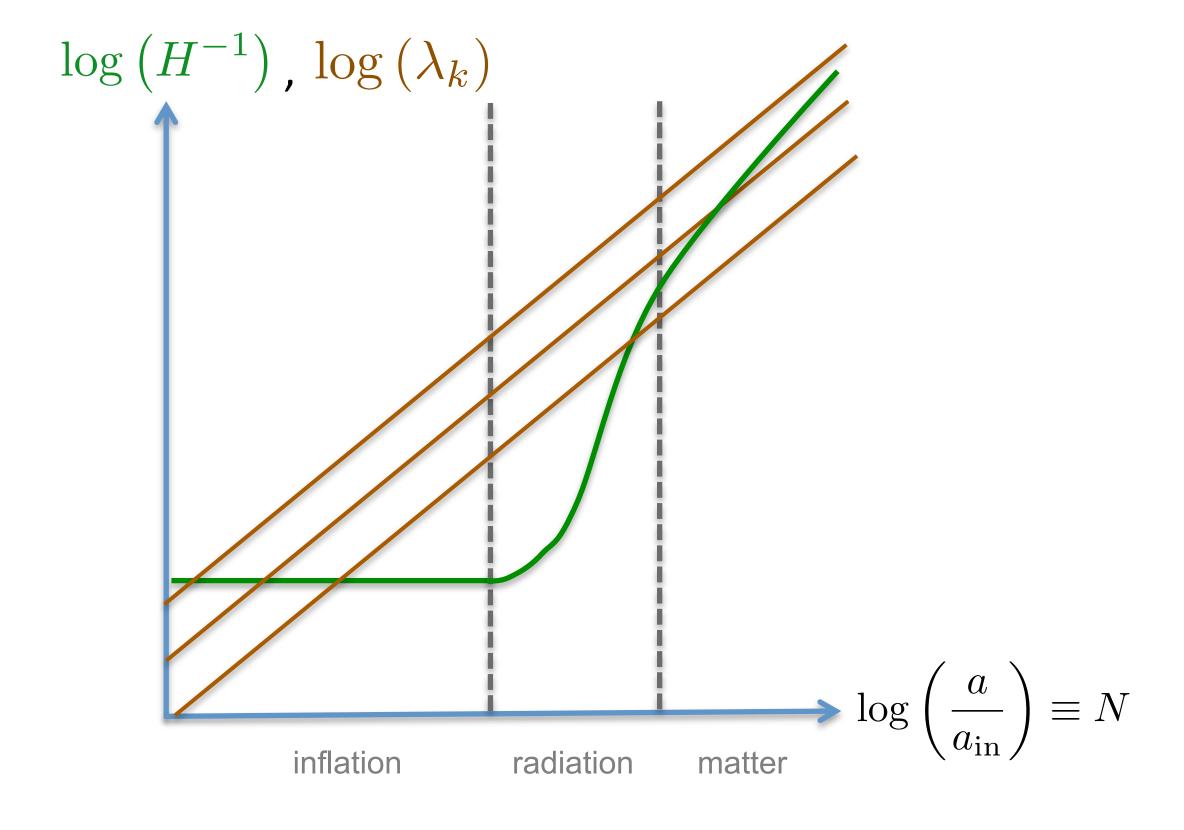
$$irac{\mathrm{d}|\Psi_{m{k}}\rangle}{\mathrm{d}\eta}=\hat{\mathcal{H}}_{m{k}}\left|\Psi_{m{k}}
ight
angle \qquad \mathrm{with}$$

$$\hat{\mathcal{H}}_{\boldsymbol{k}} = \frac{\hat{p}_{\boldsymbol{k}}^2}{2} + \omega^2(\boldsymbol{k}, \eta)\hat{v}_{\boldsymbol{k}}^2$$

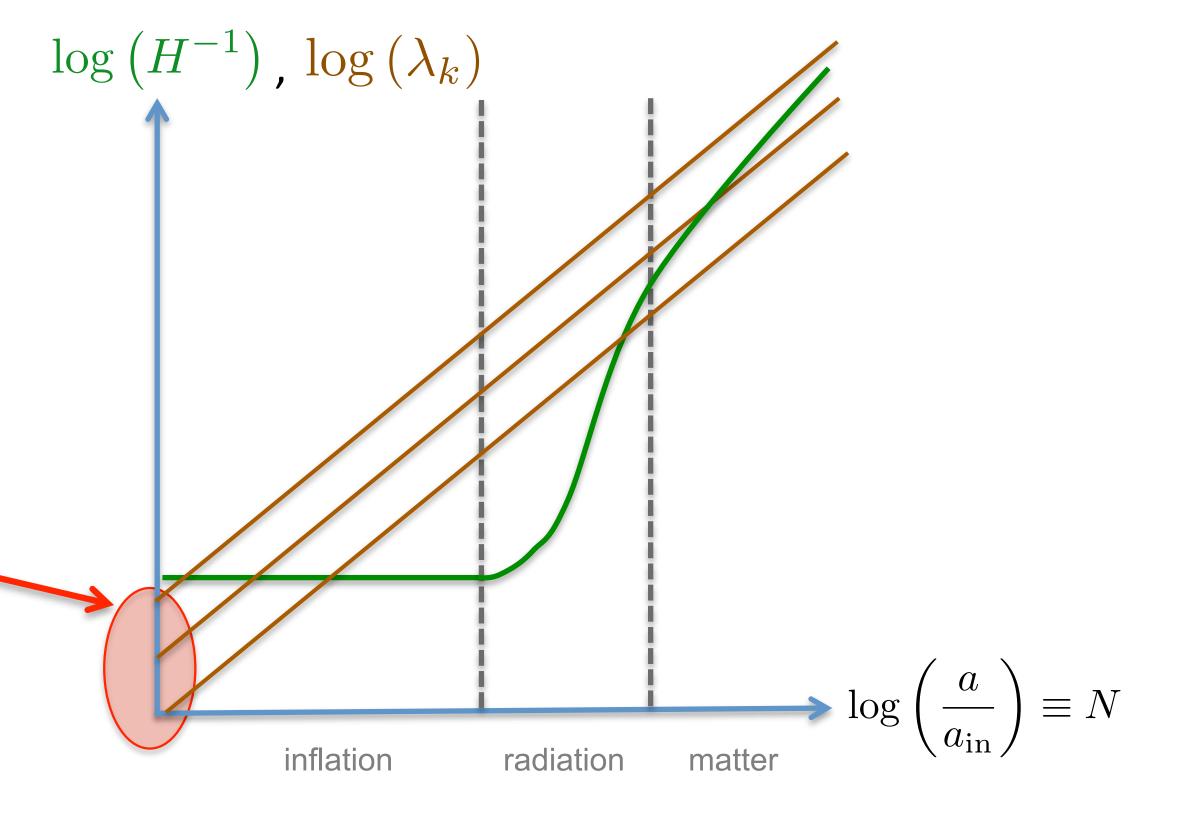
$$\Omega_{\boldsymbol{k}}' = -2i\Omega_{\boldsymbol{k}}^2 + \frac{i}{2}\omega^2(\eta, \boldsymbol{k})$$

$$\Omega_{m{k}} = -rac{i}{2} rac{f_{m{k}}'}{f_{m{k}}}$$

$$f_{\mathbf{k}}^{\prime\prime\prime} + \omega^2(\mathbf{k}, \eta) f_{\mathbf{k}} = 0$$



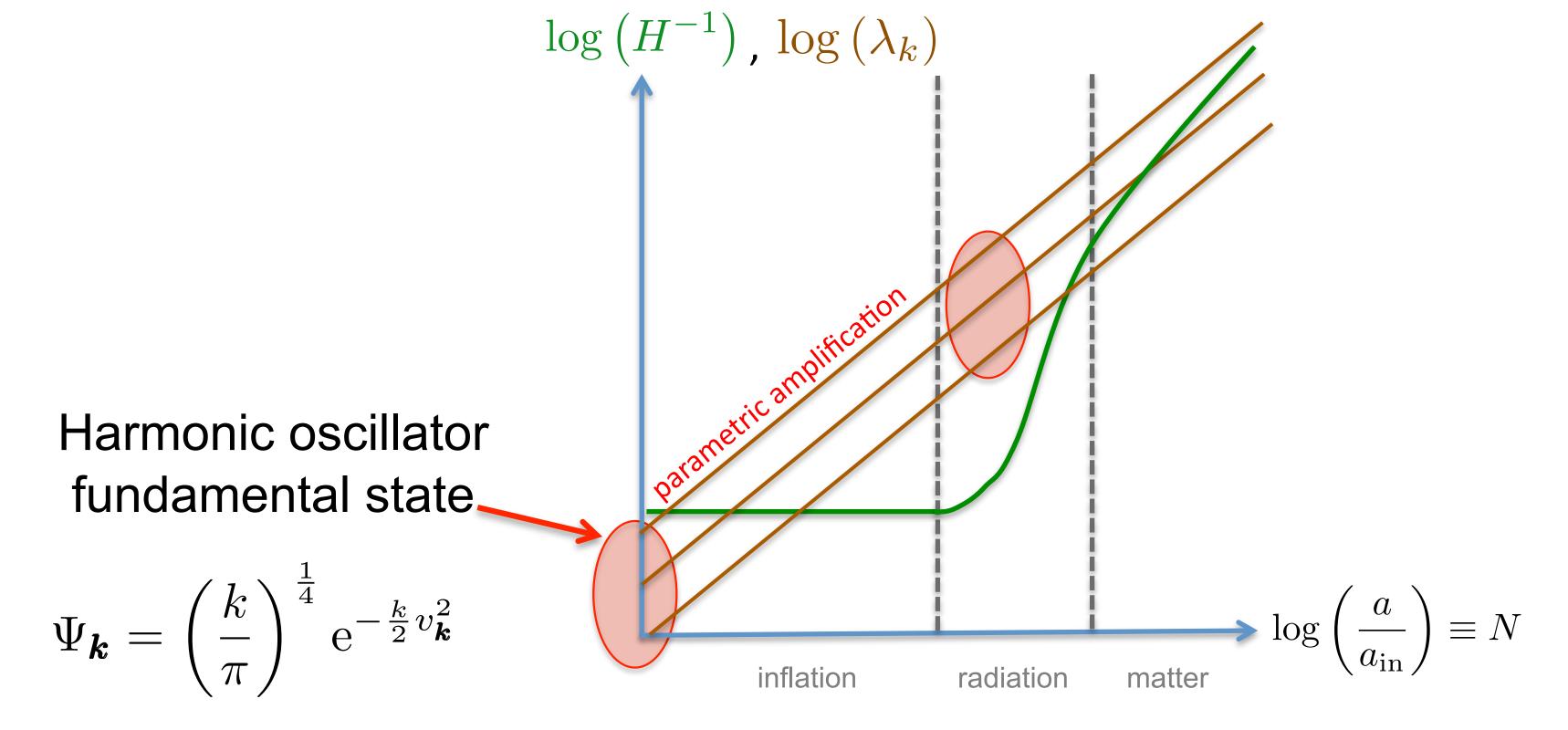
Banach center - Warsaw- June 30, 2016



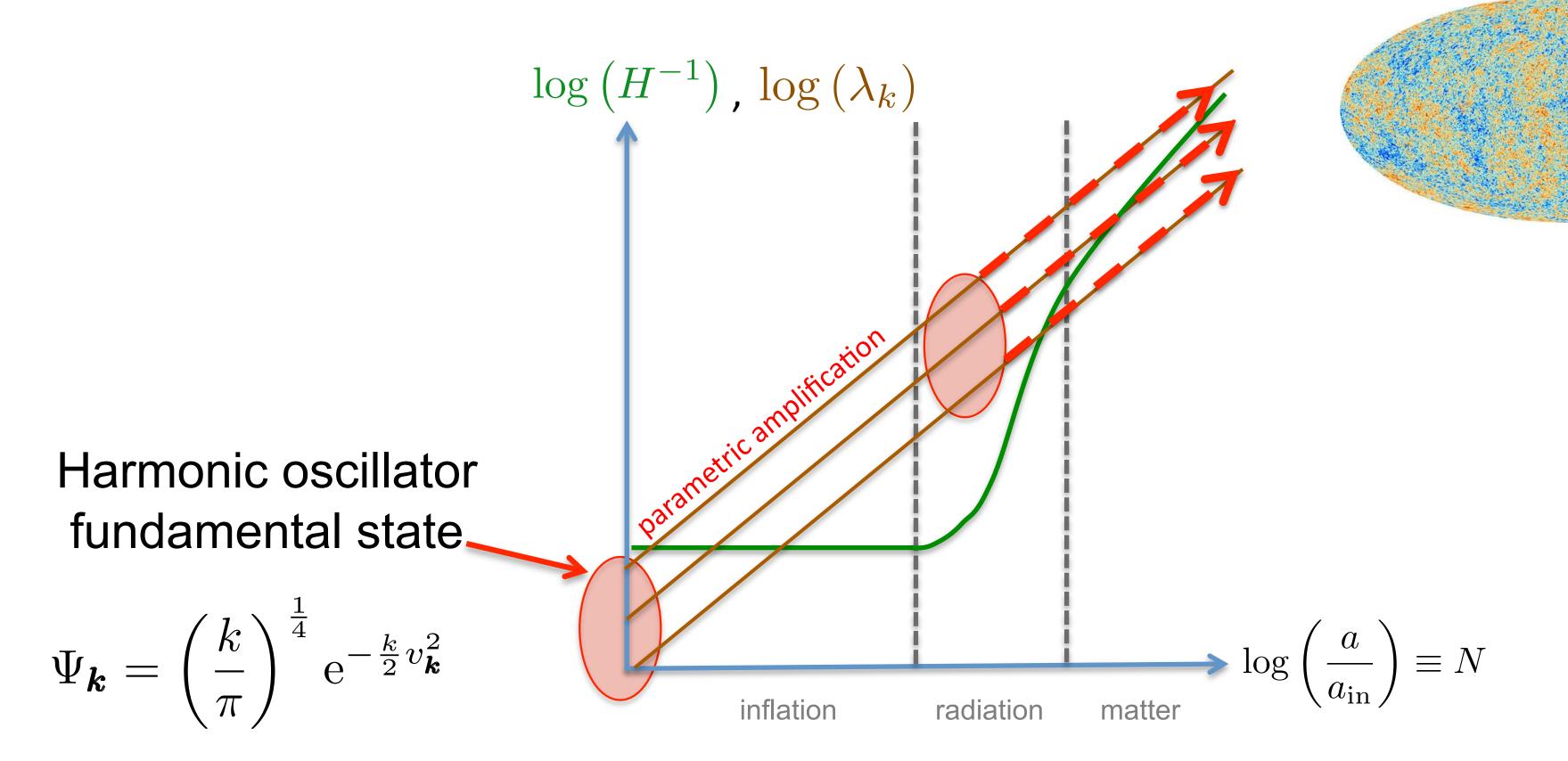
Harmonic oscillator fundamental state

$$\Psi_{\mathbf{k}} = \left(\frac{k}{\pi}\right)^{\frac{1}{4}} e^{-\frac{k}{2}v_{\mathbf{k}}^2}$$

Banach center - Warsaw- June 30, 2016



Banach center - Warsaw- June 30, 2016



Banach center - Warsaw- June 30, 2016

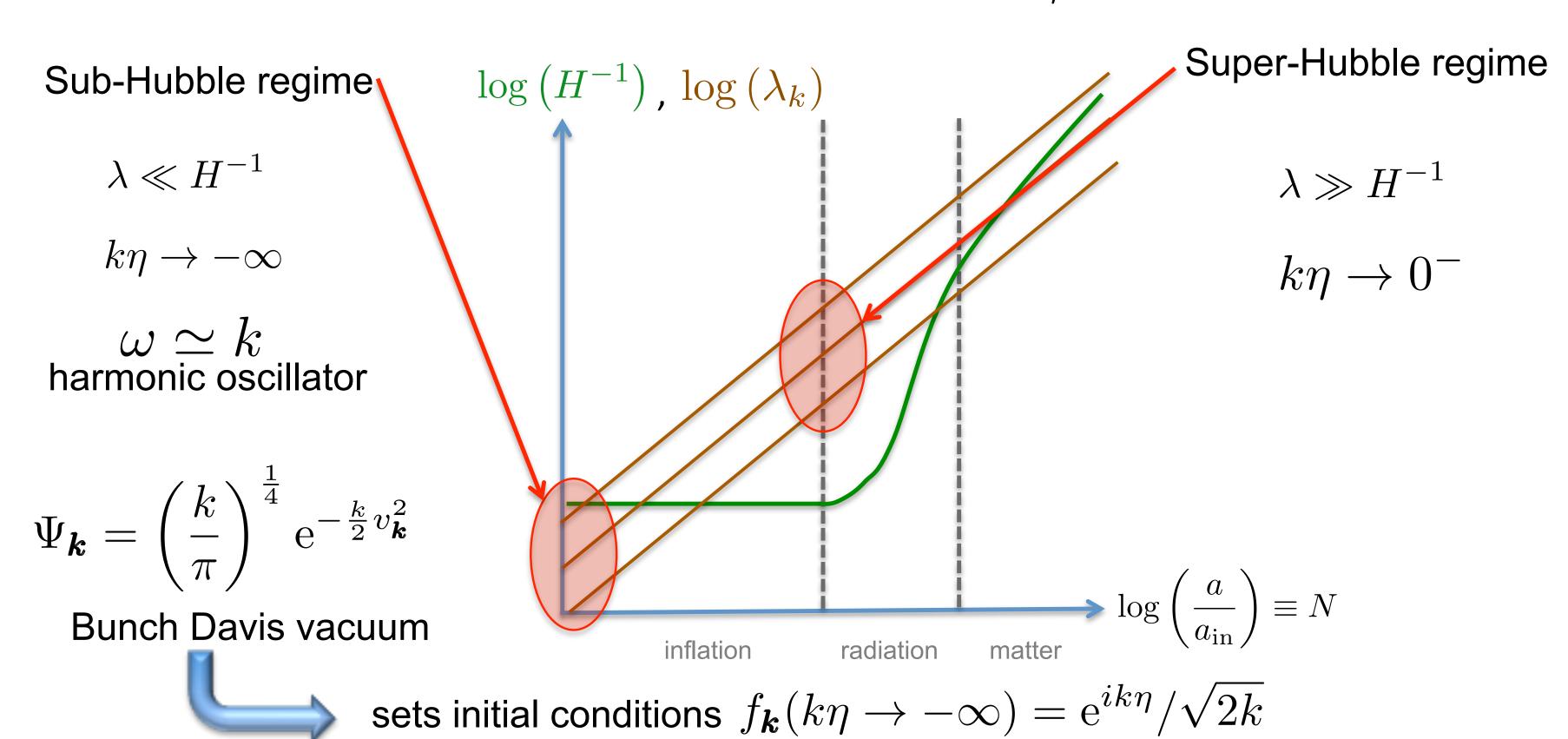
Primordial Power Spectrum

Standard case

Two physical scales

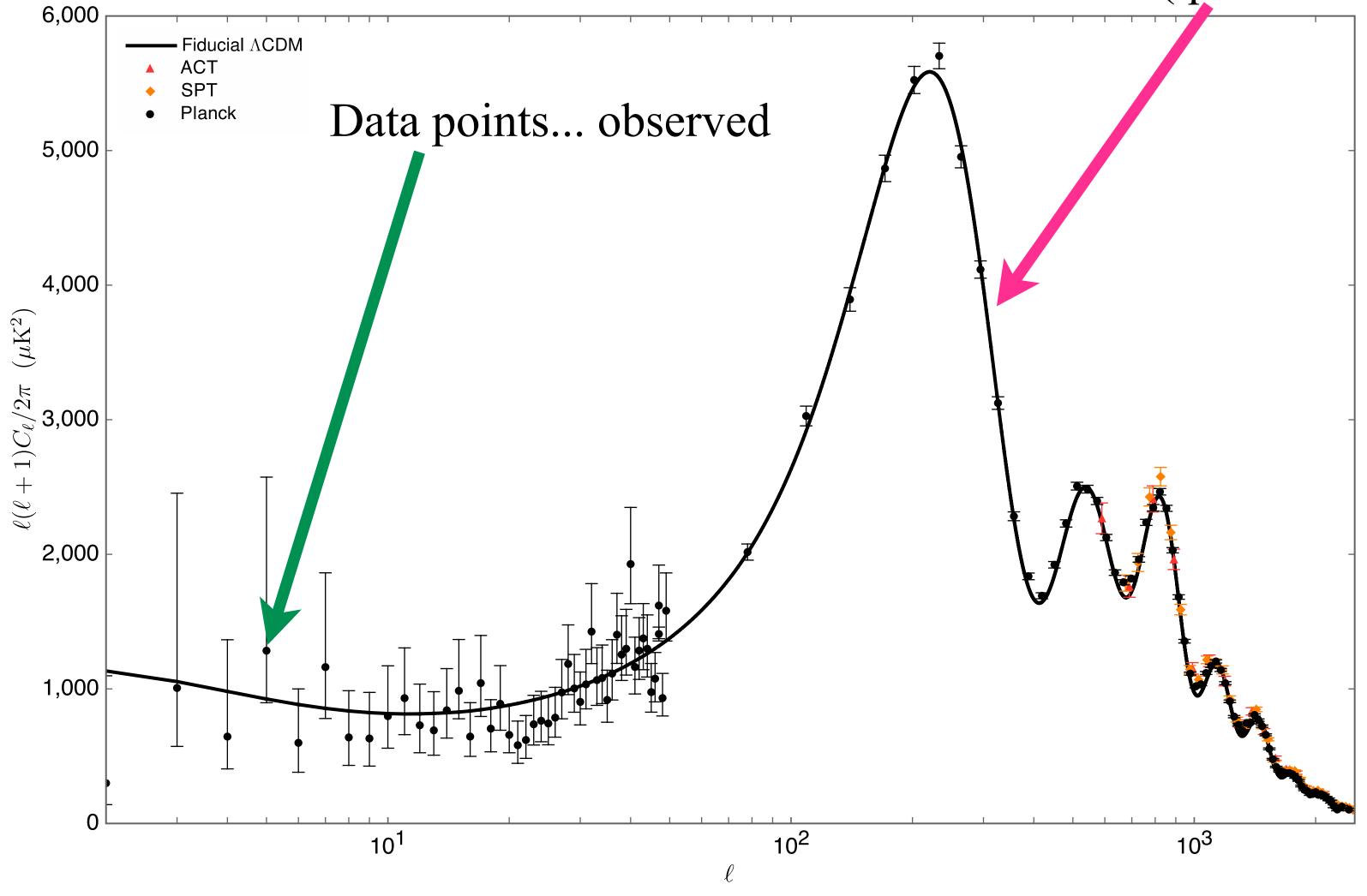
Hubble radius
$$H^{-1}=rac{a^2}{a'}\underset{eta\sim-2}{\simeq}\ell_0$$

wavelength
$$\lambda = \frac{a}{k} \underset{\beta \sim -2}{\simeq} \frac{\ell_0}{-k\eta}$$



Banach center - Warsaw- June 30, 2016

Theoretical prediction (quantum vacuum fluctuations)



• Both background and perturbations are quantum Usual treatment of the perturbations?

Einstein-Hilbert action up to 2nd order

$$S_{E-H} = \int d^4x \left[R^{(0)} + \delta^{(2)} R \right]$$

Bardeen (Newton) gravitational potential

$$ds^{2} = a^{2}(\eta) \left\{ (1 + 2\Phi) d\eta^{2} - \left[(1 - 2\Phi) \gamma_{ij} + h_{ij} \right] dx^{i} dx^{j} \right\}$$

$$d\eta = a(t)^{-1}dt$$

$$\Delta \Phi = -\frac{3\ell_{\rm Pl}^2}{2} \sqrt{\frac{\rho + p}{\omega}} a \frac{\mathrm{d}}{\mathrm{d}\eta} \left(\frac{v}{a} \right)$$

$$\int d^4x \, \delta^{(2)} \mathcal{L} = \frac{1}{2} \int \sqrt{\gamma} d^3 \boldsymbol{x} \, d\eta \, \left[(\partial_{\eta} v)^2 - \gamma^{ij} \partial_i v \partial_j v + \frac{z''}{z} v^2 \right]$$

Mukhanov-Sasaki variable

V. F. Mukhanov, H. A. Feldman & R. H. Brandenberger, *Phys. Rep.* **215**, 203 (1992)

Simple scalar field with varying mass in Minkowski space!!!

$$z = z[a(\eta)]$$

• Both background and perturbations are quantum Usual treatment of the perturbations?

Einstein-Hilbert action up to 2nd order

$$\mathcal{S}_{\mathrm{E-H}} = \int \mathrm{d}^4 x \, \left[R^{(0)} + \delta^{(2)} R \right]$$
Classical

Bardeen (Newton) gravitational potential

$$ds^{2} = a^{2}(\eta) \left\{ (1 + 2\Phi) d\eta^{2} - \left[(1 - 2\Phi) \gamma_{ij} + h_{ij} \right] dx^{i} dx^{j} \right\}$$

conformal time

$$d\eta = a(t)^{-1}dt$$

$$\Delta \Phi = -\frac{3\ell_{\rm Pl}^2}{2} \sqrt{\frac{\rho + p}{\omega}} a \frac{\mathrm{d}}{\mathrm{d}\eta} \left(\frac{v}{a} \right)$$

$$\int d^4x \, \delta^{(2)} \mathcal{L} = \frac{1}{2} \int \sqrt{\gamma} d^3 \boldsymbol{x} \, d\eta \, \left[(\partial_{\eta} v)^2 - \gamma^{ij} \partial_i v \partial_j v + \frac{z''}{z} v^2 \right]$$

Mukhanov-Sasaki variable

V. F. Mukhanov, H. A. Feldman & R. H. Brandenberger, *Phys. Rep.* **215**, 203 (1992)

Simple scalar field with varying mass in Minkowski space!!!

$$z = z[a(\eta)]$$

• Both background and perturbations are quantum Usual treatment of the perturbations?

Einstein-Hilbert action up to 2nd order

$$\mathcal{S}_{\mathrm{E-H}} = \int \mathrm{d}^4 x \, \left[R^{(0)} + \delta^{(2)} R \right]$$
Classical Quantum

Bardeen (Newton) gravitational potential

$$ds^{2} = a^{2}(\eta) \left\{ (1 + 2\Phi) d\eta^{2} - \left[(1 - 2\Phi) \gamma_{ij} + h_{ij} \right] dx^{i} dx^{j} \right\}$$

conformal time
$$d\eta$$

$$d\eta = a(t)^{-1}dt$$

$$\Delta \Phi = -\frac{3\ell_{\rm Pl}^2}{2} \sqrt{\frac{\rho + p}{\omega}} a \frac{\mathrm{d}}{\mathrm{d}\eta} \left(\frac{v}{a} \right)$$

$$\int d^4x \, \delta^{(2)} \mathcal{L} = \frac{1}{2} \int \sqrt{\gamma} d^3 \boldsymbol{x} \, d\eta \, \left[(\partial_{\eta} v)^2 - \gamma^{ij} \partial_i v \partial_j v + \frac{z''}{z} v^2 \right]$$

Mukhanov-Sasaki variable

V. F. Mukhanov, H. A. Feldman & R. H. Brandenberger, *Phys. Rep.* **215**, 203 (1992)

Simple scalar field with varying mass in Minkowski space!!!

$$z = z[a(\eta)]$$

Self-consistent treatment of the perturbations?

Hamiltonian up to 2nd order $H = H_{(0)} + H_{(2)} + \cdots$

$$\Delta \Phi = -\frac{3\ell_{\rm Pl}^2}{2} \sqrt{\frac{\rho + p}{\omega}} a \frac{\mathrm{d}}{\mathrm{d}\eta} \left(\frac{v}{a}\right)$$

factorization of the wave function

$$\Psi = \Psi_{(0)}(a,T) \Psi_{(2)}[v,T;a(T)]$$

$$\text{comes from 0}^{\text{th}} \text{ order}$$

Self-consistent treatment of the perturbations?

Hamiltonian up to 2nd order $H = H_{(0)} + H_{(2)} + \cdots$

$$\Delta \Phi = -\frac{3\ell_{\rm Pl}^2}{2} \sqrt{\frac{\rho + p}{\omega}} a \frac{\mathrm{d}}{\mathrm{d}\eta} \left(\frac{v}{a}\right)$$

factorization of the wave function

$$\Psi = \Psi_{(0)}(a, T) \Psi_{(2)}[v, T; a(T)]$$

comes from 0th order

Use dBB...

Self-consistent treatment of the perturbations?

Hamiltonian up to 2nd order $H = H_{(0)} + H_{(2)} + \cdots$

$$\Delta \Phi = -\frac{3\ell_{\rm Pl}^2}{2} \sqrt{\frac{\rho + p}{\omega}} a \frac{\mathrm{d}}{\mathrm{d}\eta} \left(\frac{v}{a}\right)$$

factorization of the wave function

$$\Psi = \Psi_{(0)}(a, T) \Psi_{(2)}[v, T; a(T)]$$

comes from 0th order

Use dBB...

Question: what if initial perturbation out of quantum equilibrium?

Recall: Hamiltonian

$$H = \int d^3 \mathbf{k} \left\{ p_{\mathbf{k}} p_{\mathbf{k}}^* + v_{\mathbf{k}} v_{\mathbf{k}}^* \left[k^2 - \frac{(a\sqrt{\epsilon_1})''}{a\sqrt{\epsilon_1}} \right] \right\}$$

collection of parametric oscillators with time dependent frequency

Simpler model: spectator scalar field in an expanding and finite size Universe

$$\phi_{\mathbf{k}} = \frac{\sqrt{V}}{(2\pi)^{3/2}} \left(q_{\mathbf{k}1} + iq_{\mathbf{k}2} \right) \qquad H = \sum_{\mathbf{k}, r=1,2} \frac{1}{2a^3} \pi_{\mathbf{k}r}^2 + \frac{1}{2} a k^2 q_{\mathbf{k}r}^2$$

$$a^{3} \to m$$

$$k/a \to \omega$$

$$i\frac{\partial \psi}{\partial t} = \sum_{r=1}^{2} \left(-\frac{1}{2m} \frac{\partial^{2}}{\partial q_{r}^{2}} + \frac{1}{2} m\omega^{2} q_{r}^{2} \right) \psi$$

Recall: Hamiltonian

$$H = \int d^3 \mathbf{k} \left\{ p_{\mathbf{k}} p_{\mathbf{k}}^* + v_{\mathbf{k}} v_{\mathbf{k}}^* \left[k^2 - \frac{(a\sqrt{\epsilon_1})''}{a\sqrt{\epsilon_1}} \right] \right\}$$

collection of parametric oscillators with time dependent frequency

Simpler model: spectator scalar field in an expanding and finite size Universe

$$\phi_{\mathbf{k}} = \frac{\sqrt{V}}{(2\pi)^{3/2}} \left(q_{\mathbf{k}1} + i q_{\mathbf{k}2} \right) \qquad H = \sum_{\mathbf{k}, \ r=1,2} \frac{1}{2a^3} \pi_{\mathbf{k}r}^2 + \frac{1}{2} a k^2 q_{\mathbf{k}r}^2$$

$$a^{3} \to m$$

$$k/a \to \omega$$

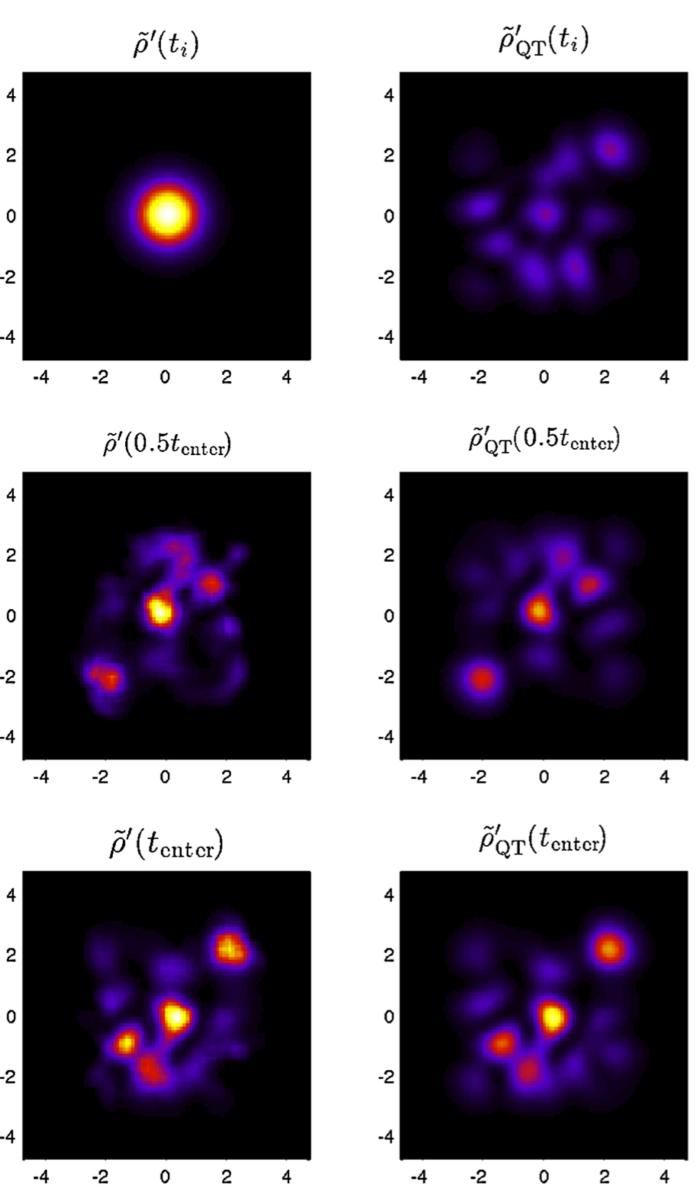
$$i\frac{\partial \psi}{\partial t} = \sum_{r=1}^{2} \left(-\frac{1}{2m} \frac{\partial^{2}}{\partial q_{r}^{2}} + \frac{1}{2} m\omega^{2} q_{r}^{2} \right) \psi$$

dBB trajectory of the field component
$$\dot{q}_r = m^{-1} \Im \frac{\dot{\partial}_r \psi}{\psi}$$

Statistical distribution
$$\frac{\partial \rho}{\partial t} + \sum_r \partial_r \left(\frac{\rho}{m} \Im \frac{\partial_r \psi}{\psi} \right) = 0$$

$$i\frac{\partial\psi}{\partial t} = \sum_{r=1}^{2} \left(-\frac{1}{2m} \frac{\partial^{2}}{\partial q_{r}^{2}} + \frac{1}{2} m\omega^{2} q_{r}^{2} \right) \psi$$

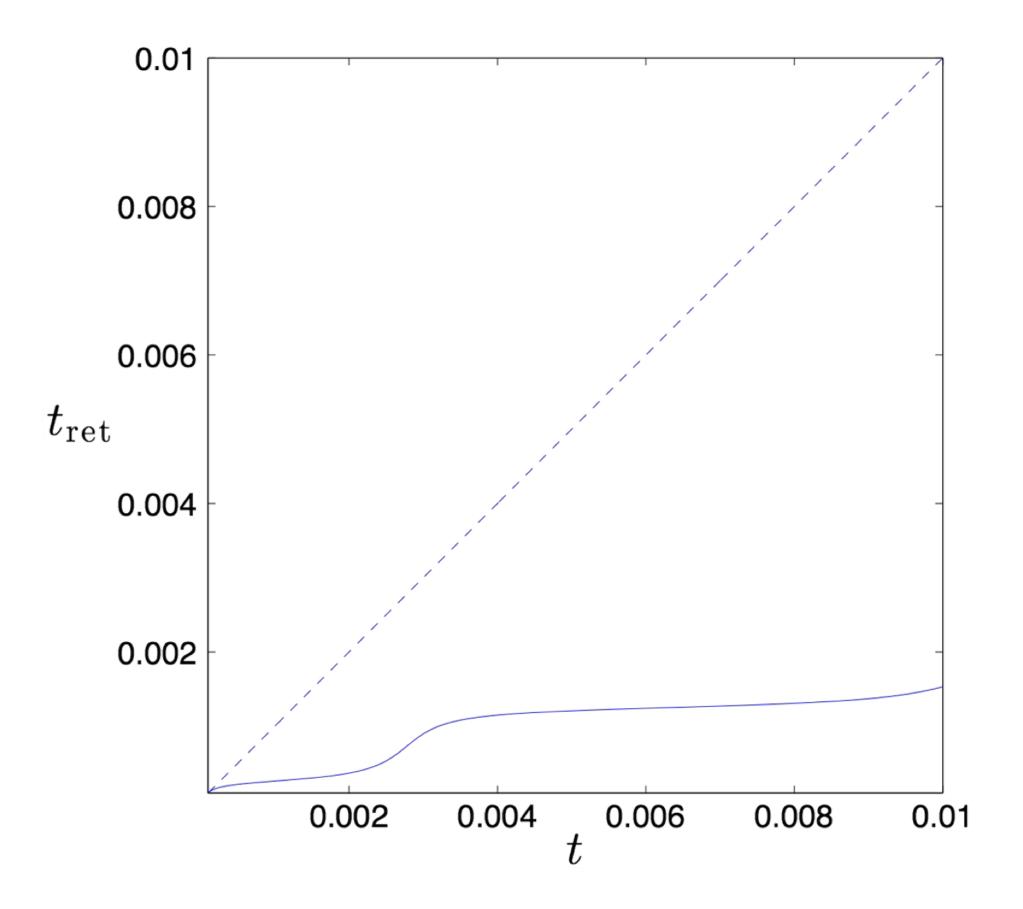
Relaxation of a 2D harmonic oscillator (time dependent mass & frequency)



(constant mass & frequency)

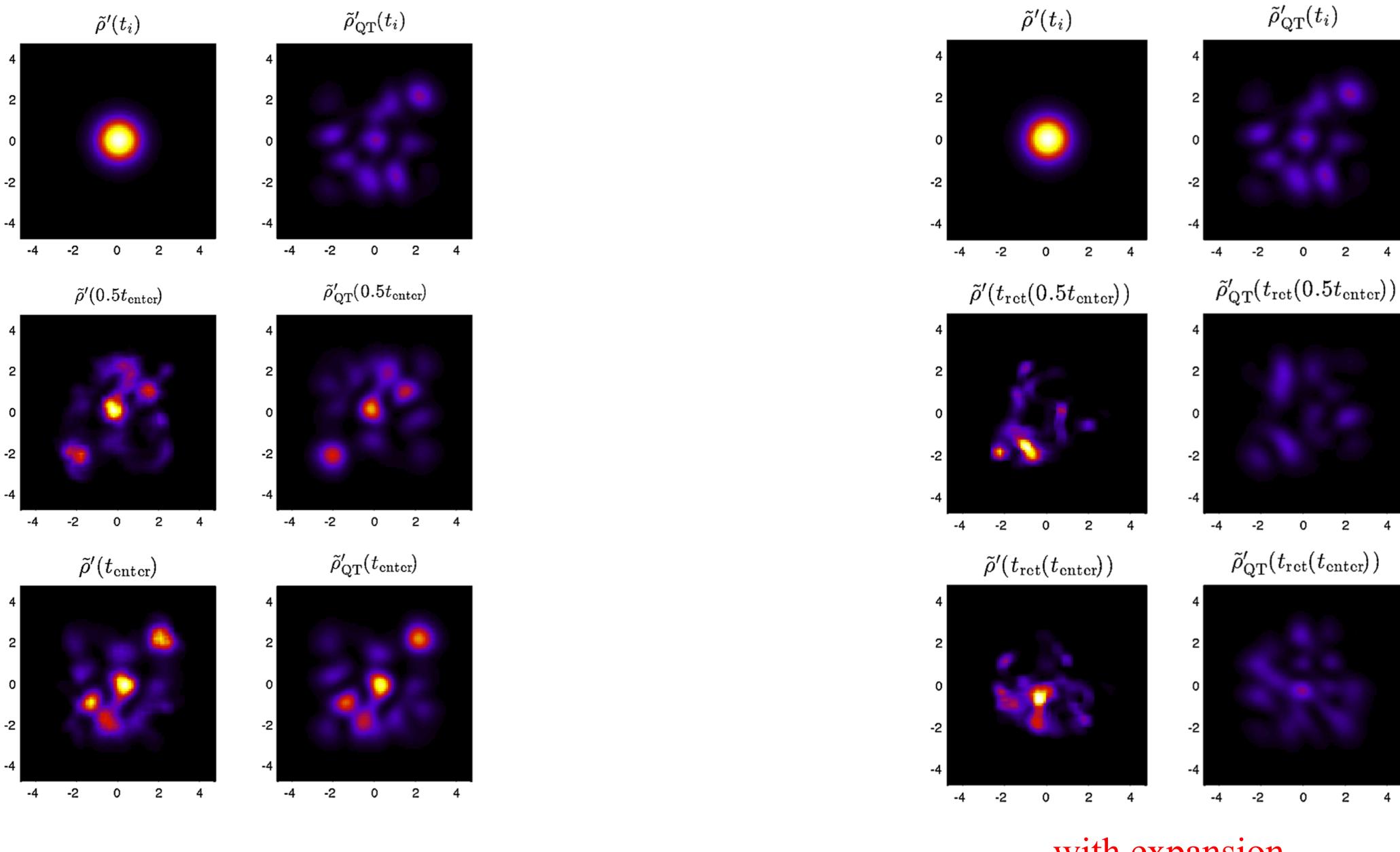
Out-of-equilibrium time evolution

- Usual behaviour = evolves towards equilibrium
 (Minkowski or slowly expanding Universe)
- expansion: there is a retarded time...



Freezing the pdf out of equilibrium

Banach center - Warsaw- June 30, 2016



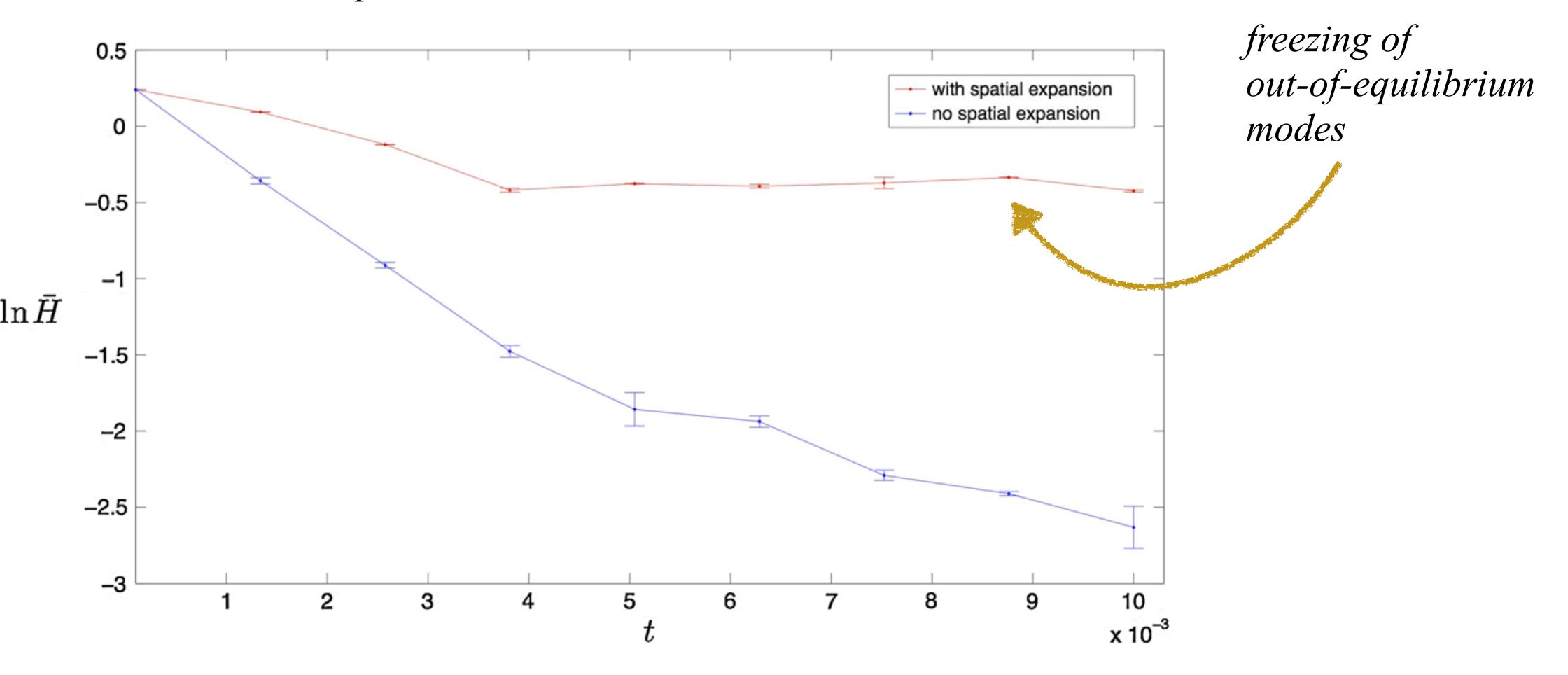
without expansion

with expansion
S. Colin & A. Valen

S. Colin & A. Valentini, 2016 Phys. Rev. **D88** 103515 (2013)

$$H \equiv \int \mathrm{d}q \, \rho \ln \left(\frac{\rho}{|\Psi|^2} \right)$$

measures "out-of-equilibrium-ness"



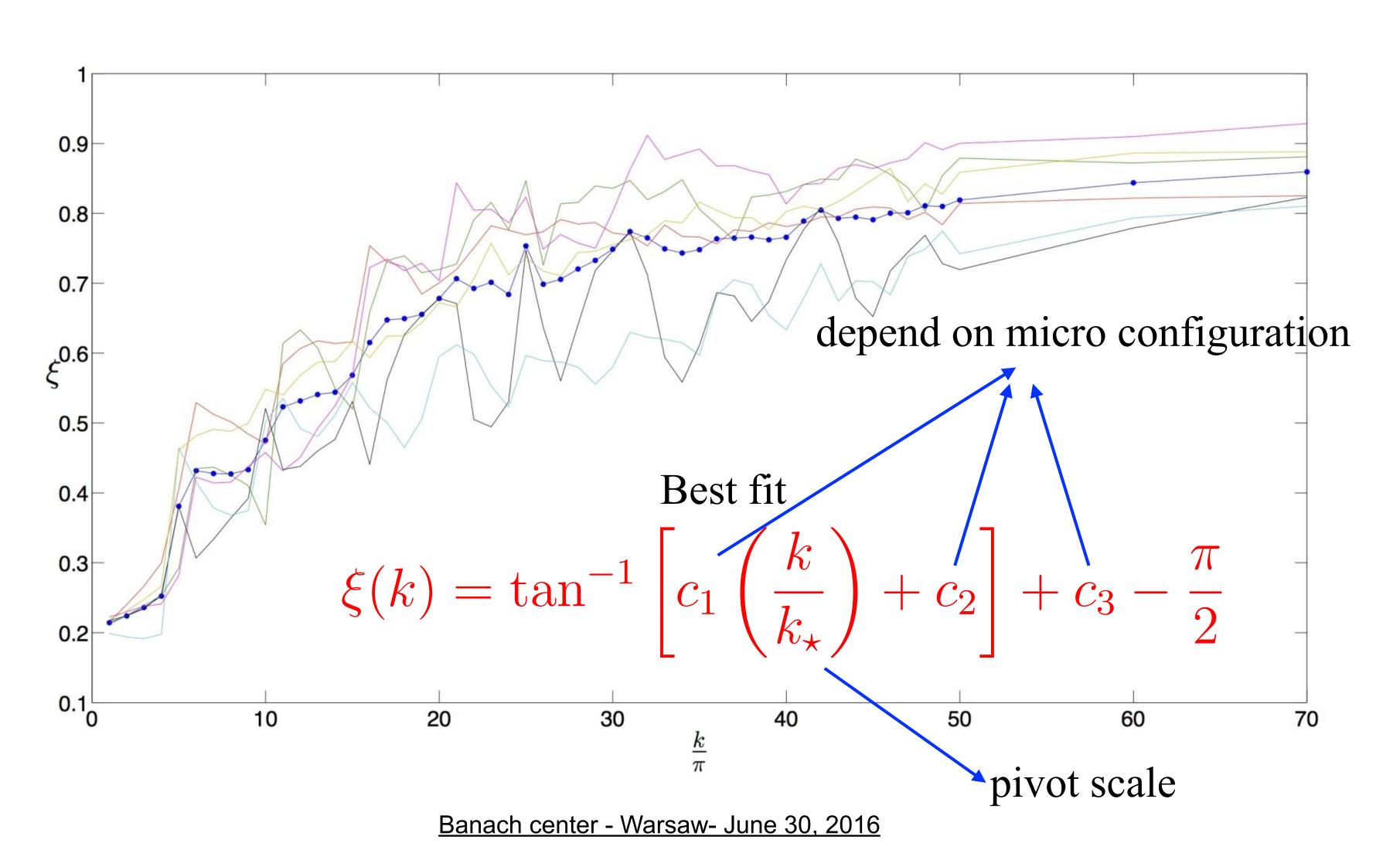
Banach center - Warsaw- June 30, 2016

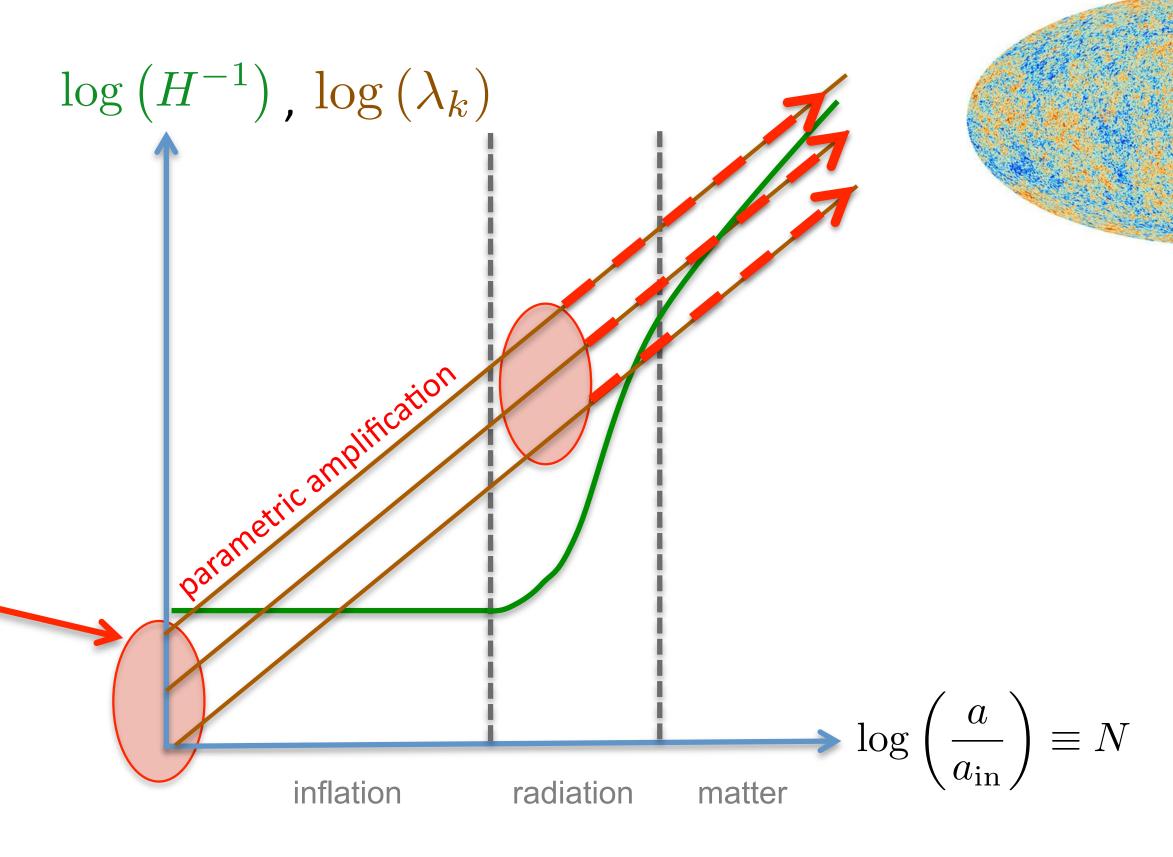
Initial out-of-equilibrium conditions

S. Colin & A. Valentini, Int. J. Mod. Phys. D 25, 1650068 (2016)

$$\mathcal{P}(k) = \mathcal{P}(k)_{QE} \xi(k)$$

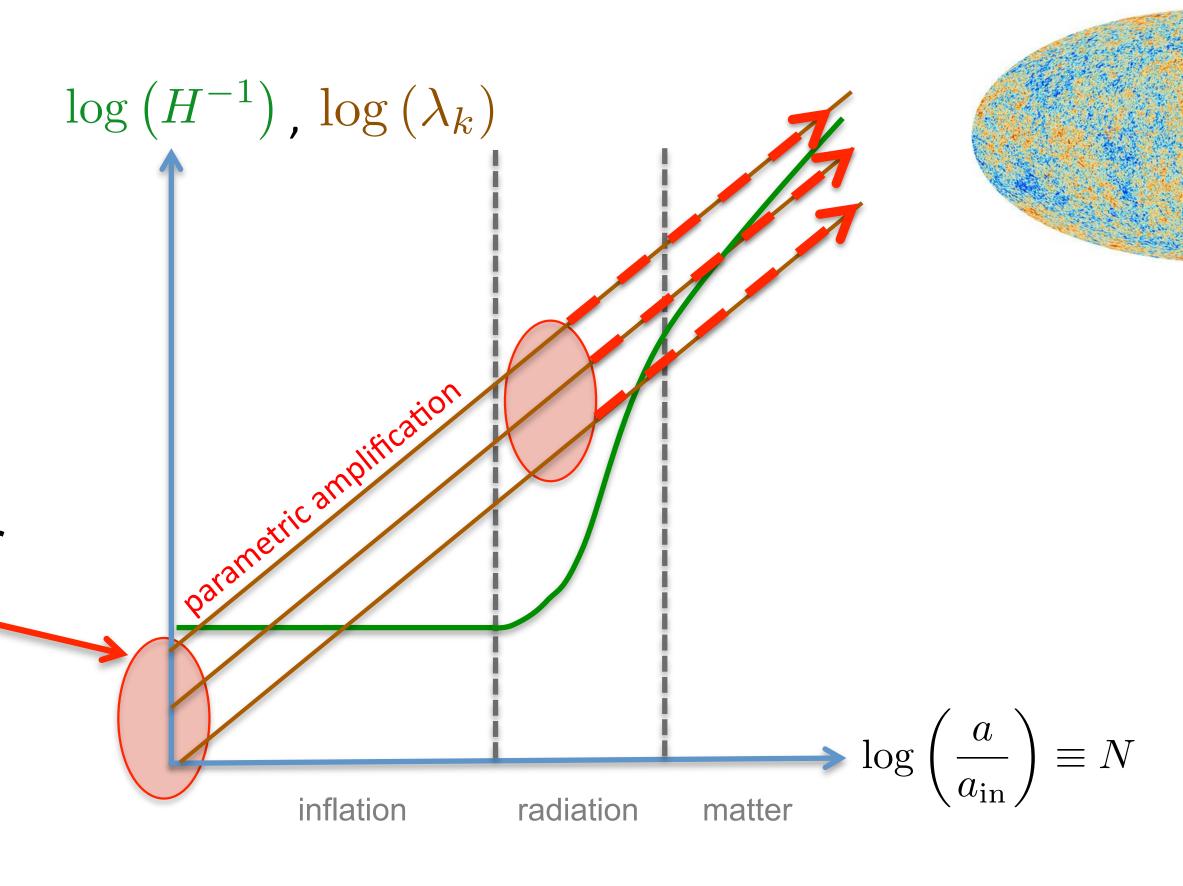
width deficit





Harmonic oscillator fundamental state

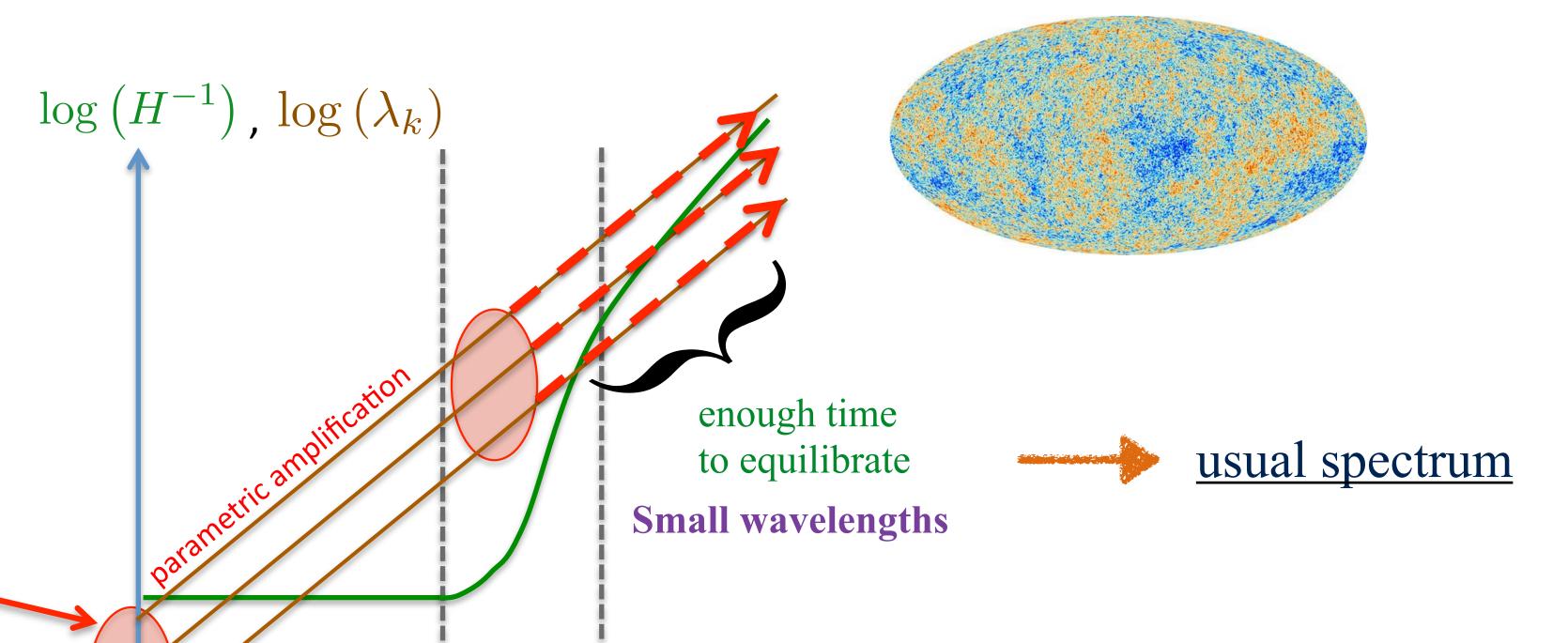
$$\Psi_{\mathbf{k}} = \left(\frac{k}{\pi}\right)^{\frac{1}{4}} e^{-\frac{k}{2}v_{\mathbf{k}}^2}$$



Harmonic oscillator fundamental state

$$\Psi_{\mathbf{k}} = \left(\frac{k}{\pi}\right)^{\frac{1}{4}} e^{-\frac{k}{2}v_{\mathbf{k}}^2}$$

Out-of-Equilibrium initial density: less quantum noise



 $\rightarrow \log\left(\frac{a}{a_{\rm in}}\right) \equiv N$

Harmonic oscillator fundamental state

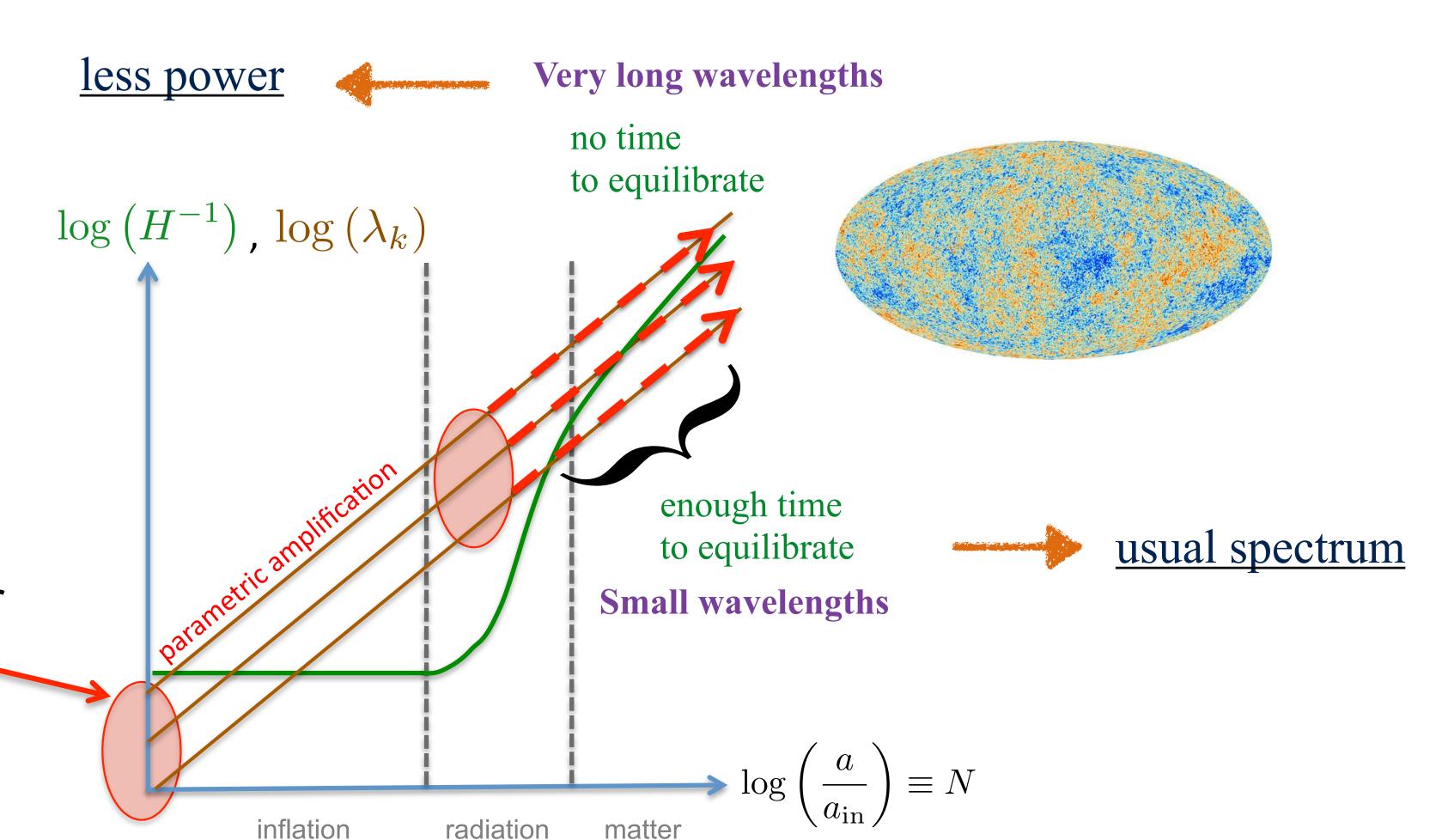
$$\Psi_{\mathbf{k}} = \left(\frac{k}{\pi}\right)^{\frac{1}{4}} e^{-\frac{k}{2}v_{\mathbf{k}}^2}$$

Out-of-Equilibrium initial density: less quantum noise

radiation

matter

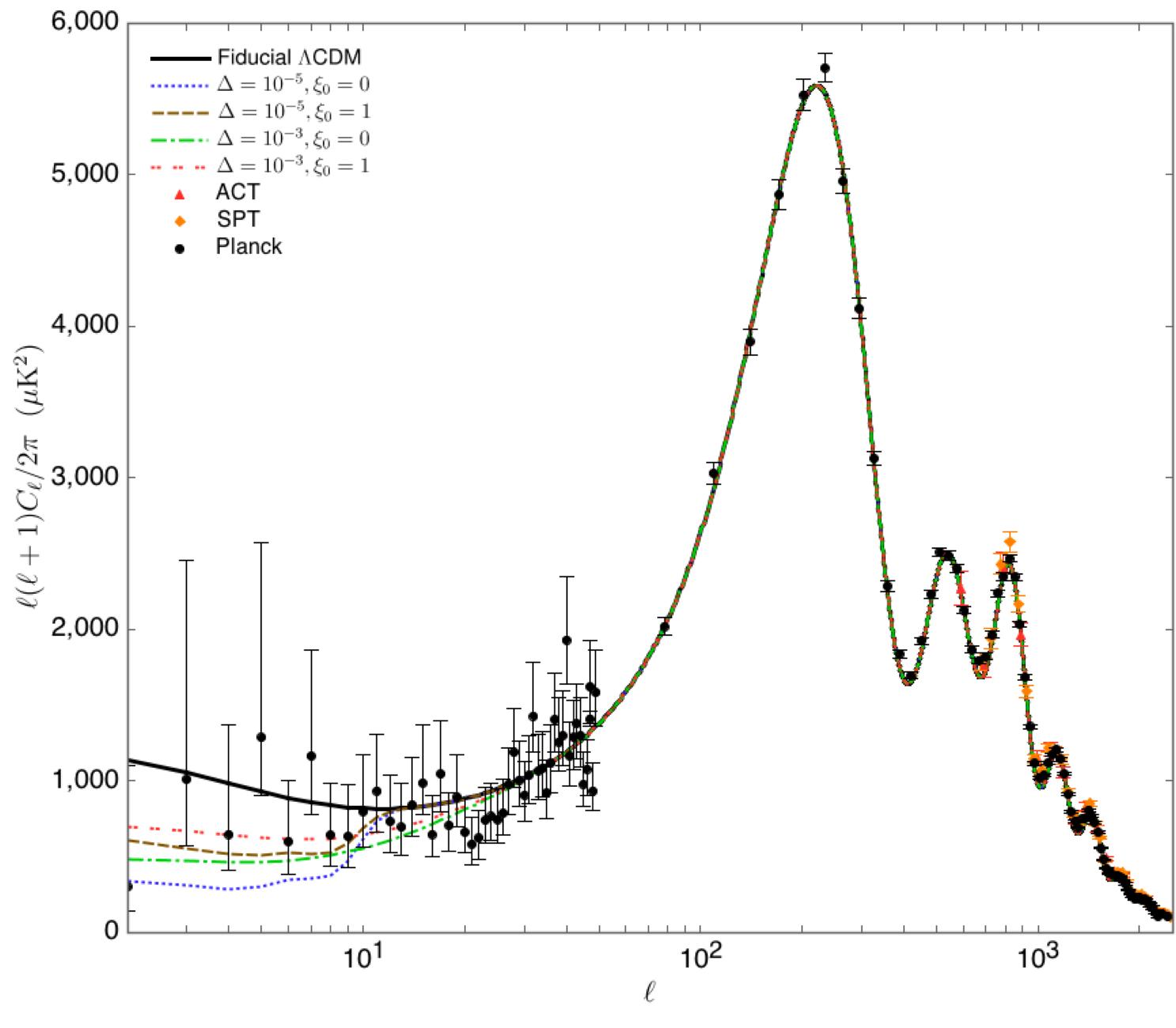
inflation



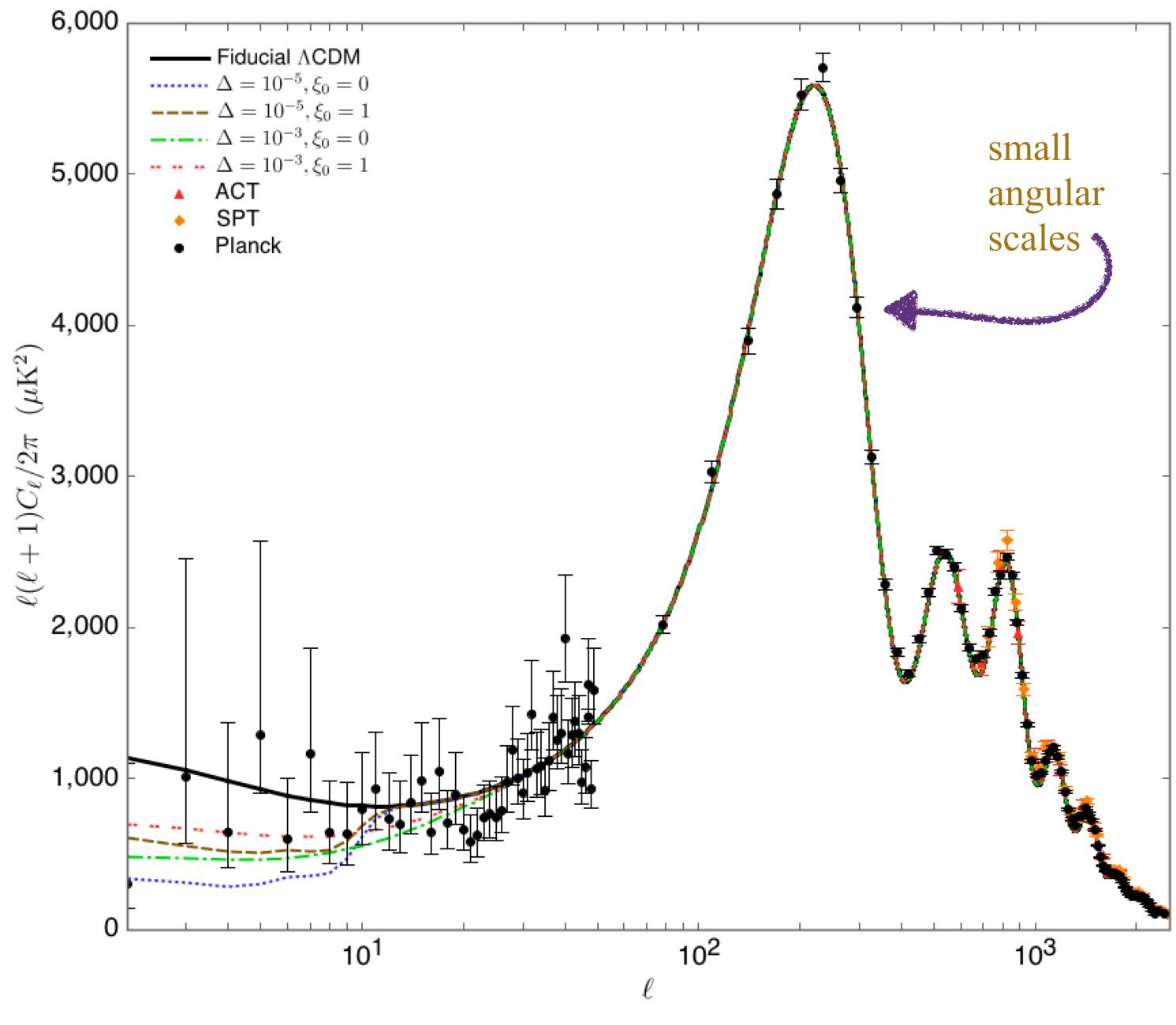
Harmonic oscillator fundamental state

$$\Psi_{\mathbf{k}} = \left(\frac{k}{\pi}\right)^{\frac{1}{4}} e^{-\frac{k}{2}v_{\mathbf{k}}^2}$$

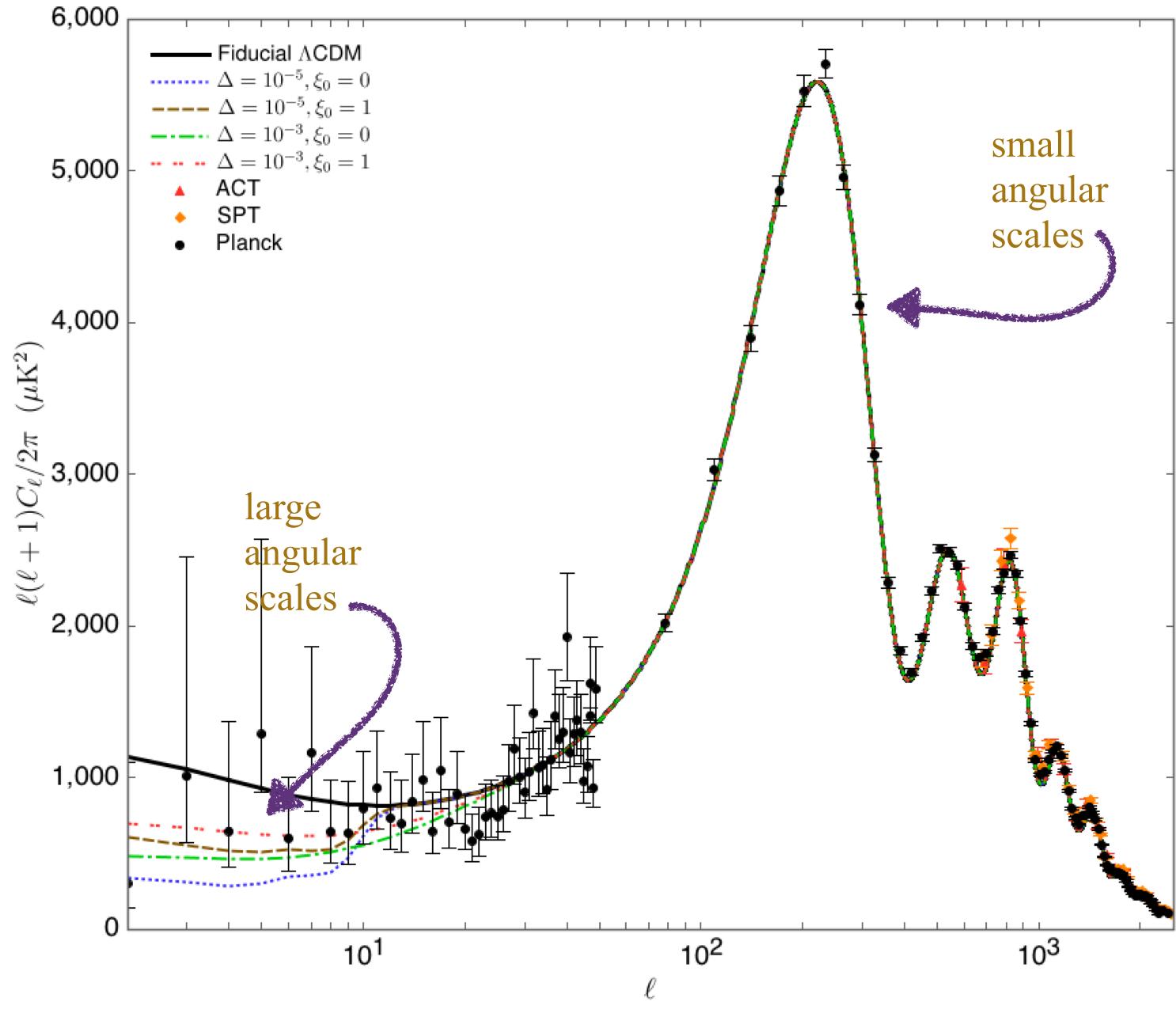
Out-of-Equilibrium initial density: less quantum noise



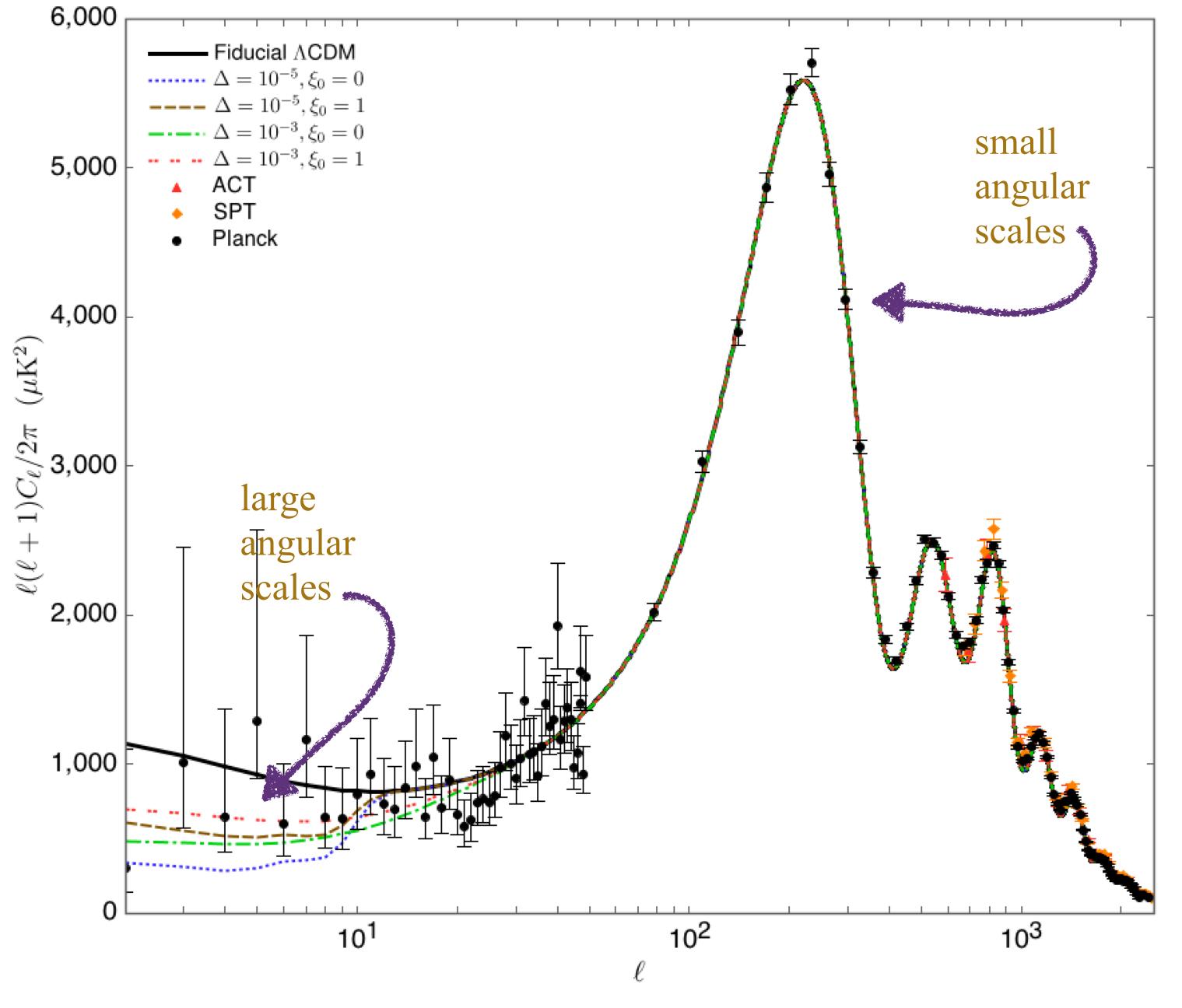
Banach center - Warsaw- June 30, 2016



Banach center - Warsaw- June 30, 2016

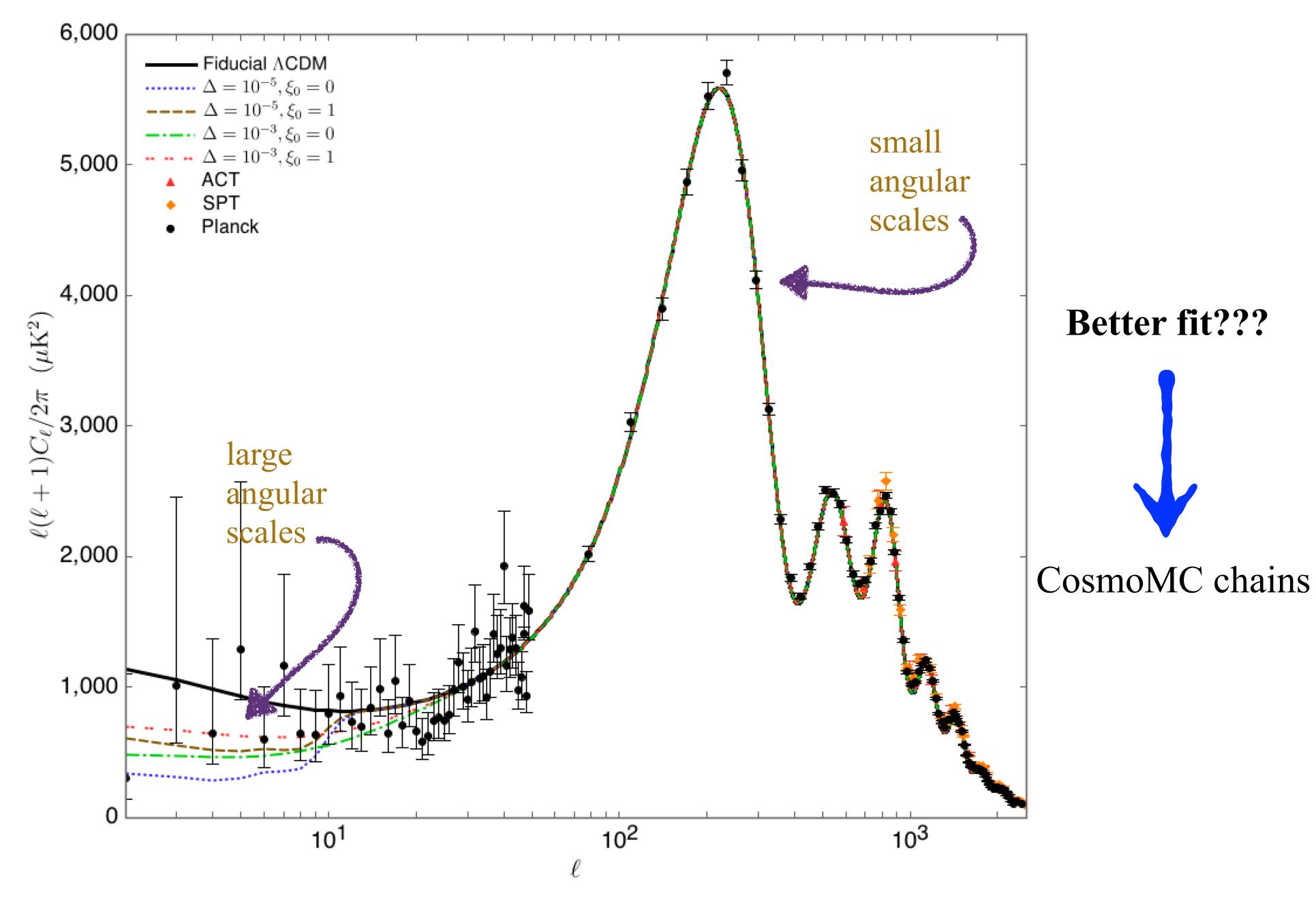


Banach center - Warsaw- June 30, 2016



Better fit???

Banach center - Warsaw- June 30, 2016

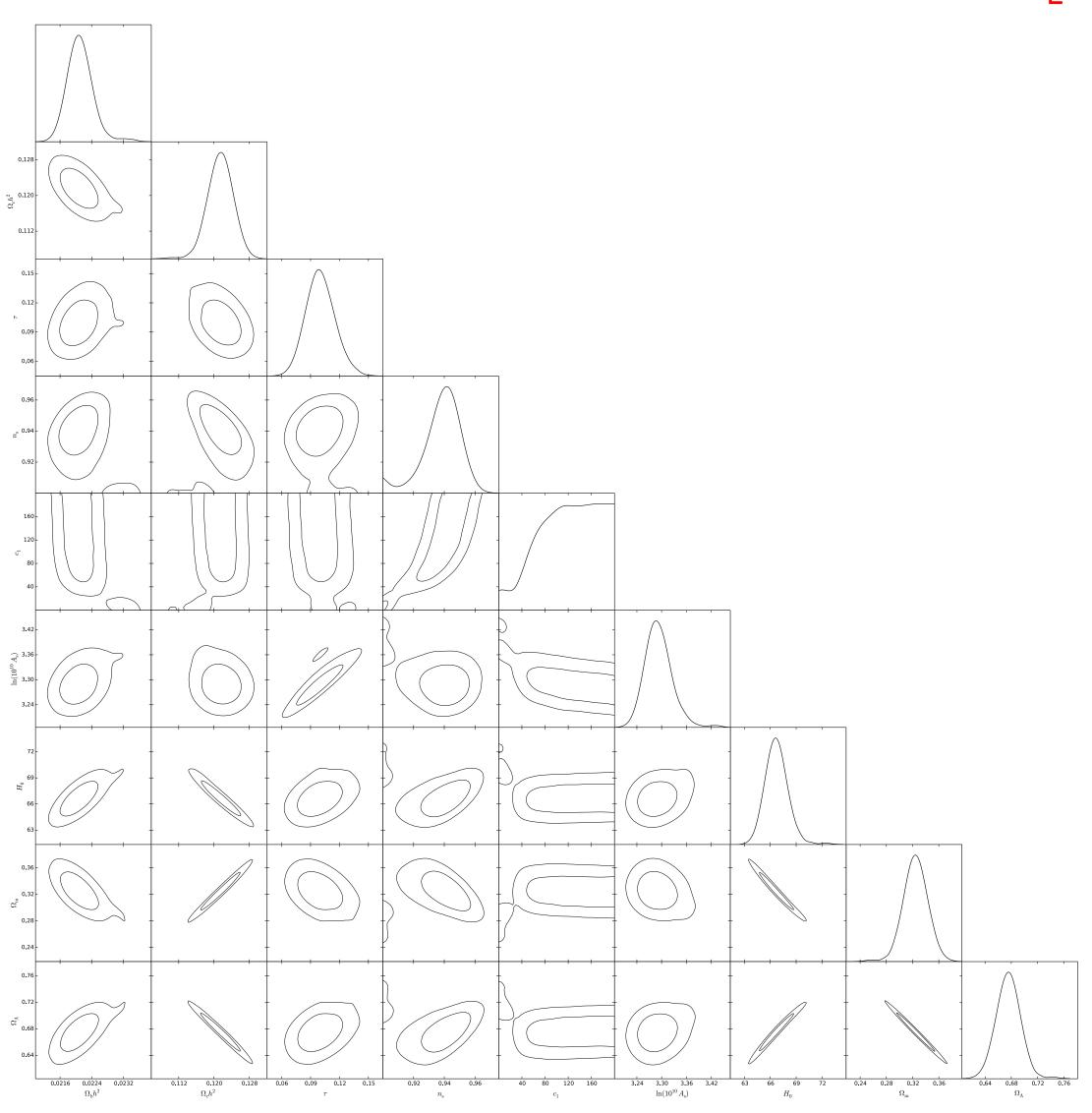


Banach center - Warsaw- June 30, 2016

with only one parameter added, others held fixed: $\xi(k) = \tan^{-1} \left[c_1 \left(\frac{k}{k_{\star}} \right) + c_2 \right] + c_3 - \frac{\pi}{2}$ 0.85 $\xi(k)$ 0.100 0.050 fiducial 0.010 0.005 running & 0.001 running of running 0.001

with only one parameter added, others held fixed: $\xi(k) = \tan^{-1} \left[c_1 \left(\frac{k}{k_{\star}} \right) + c_2 \right] + c_3 - \frac{\pi}{2}$

0.85



Banach center - Warsaw- June 30, 2016

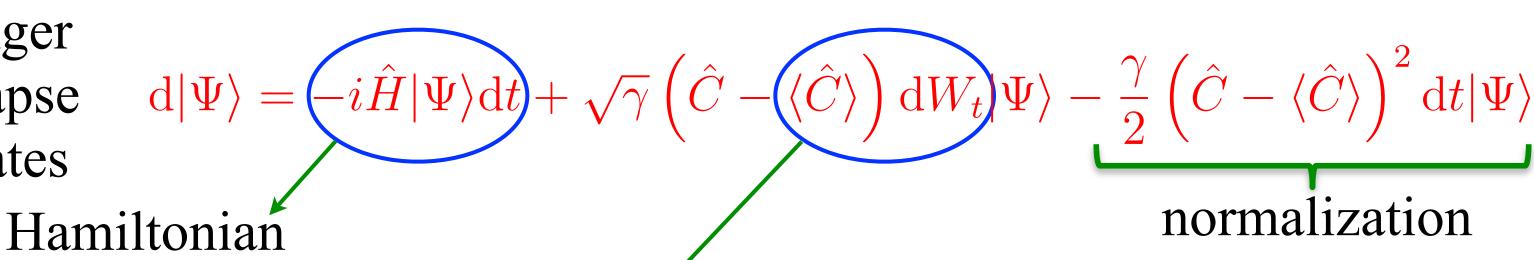
with only one parameter added, others held fixed: $\xi(k) = \tan^{-1} \left[c_1 \left(\frac{k}{k_{\star}} \right) + c_2 \right] + c_3 - \frac{\pi}{2}$ 0.85 with S. Vitenti & A. Valentini Results... work in progress!

Usual Planck best-fit

The GRW dynamical collapse model

Ghirardi - Rimini - Weber

Modified Schrödinger equation with collapse towards \hat{C} eigenstates



 $\langle \hat{C} \rangle \equiv \langle \Psi | \hat{C} | \Psi \rangle^{\text{HO}}$ break superposition principle

non linear stochastic \longrightarrow random outcomes $\mathbb{E}(\mathrm{d}W_t) = 0$ $\mathbb{E}(\mathrm{d}W_t\mathrm{d}W_{t'}) = \mathrm{d}t\mathrm{d}t'\delta(t-t')$ Born rule Wiener process

BONUS: Amplification mechanism

Big objects are classical small objects are quantum!

Primordial perturbations

Conclusions

- (1) dBB = testable formulation of QM
- (2) quantum non-equilibrium may produce new effects
- (3) most systems did reach equilibrium
- (4) primordial perturbations maybe not...
- (5) specific shape for the primordial spectrum
- (6) comparable with data!
- (7) not incompatible with Planck... for the time being!

more work still needs be done (other modifications of QM can be tested...)

Banach center - Warsaw- June 30, 2016

Conclusions

- (1) dBB = testable formulation of QM
- (2) quantum non-equilibrium may produce new effects
- (3) most systems did reach equilibrium
- (4) primordial perturbations maybe not...
- (5) specific shape for the primordial spectrum
- (6) comparable with data!
- (7) not incompatible with Planck... for the time being!

Dziękuję!

more work still needs be done (other modifications of QM can be tested...)