# Resolving gravitational singularities with affine coherent states

Simone Zonetti

Singularities of general relativity and their quantum fate Warsaw, 28 June 2016

590

The importance of resolving singularities

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



xkcd.com

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Classical singularities

Canonical classical variables + physical condition

$$\{q,p\}=1 \qquad q>0$$

Issues with quantum operators:

- can define  $[Q, P] = i\hbar$  with Q > 0
- P not self-adjoint
- Translation operator  $exp~(\mathrm{i} q P/\hbar)$  not unitary

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

$$[Q, D] = i\hbar Q$$
  $D = \frac{1}{2}(PQ + QP)$ 

Functional representation for operators

$$Df(q) = -i\hbar q^{1/2}\partial_q(q^{1/2}f(q))$$
  

$$Qf(q) = qf(q)$$

D acts as a dilation operator D can be shown to be self-adjoint

We can implement Q > 0 consistently

### Affine coherent states

$$|p,q
angle=e^{{
m i} p Q/\hbar}e^{-{
m i} \ln(q/\mu)D/\hbar}|\eta
angle$$

with polarisation condition

$$\left[rac{Q}{\mu}-1+\mathrm{i}rac{D}{eta\hbar}
ight]|\eta
angle=0$$

with a functional representation

$$\langle x | p, q \rangle = N e^{\mathrm{i} p x / \hbar} \left( \frac{x}{q} \right)^{eta} x^{-\frac{1}{2}} e^{-\frac{eta x}{q}}$$

which yields

$$\langle p, q | Q | p, q \rangle = q$$
  
 $\langle p, q | D | p, q \rangle = p q$ 

can be used for a resolution of identity  $\mathbb{I}\sim\int|p,q\rangle\langle p,q|_{\text{B}}$  is the source of the set of th

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Correspondence between classical and quantum systems
- Quantum dynamics incorporated via (affine) coherent states
- Semi-classical dynamics in Hamiltonian form

A quick recipe:

- **1** A classical Hamiltonian  $H(p_c, q_c)$
- **2** Its quantum counterpart  $\mathcal{H} =: H(P, Q):$
- **3** Unitary translation operators U[p,q]

$$h(p,q) := \langle p,q | \mathcal{H}(P,Q) | p,q \rangle = H(p,q) + \mathcal{O}(\hbar,p,q)$$

### Resolving Black Hole singularities SZ, Phys. Rev. D 90, 064046 (2014) - arXiv:1409.1761

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Standard 2dGDT action: metric + dilaton X + potentials U, V:

$$S_{dg} = -\frac{1}{2} \int dx^2 \sqrt{-g} \left( XR - U(X) \left( \nabla X \right)^2 - 2V(X) \right)$$

Gauge fixing:

$$ds^{2} = -\xi(r)dt^{2} + \frac{1}{\xi(r)}dr^{2}$$
$$X = X(r)$$

General solutions for BH:

$$X_r = e^{-Q(X)}$$
  
 $\xi = e^{Q(X)} (w(X) - 2M)$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

### Black Holes in 1+1d dilaton gravity

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Horizons:

$$X = X_h$$
  $w(X_h) = 2M$   $\xi \to 0$ 

Singularities:

$$X \to 0$$
  $U(X) \to \infty$ 

#### **Classical Black Holes**

Classical geometry described by  $\xi(X) = e^{Q(X)} (w(X) - 2M)$ 

$$ds^2 = -\xi(X)dt^2 + \frac{1}{\xi(X)}dr^2$$

Classical physical constraint

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Classical background  $\xi(X)$  + Quantum dynamics of X

Effective action for BH solutions

$$\mathcal{L}_{eff} = N(r)^{-1}g(r)X_r^2 + N(r)e^{-2Q(X)}$$

N(r) Lagrange multiplier g(r) background "metric" gauge invariant for  $r \rightarrow \epsilon(r)$ 

Effective Hamiltonian

$$\mathcal{H}_{eff} = N\left(rac{P_X^2}{4g} - e^{-2Q(X)}
ight)$$

Enhanced Hamiltonian  $h(X, P_X) = \langle \mathcal{H}(X, P_X) \rangle$ :

$$h(X, P_X) = \frac{\delta(2)}{4} P_X^2 + \sum Q_n X^n \delta(-n) + \frac{\gamma(2)}{4} X^{-2}$$

with  $\beta \to \infty$ :

$$h(X, P_X) = \frac{1}{4}P_X^2 + e^{-2Q(X)} + \frac{\gamma}{4}X^{-2}$$

with  $\gamma = \gamma(\hbar) > 0$  and the constraint h = 0.

Repulsive potential at  $X \rightarrow 0$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- **1** Calculate analytically the classical solutions X(r),  $P_X(r)$ .
- **2** Fix the free parameters to suitable values and calculate the potentials Q(X) and w(X).
- **3** Calculate initial conditions  $X(r_0)$ ,  $P_X(r_0)$  at  $r_0 \gg 0$ .
- Numerically solve the semiclassical equations of motion in  $r \in [-r_0, r_0]$ , using the initial conditions calculate above.
- **6** Check that the constraint h = 0 is enforced.

What we will look at:

- \* Behaviour at r 
  ightarrow 0
- \* Location/displacement of the horizon
- \* Kretschmann scalar R<sup>2</sup>

### Thermodynamics for classical BH in 2dGDT

- Path integral formulation for canonical ensemble
- Temperature fixed by time periodicity
- Thermal reservoir upper bound  $X = X_c$  at che cavity wall
- Partition function  $\mathcal{Z} \sim e^{-\Gamma_c} imes$  (quadratic terms)
- Can derive:

| free energy     | $F_c = -T_c \ln \mathcal{Z} \simeq T_c \Gamma_c$                                           |
|-----------------|--------------------------------------------------------------------------------------------|
| entropy         | $S = -\frac{\partial F_c}{\partial T_c}$                                                   |
| internal energy | $E_c = F_c + T_c S$                                                                        |
| specific heat   | $C_{c} = -\frac{\partial E_{c}}{\partial T_{c}} = T_{c} \frac{\partial S}{\partial T_{c}}$ |

Same approach for affine BH with first order corrections in  $\gamma$ 

### Thermodynamics for affine BH

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Requires calculations of  $T_c$  and  $\Gamma_c$ :

- 1 Calculate first order corrections to  $T_c$
- Obtermine the boundary counter-term for vanishing first order variations of the action
- **3** Calculate the action on-shell
- **4** Remove the cavity by taking  $X_c \to \infty$  when possible

Limits of the analysis:

- No direct comparison of expressions: 1d model VS 1+1d
- Cannot check the entropy-area law  $S \sim A$
- Cannot check equivalence of quasi-local energy with internal energy

What can be done:

- \* Thermodynamical stability and properties in parameter space
- \* Calculate entropy corrections (for displaced horizons)

### Example: the ab-family

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$Q = -a \ln X \qquad w = \frac{B}{(b+1)} X^{b+1}$$

Enhanced Hamiltonian

$$h(X, P_X) = \frac{1}{4}P_X^2 + X^{2a} + \frac{\gamma}{4}X^{-2}$$

On-shell improved action

$$\Gamma_{c} = \frac{\gamma \left( X_{h}^{-a-1} - X_{c}^{-a-1} \right)}{4(a+1)}$$

Temperature at the cavity wall

$$T_{c} = \frac{X_{h}^{b}\sqrt{B(b+1)}X_{c}^{\frac{3}{2}}}{4\pi\sqrt{\left(X_{c}^{b+1} - X_{h}^{b+1}\right)}}$$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

|    |                                                                                      | T <sub>c</sub> | F <sub>c</sub> | S            | E <sub>c</sub> | C <sub>c</sub> |  |  |
|----|--------------------------------------------------------------------------------------|----------------|----------------|--------------|----------------|----------------|--|--|
| 1) | $a > b + 1 \land b > -1$                                                             | $\infty$       | $\infty$       | <i>S</i> < 0 | 0              | 0+             |  |  |
| 2) | $\textit{a} = \textit{b} + 1 \land \textit{b} > -1$                                  | $T_c > 0$      | $F_c > 0$      | <i>S</i> < 0 | 0              | 0+             |  |  |
| 3) | $-1 < a < b + 1 \wedge b > -1$                                                       | 0              | 0              | <i>S</i> < 0 | 0              | 0+             |  |  |
| 4) | $a=-1\wedge b>-1$                                                                    | 0              | 0              | $-\infty$    | 0              | $C_c > 0$      |  |  |
| 5) | $-b-3 < a < -1 \wedge b > -1$                                                        | 0              | 0              | $-\infty$    | 0              | $\infty$       |  |  |
| 6) | $a=-b-3\wedge b>-1$                                                                  | 0              | $F_c > 0$      | <i>S</i> > 0 | 0              | $\infty$       |  |  |
| 7) | $a < -b - 3 \wedge b > -1$                                                           | 0              | $\infty$       | $\infty$     | $\infty$       | $-\infty$      |  |  |
|    | $b <= -1 \qquad \qquad \text{Excluded by Im}(F_c) \neq 0 \text{ and Im}(E_c) \neq 0$ |                |                |              |                |                |  |  |







590

### Resolving the initial cosmological singularity

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Europhys.Lett. 101 (2013) 10001 - arXiv:1203.4936 SZ with M. Fanuel

### FLRW cosmology

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Classical action

$$S = \alpha \int dt \, \frac{1}{2} N(t) a^3 \left[ -\frac{1}{N^2(t)} \left( \frac{\dot{a}}{a} \right)^2 - \frac{\Lambda}{3} + \frac{k}{a^2} \right]$$

**Classical Hamiltonian** 

$$\mathcal{H}(p,q)=-rac{p(t)^2}{2q(t)}-rac{1}{2}\kappa q(t)+rac{1}{6}\Lambda q(t)^3$$

Enhanced Hamiltonian

$$h(p,q) = -\frac{\delta(-1)p(t)^2}{2q(t)} - \frac{\gamma(3)}{2q(t)^3} + \frac{1}{6}\delta(3)\Lambda q(t)^3 - \frac{1}{2}\kappa q(t)$$

where  $\delta = \delta(\beta)$  and  $\gamma = \gamma(\hbar, \beta)$ 

### Solving the singularity



・ロト・西ト・西ト・西ト・日下



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Affine quantisation: powerful tools for consistent implementations of q > 0 type conditions
- Affine coherent states and the weak correspondence principle non-perturbative quantum dynamics in a semiclassical formulation
- Singularities are sistematically removed for BH and FLRW cosmology
- Thermodynamical consistency with classical solutions

Perpectives:

- 1 Full treatment of 2d GDTs
- 2 Implications for horizons
- **3** Significance of the  $\beta$  parameter

## Thank you!

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>