
The Generic Friedman Big Bang for viscoelastic matter

() The Generic Friedman Big Bang for viscoelastic matter 1 / 30



INTRODUCTION

Observations show that the early Universe was isotropic, homogeneous,
and thermally balanced. A number of authors expressed the point of view
that the initial cosmological singularity should also be in conformity with
these properties. In other words, the singularity should be isotropic which
ensures that the solution is increasingly well approximated dynamically by
a Friedmann model as the singularity is approached.
J.D.Barrow and R.A.Matzner "The homogeneity and isotropy of the Universe", Mon.

Not. R. astr. Soc., 181, 719 (1977).
R.Penrose "Singularities and Time-Asymmetry", General Relativity: An Einstein

Centenary Survey, Cambridge University Press, p.581 (1979).

S.W.Goode, A.A.Coley and J.Wainwright "The isotropic singularity in cosmology",

Class. Quant. Grav.,9, 445 (1992).
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But it is well known that the Big Bang in an exact Friedmann model is
unstable. This instability is due to the sharp anisotropy (in general of an
oscillatory character) which develops unavoidably near the cosmological
singularity. Then the spacetime cannot start expanding isotropically at the
beginning unless there is an arti�cial �ne-tuning of unknown origin.
However, an intuitive understanding suggests that anisotropy can be
damped by shear viscosity, which might result in the existence of a generic
solution with an isotropic singularity.
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To search for an analytical realization of such a possibility, it would be
inappropriate to use just the Eckart or Landau-Lifshitz approaches to the
relativistic hydrodynamics with dissipative processes. These theories are
physically acceptable provided the characteristic times of the macroscopic
motions of the matter (like periods of cosmological oscillations) are much
bigger than the time of relaxation of the medium to the equilibrium state.
However, It might happen that this is not so near the cosmological
singularity since all characteristic macroscopic times (�rst of all periods of
oscillations) in this region tend to zero.*)
*) We use the sinchronous system where �ds2 = �dt2 + gαβdxαdxβ.
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The reason why the the Eckart and Landau-Lifshitz approaches become
unacceptable when internal relaxation times of the material and
characteristic external times reach the same order of magnitude is
existence in these theories the supraluminal propagation of exitations of
the viscous (and heat) stresses. These e¤ects are of no importance for the
"normal" physicsal scales around us but they turn into the real pathologies
in extreme situations (as, for example, near cosmological singularity) when
they can not be neglected more.
C.Eckart "The Thermodynamics of Irreversible Processes III. Relativistic Theory of the

Simple Fluid", Phys. Rev., 58, 919 (1940).
L.D.Landau and E.M.Lifschitz, Fluid Mechanics, the �rst english edition by Addison

Wesley, Reading, Mass. (1958). The �rst russian edition appeared in 1944.
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In such extreme cases one needs a macroscopic theory which takes into
account Maxwell�s relaxation times on the same footing as all other
transport coe¢ cients. In a literal sense such a theory does not exist,
however, it can be constructed in an approximate form for the cases when
a medium does not deviate too much from equilibrium and relaxation
times do not noticeably exceed the characteristic macroscopic times*). It is
reasonable to expect that these conditions will be satis�ed automatically
for a generic solution (if it exists) near an isotropic singularity describing
the beginning of the thermally balanced Friedmann Universe accompanied
by the arbitrary in�nitesimally small corrections. It turns out that this
indeed is the case for construction we are proposing in this talk.
*) This approximative character is connected to the fact that no exact theory of this kind

can be deduced from kinetic. However, in the vicinity to the cosmological singularity can

not exists any kinetic. This follows from that circumstance that in superdense state can

not be any notion of particles (L.D.Landau, 1953). In this situation one can take a

liberty to consider such approximation as an exact phenomenological theory of a medium

without any microscopic structure (Ya.B. Zeldovich, private discussion, 1976).
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The main target of the e¤orts of many authors (starting from the �rst idea
of Cattaneo up to the �nal formulation of the generalized relativistic
theory of a non-perfect �uid by Israel and Stewart) was to bring the theory
into line with relativistic causality, that is, to eliminate the supraluminal
propagation of the thermal and viscous excitations. This was done by
including into the theory the Maxwell�s relaxation times.
C.Cattaneo "Sur une forme de l�équation de la chaleur éliminant le paradoxe d�une

propagation instantanée", Comptes rendus Acad. Sci. Paris Sér. A-B, 247, 431 (1958).
Based on his earlier seminar talk "Sulla conduzione del calore", Atti Semin. Mat. Fis.

Univ. Modena, 3, 83 (1948).
W.Israel "Nonstationary Irreversible Thermodynamics: A Causal Relativistic Theory",

Ann. Phys., 100, 310 (1976).
W.Israel and J.M.Stewart "Transient Relativistic Thermodynamics and Kinetic Theory",

Ann. Phys., 118, 341 (1979).
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One of the �rst applications of the Israel-Stewart theory to the problems of
cosmological singularity was undertaken by Belinski, Nikomarov and
Khalatnikov in 1979. In their work the stability of the Friedmann models
under the in�uence of the shear viscosity has already been investigated and
it was found that relativistic causality and stability of the Friedmann
singularity are in contradiction to each other. Then the �nal conclusion
was �Relativistic causality precludes the stability of isotropic collapse. An
isotropic singularity cannot be the typical initial or �nal state.�However,
in my recent paper it was shown that this �no go�conclusion was too
hasty, since it was the result of a range for the dependence of the shear
viscosity coe¢ cient on the energy density that was too restricted.
V.A.Belinski, E.S.Nikomarov and I.M.Khalatnikov "Investigation of the cosmological

evolution of viscoelastic matter with causal thermodynamics", Sov.Phys. JETP, 50, 213
(1979).

V.A.Belinski "Stabilization of the Friedmann big bang by the shear stresses", Phys. Rev.

D 88, 103521 (2013).
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As usual, in the vicinity to the singularity where the energy density ε
diverges, we approximate the coe¢ cient of viscosity η by the power law
asymptotics η � εν with some exponent ν. In our old work (due to some
more or less plausible thoughts) we choose the values of this exponent
from the region ν > 1/2. For these values of ν, the old negative result
remains correct, but recently it was made known that the boundary value
ν = 1/2 leads to a dramatic change in the state of a¤airs. It turns out
that for this case there exists a window in the space of the free parameters
of the theory in which the Friedmann singularity becomes stable and at
the same time no supraluminal signals exist in its vicinity. This possibility
was overlooked in 1979.
It is worth adding that the case ν < 1/2 also was analyzed in 2013 paper
but it is of no interest since it leads to strong instability of a Friedmann
singularity independently of the question of relativistic causality.
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Shear stresses generate an addend Sik to the standard energy-momentum
tensor of a �uid:

Tik = (ε+ p) uiuk + pgik + Sik ,

and this additional term has to satisfy the Landau-Lifshitz constraints:

Sik = Ski , S
k
k = 0 , u

iSik = 0 .

Besides we have the usual normalization condition for the 4-velocity:

uiui = �1.

If the Maxwell�s relaxation time τ of the stresses is not zero then do not
exists any closed expression for Sik in terms of the viscosity coe¢ cient η
and 4-gradients of the 4-velocity (like it was in the Landau-Lifshitz
approach). Instead the stresses Sik should be de�ned (see Israel-Stewart
papers) from the following di¤erential equations :
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Sik + τ (δmi + uiu
m) (δnk + uku

n) Smn ;lu
l =

�η
�
ui ;k + uk ;i + u

lukui ;l + u
luiuk ;l

�
+
2
3

η (gik + uiuk ) u
l
;l ,

which due to the normalization condition for velocity is compatible with
the Landau-Lifshitz constraints Sik = Ski , Skk = 0 and u

iSik = 0. In case
τ = 0 expression for Sik , following from this equation, coincides with that
one introduced by Landau and Lifschitz. If the equations of state
p = p (ε) , η = η (ε) , τ = τ (ε) are �xed then the Einstein equations

Rik = Tik �
1
2
gikT

l
l

together with above di¤erential equation for the stresses Sik gives the
closed system where from all quantities of interest, that is gik , ui , ε,Sik can
be found.
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Since we are interesting in behaviour of the system in the vicinity to the
cosmological singularity where ε ! ∞ the viscosity coe¢ cient η in this
asymptotic domain can be approximated by the power law asymptotics

η = const � εν,

with some constant exponent ν. Beforehand the value of this exponent is
unknown then we need to investigate its entire range �∞ < ν < ∞. As
for the relaxation time τ the choice is more de�nite. It is well known that
η/ετ represents a measure of velocity of propagation of the shear
excitations. Then we model this ratio by a positive constant f (in a more
accurate theory f can be a slow varying function on time but in any case
this function should be bounded in order to exclude the appearance of the
supraluminal signals). Consequently we choose the following model for the
relation between relaxation time and viscosity coe¢ cient:

η = f ετ, f = const.
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For the dependence p = p (ε) we follow the standard approximation with
constant parameter γ:

p = (γ� 1) ε , 1 6 γ < 2.

Now equations are closed and we can search the asymptotic behaviour of
solution in the vicinity to the cosmological singularity. It is convenient to
work in the synchronous reference system where the interval is

�ds2 = �dt2 + gαβdx
αdxβ.

Our task is to take the standard Friedmann solution as background and to
�nd the asymptotic (near singularity) solution of the equations for the
linear perturbations around this background in the same synchronous
system.
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The background solution is

�ds2 = �dt2 + R2
h�
dx1

�2
+
�
dx2

�2
+
�
dx3

�2i
, R = (t/tc )

2/3γ ,

ε(0) = 4
�
3γ2t2

��1
, u(0)0 = �1, u(0)α = 0, S (0)ik = 0,

where t > 0 and tc is some arbitrary positive constant. We have to deal
with the following linear perturbations:

δgαβ, δuα, δε, δSαβ.

In the linearized version of the equations around the Friedmann solution
will appear only these variations. The variations δu0 and δS0k can not be
of the �rst (linear) order because of the exact relations uiui = �1 and
uiSik = 0 and properties u

(0)
0 = �1, u(0)α = 0, S (0)ik = 0 of the

background. The variations δτ and δη of the relaxation time and viscosity
coe¢ cient, although exist as the �rst order quantities, will disappear from
the linear approximation since they reveal itself only as factors in front of
the terms vanishing for the isotropic Friedmann seed.
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To �nd the general solution of equations for small perturbations we apply
the technique invented by Lifshitz and used by him to analyze the stability
of the Friedmann solution for the perfect liquid. Since all coe¢ cients in
the di¤erential equations for perturbations do not depend on spatial
coordinates we can represent all quantities of interest in the form of the
3-dimensional Fourier integrals to reduce these equations to the system of
the ordinary di¤erential equations in time for the corresponding Fourier
coe¢ cients. These coe¢ cients can be expanded in the Lifshitz basis in
which the system of equations splits in the three separate and independent
subsets (scalar, vectorial and tensorial). However, now equations are more
complicated since each type of perturbations contain the terms due to the
presence of the shear stresses (δSαβ also consists of the scalar, vector and
tensor excitations).
E.M.Lifschitz "On the gravitational stability of the expanding universe"", ZhETP, 16,
587 (1946) (in russian); reprinted: Journal of Physics (USSR), 10, 116 (1946).
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Short waves pulses

The conformally �at version of the Friedman metric are
�ds2 = R2 (T )

h
�dT 2 +

�
dx1

�2
+
�
dx2

�2
+
�
dx3

�2i, where
dT = dt/R. Then in the limit of large values of the absolute values k of
the wave vectors equations for the Fourier amplitudes of each types of
perturbations have solutions of the form (slow varying
amplitude) exp(iυkT ) but for di¤erent types of excitations with di¤erent
propagation velocity:

υ2scalar = γ� 1+ 4f /3γ, υ2vector = f /γ, υ2tnsor = 1.

This result we obtained already in 1979 and it shows that gravitational
waves propagate with velocity of light but in order to exclude the
supraluminal signals for two other types of perturbations it is necessary to
demand υ2scalar < 1 and υ2vector < 1. Both of these conditions in the region
1 6 γ < 2 will be satis�ed if

f <
3
4

γ (2� γ) .
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Di¤erent cases for viscosity coe¢ cient

In case ν < 1/2 the perturbations near singularity (t ! 0) contain the

strongly divergent mode of the order of exp
�

1
2(1�2ν)

�
t
t0

�2ν�1
�
. This

mode destroys the background regime. Consequently the values ν < 1/2
are of no interest since in this case does not exists a generic solution of the
gravitational equations with the Friedmann singularity.

() The Generic Friedman Big Bang for viscoelastic matter 17 / 30



For ν > 1/2 near to the singularity t ! 0 the solutions for perturbations
represent the superposition of two power law modes of orders ts1 and ts2

where exponents s1 and s2 are functions on the parameters γ and f . For
stability of the Friedmann solution it is necessary for both these exponents
to be positive. It turnes out that this condition is equivalent to the
restriction f > 3

4γ (2� γ) for the constant f . However, this restriction is
exactly opposite to the causality condition f < 3

4γ (2� γ) which has been
obtained previously. Consequently, also for ν > 1/2, assuming the absence
of the supraluminal excitations, there is no way to provide stability of the
Friedmann solution near singularity. This result has been known already in
1979.
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For ν = 1/2 the model contains three arbitrary constans f , γ, β and
asymptotic behaviour of the viscosity coe¢ cient η, relaxation time τ and
energy density ε are:

η =
4f
3γ2β

1
t
, τ =

t
β
, ε =

4
3γ2

1
t2
.

The result is that in the space of parameters f , γ, β there is the window
(of �nite volume, that is of nonzero measure) in which all time-dependent
perturbations tend to zero when t ! 0 and also no supraluminal signals
exist, that is the causality condition f < 3

4γ (2� γ) take place.
This window consists of two di¤erent regions: one corresponds to smooth
power law behavior and another to damping oscillations (see concluding
remarks).
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All this results that in the non-perturbative context a generic solution
exists with the following asymptotics for the metric near singularity:

gαβ = R
2
�
aαβ + t

s1b(1)αβ + t
s2b(2)αβ + t

s3b(3)αβ + ...
�

where R = (t/tc )
2/3γ and exponents s1, s2, s3 are de�nite functions on

the three parameters f , γ, β. The exponent s3 is always positive while
exponents s1 and s2 are either positive or complex conjugated to each
other but with positive real parts. The additional terms denoted by the
triple dots are small corrections which contain the terms of the orders
t2s3 , ts1+s3 , ts2+s3 as well as all their powers and cross products.
In the main approximation the velocity components uα are the linear
superposition of the three powers ts1+1, ts2+1, ts3+1 and energy density are
going as superposition of t�2 and t�2+s3 (energy density never oscillates).
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The main addend aαβ represents six arbitrary 3-dimensional functions.

Each tensor b(1)αβ and b(2)αβ consists of the six 3-dimensional functions

subjected to the restrictions aαβb(1)αβ = 0 and a
αβb(2)αβ = 0 (a

αβ is inverse to

aαβ), consequently b
(1)
αβ and b(2)αβ contain another ten arbitrary

3-dimensional functions. In case of complex conjugated s1 and s2 the
components b(1)αβ and b(2)αβ are complex but in the way to provide reality of

the metric tensor. The last term b(3)αβ and all corrections denoted by the

triple dots are expressible in terms of the aαβ, b
(1)
αβ , b

(2)
αβ and their

derivatives then they do not contain any new arbitrariness.
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The shear stresses, velocity and energy density follows from the exact
Einstein equations in terms of the metric tensor and its derivatives and all
these quantities also do not contain any new arbitrary parameters. In
result the solution contains 16 arbitrary 3-dimensional functions the three
of which represent the gauge freedom due to the possibility of the arbitrary
3-dimensional coordinate transformations. Then the physical freedom in
the solution corresponds to 13 arbitrary functions. This is exactly the
number of arbitrary independent physical degrees of freedom of the system
under consideration, that is 4 for the gravitational �eld, 1 for the energy
density, 3 for the velocity and 5 for the shear stresses (�ve because the six
components Sαβ follows from the six di¤erential equations of the �rst
order in time with one additional condition δαβSαβ = 0). Then the solution
we constructed is generic.
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This result is the generalization of the Lifshitz-Khalatnikov quasi-isotropic
solution for the perfect liquid constructed in 1961 . However, in case of
perfect liquid the isotropic singularity is unstable and Lifshitz-Khalatnikov
asymptotics corresponds to the narrow class of particular solutions
containing only 3 arbitrary physical 3-dimensional parameters.
E.M.Lifschitz and I.M.Khalatnikov "On the singularities of cosmological solutions of the

gravitational equations.I", Sov.Phys. JETP, 12, 108 (1961).
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Concluding remarks

1. The results presented show that the viscoelastic material with shear
viscosity coe¢ cient η �

p
ε can stabilize the Friedmann cosmological

singularity and the corresponding generic solution of the Einstein equations
for the viscous �uid possessing the isotropic Big Bang (or Big Crunch)
exists. Depending on the free parameters f , β,γ of the theory such
solution can be either of smooth power law asymptotics near singularity
(when both power exponents s1 and s2 are real and positive) or it can have
the character of damping (in the limit t ! 0) oscillations (when s1 and s2
have the positive real part and an imaginary part). The last possibility
reveal itself as a trace of the chaotic oscillatory regime which is
characteristic for the most general asymptotics near the cosmological
singularity and which has no any analytical form. The present case show
that the shear viscosity can smooth such chaotic behaviour up to the quiet
oscillations which have simple asymptotic expressions in terms of the
elementary functions of the type tRe s sin [(Im s) ln t] and
tRe s cos [(Im s) ln t] .
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2. In the generic isotropic Big Bang described here some part of
perturbations are presented already at the initial singularity t = 0 which
are the three physical components of the arbitrary 3-dimensional tensor
aαβ(x1, x2, x3). Another ten arbitrary physical degrees of freedom are

contained in the components of two tensors b(1)αβ and b(2)αβ in this formula
and they come to the action in the process of expansion. This picture has
no that shortage of the classical Lifshitz approach when one is forced to
introduce some unexplainable segment between singularity t = 0 and
initial time t = t0 when perturbations arise in such a way that inside this
segment it is necessary to postulate without reasons the validity of the
exact Friedmann solution free of any perturbations.
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3. It might happen that due to the universal growing of all perturbations
(in the course of expansion) already before that critical time when
equations of state will be changed and will switched o¤ the action of
viscosity the perturbation amplitudes will reach the level su¢ cient for the
further development of the observed structure of our Universe. If not we
always have that means of escape as in�ation phase which can appear in
the course of evolution after the Big Bang. Here we are touching another
problem. It is known (Vilenkin et al.) that no in�ation can appear without
preceding cosmological singularity. Moreover, namely the period of
expansion from singularity to an in�ationary stage is responsible for the
generation of the necessary initial conditions for this in�ationary phase. All
these problems call for another good piece of work.
A.Vilenkin "Did the Universe have a beginning?", Phys.Rev., D46, 2355 (1992).

A.Borde, A.Guth and A.Vilenkin "In�ationary spacetimes are not past-complete",

Phys.Rev.Lett., 90, 151301 (2003).
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4. In our analysis the case of sti¤ matter (γ = 2) have been excluded.
This peculiar possibility should be investigated separately. It is known that
for the perfect liquid with sti¤ matter equation of state a generic solution
with isotropic singularity is impossible. The asymptotic of the general
solution for this case have essentially anisotropic structure although of the
smooth (non-oscillatory) power low character. It might be that viscosity
will be able to isotropize such evolution, however, it is not yet clear how
the viscous sti¤ matter should be treated mathematically. The simple way
to take γ = 2 in our previous study does not works.
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5. Another interesting question is how an evolution directed outwards of a
thermally equilibrated state to a non-equilibrium one can be reconciled
with the second law of thermodynamics. Indeed, it seems that in
accordance with this law no deviation can happen from the background
Friedmann expansion since in course of a such deviation entropy must
increase but in equilibrium it already has the maximal possible value. The
explanation should come from the fact of the presence the superstrong
gravitational �eld. This �eld is an external agent with respect to the
matter itself, consequently, the matter in the Friedmann Universe cannot
be consider as isolated system. It might happen that Penrose is right and
the gravitational �eld possess an intrinsic entropy then this entropy being
added to the entropy of matter will bring the situation to the normal one.
R.Penrose "Singularities and Time-Asymmetry", General Relativity: An Einstein

Centenary Survey, Cambridge University Press, 581 (1979).
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To clarify the question the matter entropy production near singularity for
the solution described in the previous sections can be calculated. The
result shows that in course of expansion the entropy decreases.
It might be thought that this means that the second law of
thermodynamics precludes the physical realization of the generic isotropic
Big Bang. However, it can happen that such conclusion again would be
too hasty because the entropy of gravitational �eld might normalize the
situation. As of now no concrete calculation can be made inasmuch no
theory of the gravitational entropy exists. Nevertheless in the model under
investigation it looks plausible that gravitational entropy, being
proportional to some invariants of the Weyl tensor, indeed would be able
to change the state of a¤airs because for the background Friedmann
solution this tensor is identically zero and it will start to increase in the
course of expansion. Then increasing of the gravitational entropy would
compensate the decreasing of the matter entropy.
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By the way it is worth to remark that practically in all publications
(including Israel-Stewart papers) dedicated to the extended
thermodynamics in the framework of the General Relativity the condition
σk;k > 0 for the entropy �ux of the matter is accepted from the beginning
as one�s due. Moreover, namely from this condition follows the structure
of the additional dissipative terms in the energy-momentum tensor and
particle �ux. Such strategy is correct not only for the "everyday life" but
also for the majority of the astrophysical problems where the gravitational
�elds are relatively weak. However the cases with extremely strong gravity
as in vicinity to the cosmological singularity need more precise de�nition of
what we should understand under the total entropy of the system.
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