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Motivation

Goal: Extract cosmology from (loop) quantum gravity.

Loop quantum cosmology (LQC) —where the quantization
techniques of loop quantum gravity (LQG) are applied in the
symmetry-reduced minisuperspaces corresponding to homogeneous
space-times— has given some potentially important insights in this
direction. [See Martin Bojowald and Parampreet Singh’s talks]

However, despite its successes, the exact relation between loop
quantum gravity and loop quantum cosmology remains unclear. It is
important to go beyond LQC, using any hints LQC may offer.
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Loop Quantum Gravity: Basics

Loop quantum gravity is a background
independent approach to quantum
gravity based on connection and triad
variables. [Ashtekar; Immirzi; Barbero]

A convenient basis for states in the
canonical framework are spin networks:
graphs coloured by spins on the edges
and intertwiners on the nodes. [Penrose]

[Rovelli]

An important result is that geometrical observables like the volume
and the area have a discrete spectrum. Furthermore, each node can
be thought of as a polyhedron with some volume and surface areas
transverse to the links: for example, a four-valent node gives a
tetrahedron. In this sense, the spin network is composed of ‘atoms of
geometry’. [Rovelli, Smolin; Ashtekar, Lewandowski; Freidel, Speziale; . . . ]
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Cosmology as a Condensate of Geometry

In any theory such as LQG which predicts that space-time is
constituted of quanta of geometry, it is reasonable to assume that in
large space-times, including (inflationary) cosmological space-times:

there are many quanta of geometry,
one quanta contributes a small fraction of the spatial volume,
cosmological expansion is due to new quanta being added.

Furthermore, the improved dynamics of loop quantum cosmology
suggest that the N quanta are in fact in the same state and that
each contributes the same minimal Vmin to the total volume,

Vtot = NVmin.

If all the quanta are indeed in the same state, this suggests using
condensate states to extract cosmology from LQG.

This in turn directly leads to group field theory, a field theory for
the quanta of geometry of LQG.
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Interpretation of the Condensate State

The key idea here is that the continuous cosmological space-time
emerges from the coarse-graining of the group field theory (GFT)
condensate state.

The microscopic dynamics of the GFT condensate state imply some
effective coarse-grained Friedmann equations, which follow from the
evaluation of the relevant collective cosmological observables (e.g.,
total spatial volume) and calculating their evolution as determined by
the microscopic GFT model (with respect to some relational time).

Note that we will make assumptions on the type of LQG/GFT state
that is relevant for cosmology, but we do not impose any symmetries
upon the underlying GFT theory.
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Group Field Theory with a Scalar Field
Group field theory (GFT) can be seen as a second-quantized
language for loop quantum gravity, where the field operators

ϕ̂ j1,j2,j3,j4,ι
m1,m2,m3,m4

(φ), ϕ̂† j1,j2,j3,j4,ι
m1,m2,m3,m4

(φ),

create and annihilate quanta of geometry: spin network nodes [Oriti].

The ji and mi colour the links of the (four-valent) spin network node
and the intertwiner ι and the scalar field φ both live on the spin
network nodes. Connectivity is imposed via projectors on links.

The classical GFT action S(ϕ, ϕ̄) is typically chosen so that the
perturbative expansion of the GFT partition function matches the
sum over geometries of a spin foam model. In the simplest GFT
actions for quantum gravity, the dominant terms are

S ∼
∑
ji ,mi ,ιi

∫
φi

[
ϕ̄K

(0)
2 ϕ + ϕ̄K

(2)
2 ∂2φϕ

]
+
∑
ji ,mi ,ιi

∫
φi

[
ϕ̄5 V̄5 + ϕ5 V5

]
.
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GFT Operators

The operators in GFT have the standard second-quantized form, and
in particular the number operator will be important,

N̂ =
∑
ji ,mi ,ιi

∫
φ

ϕ̂† j1,j2,j3,j4,ι
m1,m2,m3,m4

(φ) ϕ̂ j1,j2,j3,j4,ι
m1,m2,m3,m4

(φ).

The presence of the scalar field allows for the definition of relational
observables, for example the relational number operator,

N̂(φ) =
∑
ji ,mi ,ιi

ϕ̂† j1,j2,j3,j4,ι
m1,m2,m3,m4

(φ) ϕ̂ j1,j2,j3,j4,ι
m1,m2,m3,m4

(φ).
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Condensate States

A simple family of condensate states are the Gross-Pitaevskii
condensate states, i.e., coherent states of the GFT field operator
which are, up to a numerical prefactor, [Gielen, Oriti, Sindoni]

|σ〉 ∼ exp

(∑
ji ,mi ,ι

∫
dφ σji ,ι

mi
(φ)ϕ̂† ji ,ι

mi
(φ)

)
|0〉,

where σji ,ι
mi

(φ) is the condensate wave function. Note that σji ,ι
mi

(φ) is
not normalized; rather, its norm gives the number of fundamental
GFT quanta.

Importantly, the massless scalar field can be used as a relational
clock: σji ,ι

mi
(φo) can be understood as the condensate wave function

evaluated at the ‘time’ φo .

Thus, imposing the quantum equations of motion on |σ〉 will give
relational dynamics with respect to φ.
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The Form of σ ji ,ι
mi (φ)

It is important to make choices for σji ,ι
mi

(φ) so that the condensate
state represents a cosmological space-time. Furthermore, appropriate
approximations will simplify the equations to be solved.

We are interested in the spatially flat FLRW space-time.
So we neglect connectivity: the main observable is the total
volume where connectivity is unimportant, and the space-time is
spatially flat so we do not need to worry about encoding the
spatial curvature in the connectivity of the graph [Gielen, Oriti, Sindoni].

We are only interested in isotropic observables.
So we restrict our attention to equilateral (isotropic)
configurations,

σji ,ι
mi

(φ)→ σj(φ),

This assumption can also be motivated by the improved
dynamics of LQC.
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Relational Dynamics

The quantum equations of motion are

δ̂S

δϕ̄
|σ〉 = 0.

But we expect the condensate state to only be an approximate
solution to the quantum equations of motion. So, we will only
impose the first Schwinger-Dyson equation [Gielen, Oriti, Sindoni],

〈σ| δ̂S
δϕ̄
|σ〉 = 0.

For the GFT action shown earlier, this gives the non-linear
condensate equations of motion

∂2φσj(φ)−m2
j σj(φ) + wj σ̄j(φ)4 = 0,

where the numerical values of the m2
j ∼ K

(0)
2 /K

(2)
2 and wj ∼ V5/K (2)

2

depend on the parameters in the GFT action.
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The Small Interactions Approximation

The Gross-Pitaevskii condensate approximation assumes that
interactions are small. Thus, in the regime of validity of this
approximation, the interaction term is negligible. To consider cases
when the interaction term becomes important, it will be necessary to
go beyond the Gross-Pitaevskii approximation and include
interactions (i.e., connectivity information).

As can easily be checked in the equation of motion for σj , the
interaction term will become large when |σj | becomes sufficiently
large. This is the large volume limit: the Gross-Pitaevskii
condensate approximation breaks down at large volumes.

Interactions becoming important at large volumes may be related to
the fact that the connectivity information has been ignored: all GFT
quanta are interacting with all other quanta, not only their
neighbours. Restoring connectivity information may well fix this.
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The Mesoscopic Regime

In the remainder, I will consider the mesoscopic regime where the
Gross-Pitaevskii approximation can be trusted (|σj | sufficiently small)
and where there are enough quanta for a continuum space-time
interpretation to be viable (|σj | sufficiently large.)

Such a regime will exist for some GFT actions (but not all),
depending on the parameters in the action. For the remainder of the
talk, I will take such a GFT action and only work in this mesoscopic
regime.
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Relational Dynamics

In this mesoscopic regime, rewriting σj = ρje
iθj , the condensate

equations of motion imply that for each j

Ej = ρ′j
2 + ρ2j θ

′
j
2 −m2

j ρ
2
j , Qj = ρ2j θ

′
j ,

are conserved quantities (with respect to the relational time φ).

There is one remaining non-trivial equation of motion for each j ,

ρ′′j −
Q2

j

ρ3j
−m2

j ρj ≈ 0.

Importantly, ρj(φ) can never become zero due to the divergent
repulsive potential at ρj = 0.
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Cosmological Observables

In order to extract cosmology from the condensate state |σ〉, it is
necessary to relate the volume V and the momentum of the scalar
field πφ to the appropriate GFT observables.

These are

V (φ) =
∑
j

Vj σ̄j(φ)σj(φ) =
∑
j

Vjρj(φ)2,

πφ(φ) = − i~
2

[
σ̄j(φ)∂φσj(φ)− σj(φ)∂φσ̄j(φ)

]
= ~

∑
j

Qj .

It immediately follows that

∂φπφ(φ) = 0,

and so we recover the continuity equation for an FLRW space-time
with a massless scalar field.
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The Condensate Friedmann Equation

The relational Friedmann equation can be derived from the relation

V ′ = 2
∑
j

Vjρ
′
j ρj , where f ′ := ∂φf ,

with the equations of motion given earlier as well as Ej and Qj ,

(
V ′

3V

)2

=

2
∑

j Vj ρj

√
Ej −

Q2
j

ρ2j
+ m2

j ρ
2
j

3
∑

j Vjρ2j


2

.

The classical Friedmann equation(
V ′

3V

)2

=
4πG

3

is recovered in the low curvature semi-classical limit (which here
corresponds to large ρj) for m2

j = 3πG .

E. Wilson-Ewing (AEI) Cosmology from QG Condensates June 29, 2016 16 / 20



The Condensate Friedmann Equation

The relational Friedmann equation can be derived from the relation

V ′ = 2
∑
j

Vjρ
′
j ρj , where f ′ := ∂φf ,

with the equations of motion given earlier as well as Ej and Qj ,

(
V ′

3V

)2

=

2
∑

j Vj ρj

√
Ej −

Q2
j

ρ2j
+ m2

j ρ
2
j

3
∑

j Vjρ2j


2

.

The classical Friedmann equation(
V ′

3V

)2

=
4πG

3

is recovered in the low curvature semi-classical limit (which here
corresponds to large ρj) for m2

j = 3πG .
E. Wilson-Ewing (AEI) Cosmology from QG Condensates June 29, 2016 16 / 20



The Singularity is Resolved

Recall that from the remaining non-trivial equation of motion,

ρ′′j −
Q2

j

ρ3j
−m2

j ρj ≈ 0,

it is clear that ρj never reaches zero due to the divergent repulsive
potential −Q2

j /ρ
3
j .

Since
V (φ) =

∑
j

Vjρ
2
j ,

it follows that V (φ) can never be zero.

Thus, the big-bang and big-crunch singularities are generically
resolved, and are replaced by a bounce.
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Relation to LQC

LQC, in its construction, suggests that the appropriate condensate
state is one where all the quanta are equilateral spin networks with
j = 1/2. Motivated by this observation, let’s consider the case where
σj(φ) only has support on j = jo .

Then, using ρ = π2
φ/2V 2, the condensate Friedmann equation

becomes (
V ′

3V

)2

=
4πG

3

(
1− ρ

ρc

)
+

4VjoEjo

9V
,

with ρc = 3πG~2/2V 2
jo
∼ (6π/j3o )ρPl.

This is (almost) exactly the LQC effective Friedmann
equation, up to the extra term that depends on Ejo .

While Ej plays an important role in the dynamics of the GFT
condensate, its geometric/physical interpretation remains unclear.
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Conclusions

Motivated by simple arguments combined with insights from
LQC, we made a specific ansatz on the type of state in (the
GFT reformulation of) LQG that corresponds to cosmological
space-times: GFT condensate states.

The equations of motion for the condensate states are
determined by the GFT action, and from these equations of
motion we can extract the continuity and Friedmann equations.

The classical Friedmann equations are recovered in an
appropriate semi-classical limit for some choices of parameters in
the GFT action.

The classical singularity is resolved and is generically replaced by
a bounce. Also, the LQC effective Friedmann equations are
(almost) recovered for a natural choice of the condensate wave
function.
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Outlook

There are many open questions, including:

Study other condensate wave functions and GFT actions [Gielen],

Allow for scalar fields with non-trivial potentials,

Calculate error in higher order Schwinger-Dyson equations,

Include anisotropies,

Understand how to handle large interactions [de Cesare, Pithis, Sakellariadou],

Include connectivity information in the analysis,

Understand the physical interpretation of the Ej term,

And many more. . .

Thank you for your attention!
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