On rapidly rotating geometry

Ken-ichi Nakao (Osaka City University, Japan)

In collaboration with

Tomohiro Harada (Rikkyo University, Japan) Pankaj S. Joshi (TIFR, India) Masashi Kimura (YITP, Japan) Mandar Patil (TIFR, India)

§ 1 Introduction

Kerr spacetime: vacuum, stationary, axi-symmetric, asymptotically flat

In Boyer-Lindquist coordinates

$$ds^{2} = -\frac{\Sigma\Delta}{A}dt^{2} + \frac{A}{\Sigma}\sin^{2}\theta \left(d\varphi - \frac{2aMr}{A}dt\right)^{2} + \frac{\Sigma}{\Delta}dr^{2} + \Sigma d\theta^{2}$$

where

$$\Delta(r) = r^{2} - 2Mr + a^{2}$$

$$\Sigma(r,\theta) = r^{2} + a^{2}\cos^{2}\theta \qquad A(r,\theta) = (r^{2} + a^{2})^{2} - \Delta(r)a^{2}\sin^{2}\theta$$

$$-\infty < t < +\infty, \quad -\infty < r < +\infty, \quad 0 \le \theta \le \pi, \quad 0 \le \varphi < 2\pi$$

$$M : \text{ADM mass} \qquad a : \text{Kerr parameter (angular momentum } L=aM)$$

$$a^{2} \le M^{2} : \text{ larger root of } \Delta(r) = 0 \quad (r = M + \sqrt{M^{2} - a^{2}} \ge M) \text{ is the event horizon}$$

 $a^2 > M^2$: always $\Delta(r) > 0$ holds. No event horizon.

Ring singularity at r = 0, $\theta = \pi/2$ is naked.

The over-spinning Kerr geometry is very interesting.

It is very important but very difficult to predict the observable signatures from the naked singularity.

Let's focus on the vicinity of the *singularity*.

Sorry for being a bit out of the main topics of the workshop...

Collisional Penrose process

M. Patil, T. Harada, KN, P.S. Joshi and M. Kimura (2015)

Cardoso, Pani, Cadoni, Cavaglia (2008); Pani, Barausse, Berti and Cardoso (2010)

Quasi-normal modes of perturbations

Imaginary part of ω is positive \rightarrow unstable

TABLE I. Unstable gravitational (s = 2) frequencies with l = m = 2 for a superspinar with a perfect reflecting surface ($\mathcal{R} = 1$) and with a "stringy event horizon" ($\mathcal{R} = 0$) at $r = r_0$. All modes in this table have been computed using numerical values of ${}_{s}A_{lm}$ obtained via the continued fraction method [23].

Reflecting BC ($\omega_R M, \omega_I M$), $\mathcal{R} = 1$			l	Absorbing BC ($\omega_R M, \omega_I M$), $\mathcal{R} = 0$		
r_0/M	a = 1.1M	a = 1.01M	a = 1.001 M	a = 1.1M	a = 1.01M	a = 1.001 M
0.01	(0.5690, 0.1085)	(0.9744, 0.0431)	(0.9810, 0.0097)	(0.5002, 0.0173)	(0.9498, 0.0062)	(1.0286, 0.0033)
0.1	(0.5548, 0.1237)	(0.9673, 0.0475)	(0.9794, 0.0110)	(0.4878, 0.0260)	(0.9435, 0.0093)	(1.0252, 0.0048)
0.5	(0.4571, 0.1941)	(0.9256, 0.0631)	(0.9688, 0.0155)	(0.3959, 0.0719)	(0.9016, 0.0237)	(1.0052., 0.0091)
0.8	(0.3081, 0.2617)	(0.8598, 0.0878)	(0.9507, 0.0202)	(0.2537, 0.1053)	(0.8298, 0.0376)	(0.9793, 0.0095)
1	(0.1364, 0.3095)	(0.6910, 0.1742)	(0.9003, 0.0640)	(0.0916, 0.1219)	(0.6530, 0.0821)	(0.8853, 0.0313)
1.1	(0.0286, 0.3248)	(0.4831, 0.2655)	(0.6071, 0.2207)	(-0.0078, 0.1233)	(0.4377, 0.1230)	(0.5696, 0.1064)

Cardoso, Pani, Cadoni, Cavaglia (2008); Pani, Barausse, Berti and Cardoso (2010)

Quasi-normal modes of perturbations

TABLE I. Unstable gravitational (s = 2) frequencies with l = m = 2 for a superspinar with a perfect reflecting surface ($\mathcal{R} = 1$) and with a "stringy event horizon" ($\mathcal{R} = 0$) at $r = r_0$. All modes in this table have been computed using numerical values of ${}_{s}A_{lm}$ obtained via the continued fraction method [23].

	Reflecting BC ($\omega_R M$, $\omega_I M$), $\mathcal{R} = 1$			Absorbing BC (
r_0/M	a = 1.1M	a = 1.01M	a = 1.001 M	a = 1.1M	a = 1.01M	a = 1.001 M
0.01	(0.5690, 0.1085)	(0.9744, 0.0431)	(0.9810, 0.0097)	(0.5002, 0.0173)	(0.9498, 0.0062)	(1.0286, 0.0033)
0.1	(0.5548, 0.1237)	(0.9673, 0.0475)	(0.9794, 0.0110)	(0.4878, 0.0260)	(0.9435, 0.0093)	(1.0252, 0.0048)
0.5	(0.4571, 0.1941)	(0.9256, 0.0631)	(0.9688, 0.0155)	(0.3959, 0.0719)	(0.9016, 0.0237)	(1.0052., 0.0091)
0.8	(0.3081, 0.2617)	(0.8598, 0.0878)	(0.9507, 0.0202)	(0.2537, 0.1053)	(0.8298, 0.0376)	(0.9793, 0.0095)
1	(0.1364, 0.3095)	(0.6910, 0.1742)	(0.9003, 0.0640)	(0.0916, 0.1219)	(0.6530, 0.0821)	(0.8853, 0.0313)
1.1	(0.0286, 0.3248)	(0.4831, 0.2655)	(0.6071, 0.2207)	(-0.0078, 0.1233)	(0.4377, 0.1230)	(0.5696, 0.1064)

Cardoso, Pani, Cadoni, Cavaglia (2008); Pani, Barausse, Berti and Cardoso (2010)

Quasi-normal modes of perturbations

TABLE I. Unstable gravitational (s = 2) frequencies with l = m = 2 for a superspinar with a perfect reflecting surface ($\mathcal{R} = 1$) and with a "stringy event horizon" ($\mathcal{R} = 0$) at $r = r_0$. All modes in this table have been computed using numerical values of ${}_{s}A_{lm}$ obtained via the continued fraction method [23].

Reflecting BC ($\omega_R M$, $\omega_I M$), $\mathcal{R} = 1$			l	Absorbing BC ($\omega_R M, \omega_I M$), $\mathcal{R} = 0$		
r_0/M	a = 1.1M	a = 1.01M	a = 1.001 M	a = 1.1M	a = 1.01M	a = 1.001 M
0.01	(0.5690, 0.1085)	(0.9744, 0.0431)	(0.9810, 0.0097)	(0.5002, 0.0173)	(0.9498, 0.0062)	(1.0286, 0.0033)
0.1	(0.5548, 0.1237)	(0.9673, 0.0475)	(0.9794, 0.0110)	(0.4878, 0.0260)	(0.9435, 0.0093)	(1.0252, 0.0048)
0.5	(0.4571, 0.1941)	(0.9256, 0.0631)	(0.9688, 0.0155)	(0.3959, 0.0719)	(0.9016, 0.0237)	(1.0052., 0.0091)
0.8	(0.3081, 0.2617)	(0.8598, 0.0878)	(0.9507, 0.0202)	(0.2537, 0.1053)	(0.8298, 0.0376)	(0.9793, 0.0095)
1	(0.1364, 0.3095)	(0.6910, 0.1742)	(0.9003, 0.0640)	(0.0916, 0.1219)	(0.6530, 0.0821)	(0.8853, 0.0313)
1.1	(0.0286, 0.3248)	(0.4831, 0.2655)	(0.6071, 0.2207)	(-0.0078, 0.1233)	(0.4377, 0.1230)	(0.5696, 0.1064)

Cardoso, Pani, Cadoni, Cavaglia (2008); Pani, Barausse, Berti and Cardoso (2010)

Quasi-normal modes of perturbations

TABLE I. Unstable gravitational (s = 2) frequencies with l = m = 2 for a superspinar with a perfect reflecting surface ($\mathcal{R} = 1$) and with a "stringy event horizon" ($\mathcal{R} = 0$) at $r = r_0$. All modes in this table have been computed using numerical values of ${}_{s}A_{lm}$ obtained via the continued fraction method [23].

	Reflecting BC ($\omega_R M$, $\omega_I M$), $\mathcal{R} = 1$			Absorbing BC (
r_0/M	a = 1.1M	a = 1.01M	a = 1.001 M	a = 1.1M	a = 1.01M	a = 1.001 M
0.01	(0.5690, 0.1085)	(0.9744, 0.0431)	(0.9810, 0.0097)	(0.5002, 0.0173)	(0.9498, <u>0.0062)</u>	(1.0286, 0.0033)
0.1	(0.5548, 0.1237)	(0.9673, 0.0475)	(0.9794, 0.0110)	(0.4878, 0.0260)	(0.9435, 0.0093)	(1.0252, 0.0048)
0.5	(0.4571, 0.1941)	(0.9256, 0.0631)	(0.9688, 0.0155)	(0.3959, 0.0719)	(0.9016, 0.0237)	(1.0052., 0.0091)
0.8	(0.3081, 0.2617)	(0.8598, 0.0878)	(0.9507, 0.0202)	(0.2537, 0.1053)	(0.8298, 0.0376)	(0.9793, 0.0095)
1	(0.1364, 0.3095)	(0.6910, 0.1742)	(0.9003, 0.0640)	(0.0916, 0.1219)	(0.6530, 0.0821)	(0.8853, 0.0313)
1.1	(0.0286, 0.3248)	(0.4831, 0.2655)	(0.6071, 0.2207)	(-0.0078, 0.1233)	(0.4377, 0.1230)	(0.5696, 0.1064)

Cardoso, Pani, Cadoni, Cavaglia (2008); Pani, Barausse, Berti and Cardoso (2010)

Quasi-normal modes of perturbations

TABLE I. Unstable gravitational (s = 2) frequencies with l = m = 2 for a superspinar with a perfect reflecting surface ($\mathcal{R} = 1$) and with a "stringy event horizon" ($\mathcal{R} = 0$) at $r = r_0$. All modes in this table have been computed using numerical values of ${}_{s}A_{lm}$ obtained via the continued fraction method [23].

	Reflecting BC ($\omega_R M$, $\omega_I M$), $\mathcal{R} = 1$			Absorbing BC (
r_0/M	a = 1.1M	a = 1.01M	a = 1.001 M	a = 1.1M	a = 1.01M	a = 1.001 M
0.01	(0.5690, 0.1085)	(0.9744, 0.0431)	(0.9810, 0.0097)	(0.5002, 0.0173)	(0.9498, 0.0062)	(1.0286, 0.0033)
0.1	(0.5548, 0.1237)	(0.9673, 0.0475)	(0.9794, 0.0110)	(0.4878, 0.0260)	(0.9435, 0.0093)	(1.0252, 0.0048)
0.5	(0.4571, 0.1941)	(0.9256, 0.0631)	(0.9688, 0.0155)	(0.3959, 0.0719)	(0.9016, 0.0237)	(1.0052., 0.0091)
0.8	(0.3081, 0.2617)	(0.8598, 0.0878)	(0.9507, 0.0202)	(0.2537, 0.1053)	(0.8298, 0.0376)	(0.9793, 0.0095)
1	(0.1364, 0.3095)	(0.6910, 0.1742)	(0.9003, 0.0640)	(0.0916, 0.1219)	(0.6530, 0.0821)	(0.8853, 0.0313)
1.1	(0.0286, 0.3248)	(0.4831, 0.2655)	(0.6071, 0.2207)	(-0.0078, 0.1233)	(0.4377, 0.1230)	(0.5696, 0.1064)

Cardoso, Pani, Cadoni, Cavaglia (2008); Pani, Barausse, Berti and Cardoso (2010)

Quasi-normal modes of perturbations

Imaginary part ω_I is positive \rightarrow unstable, but decreasing for $a \rightarrow M$.

Near extremal over-spinning Kerr has very long life time!

We are interested in $a = (1 + \varepsilon)M$ $0 < \varepsilon \ll 1$

TABLE I. Unstable gravitational (s = 2) frequencies with l = m = 2 for a superspinar with a perfect reflecting surface ($\mathcal{R} = 1$) and with a "stringy event horizon" ($\mathcal{R} = 0$) at $r = r_0$. All modes in this table have been computed using numerical values of ${}_{s}A_{lm}$ obtained via the continued fraction method [23].

Reflecting BC ($\omega_R M$, $\omega_I M$), $\mathcal{R} = 1$			l	Absorbing BC ($\omega_R M, \omega_I M$), $\mathcal{R} = 0$		
r_0/M	a = 1.1M	a = 1.01M	a = 1.001 M	a = 1.1M	a = 1.01M	a = 1.001 M
0.01	(0.5690, 0.1085)	(0.9744, 0.0431)	(0.9810, 0.0097)	(0.5002, 0.0173)	(0.9498, 0.0062)	(1.0286, 0.0033)
0.1	(0.5548, 0.1237)	(0.9673, 0.0475)	(0.9794, 0.0110)	(0.4878, 0.0260)	(0.9435, 0.0093)	(1.0252, 0.0048)
0.5	(0.4571, 0.1941)	(0.9256, 0.0631)	(0.9688, 0.0155)	(0.3959, 0.0719)	(0.9016, 0.0237)	(1.0052., 0.0091)
0.8	(0.3081, 0.2617)	(0.8598, 0.0878)	(0.9507, 0.0202)	(0.2537, 0.1053)	(0.8298, 0.0376)	(0.9793, 0.0095)
1	(0.1364, 0.3095)	(0.6910, 0.1742)	(0.9003, 0.0640)	(0.0916, 0.1219)	(0.6530, 0.0821)	(0.8853, 0.0313)
1.1	(0.0286, 0.3248)	(0.4831, 0.2655)	(0.6071, 0.2207)	(-0.0078, 0.1233)	(0.4377, 0.1230)	(0.5696, 0.1064)

§ 3 How small is an over-spinning body?

Two relativistic particles without any interactions

$$m_{1} \underbrace{F_{1}}_{E_{2}} \underbrace{F_{1}}_{E_{2}}$$
angular momentum $L = b\mu\nu$ in center of mass frame
 $v = |\vec{v}_{1} - \vec{v}_{2}|$: relative velocity $\mu = \frac{E_{1} + E_{2}}{c^{2}(E_{1} + E_{2})}$: relativistic reduced mass
Kerr parameter of this system $a = \frac{L}{Mc}$
 $M = \frac{E_{1} + E_{2}}{2}$: total mass of this system

*c*²

Over-spinning condition: $a > \frac{GM}{c^2}$

$$b > \frac{(E_1 + E_2)^2}{E_1 E_2} \frac{c}{v} \frac{GM}{c^2} > \frac{2GM}{c^2}$$

This result suggests that no over-spinning very compact body forms.

In order that the system is smaller than the gravitational radius,

 $v = |\vec{v}_1 - \vec{v}_2| > 2c$: Causality Violation

But does this inequality hold even when the gravity is taken into account?

The situation we consider: snapshot of an over-spinning thin shell

KN, M. Kimura, T. Harada, M. Patil, P.S. Joshi(2014) + some improvments

Inside $(r \leq R)$: Regular curved space

Shell is located on r = R = constant.

3-dimensional metric: γ_{ij} Continuous even on the shell

Extrinsic curvature: $K_{ij} = -\frac{1}{2}\mathcal{L}_n\gamma_{ij}$

Some components may be discontinuous

Outside (r > R): Over-spinning Kerr space

 $a^2 > M^2$

$$dl^{2} = \Phi^{4}(r,\theta) \Big[\Lambda(r,\theta) dr^{2} + \rho(r,\theta) d\theta^{2} + P(r,\theta) \sin^{2}\theta d\varphi^{2} \Big]$$

Outside the shell r > R : equivalent to the initial data of Kerr

 $\Phi(r,\theta) = 1$

$$\Lambda(r,\theta) = \frac{\Sigma(r,\theta)}{\Delta(r)} \qquad \qquad \rho(r,\theta) = \Sigma(r,\theta) \qquad \qquad P(r,\theta) = \frac{A(r,\theta)}{\Sigma(r,\theta)}$$

where $\Delta(r) = r^2 - 2Mr + a^2$ $\Sigma(r,\theta) = r^2 + a^2 \cos^2 \theta$ $A(r,\theta) = (r^2 + a^2)^2 - \Delta(r)a^2 \sin^2 \theta$

 $\Delta(r) = 0 : \text{horizon}$

Over spinning: $a^2 > M^2 \longrightarrow \Delta(r) > 0$ No horizon

Intrinsic Metric

$$dl^{2} = \Phi^{4}(r,\theta) \Big[\Lambda(r,\theta) dr^{2} + \rho(r,\theta) d\theta^{2} + P(r,\theta) \sin^{2}\theta d\varphi^{2} \Big]$$

Extrinsic Curvature

Outside the shell r > R : equivalent to the initial data of Kerr

$$K^{r\varphi} = -\sqrt{\frac{\Delta A}{\Sigma^3}} \frac{\partial}{\partial r} \left(\frac{aMr}{A}\right) \qquad \qquad K^{\theta\varphi} = -\sqrt{\frac{A}{\Delta\Sigma^3}} \frac{\partial}{\partial\theta} \left(\frac{aMr}{A}\right)$$

where

$$\Delta(r) = r^2 - 2Mr + a^2 \qquad \Sigma(r,\theta) = r^2 + a^2 \cos^2 \theta$$
$$A(r,\theta) = (r^2 + a^2)^2 - \Delta(r)a^2 \sin^2 \theta$$

Inside the shell r < R

$$K^{r\varphi} = -\frac{1}{\Phi^{10}\Lambda} \frac{\partial X}{\partial r} \qquad \qquad K^{\theta\varphi} = -\frac{1}{\Phi^{10}\Sigma} \frac{\partial X}{\partial \theta}$$

Determined by the Momentum Constraint

Numerically solve the constraint equations!

Momentum constraint: $D_a \left(K^{ab} - h^{ab} tr K \right) = 0$

$$\frac{\partial}{\partial r} \left(\sqrt{\frac{\Sigma P^3}{\Lambda}} \frac{\partial X}{\partial r} \right) + \frac{1}{r^2 \sin^3 \theta} \frac{\partial}{\partial \theta} \left(\sin^3 \theta \sqrt{\frac{\Lambda P^3}{\Sigma}} \frac{\partial X}{\partial \theta} \right) = 0$$

Hamiltonian constraint: ${}^{3}R - K^{ab}K_{ab} + trK^{2} = 0$

$$\frac{1}{\sqrt{\Lambda\Sigma P}} \frac{\partial}{\partial r} \left(\sqrt{\frac{\Sigma P}{\Lambda}} \frac{\partial \Phi}{\partial r} \right) + \frac{1}{\sqrt{\Lambda\Sigma P}} \frac{\partial}{\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \sqrt{\frac{\Lambda P}{\Sigma}} \frac{\partial \Phi}{\partial \theta} \right)$$
$$= \frac{1}{8} {}^3 \tilde{R} \Phi - \frac{1}{4} P \sin^2\theta \left[\frac{1}{\Lambda} \left(\frac{\partial X}{\partial r} \right)^2 + \frac{1}{\Sigma} \left(\frac{\partial X}{\partial \theta} \right)^2 \right] \Phi^{-7}$$

: surface angular momentum density

p : stress on the shell specified by EOS

Stress-Energy tensor on the shell

From Israel's Junction Condition

$$\left[Q_{\mu\nu} - B_{\mu\nu} tr Q\right]_{\pm} = \frac{8\pi G}{c^4} S_{\mu\nu}$$

Shell is located on r = R.

Surface-stress-energy tensor on the shell $S_{\mu\nu} = \sigma u_{\alpha}u_{\beta} + j (u_{\alpha}\varphi_{\beta} + \varphi_{\alpha}u_{\beta}) + p (\theta_{\alpha}\theta_{\beta} + \varphi_{\alpha}\varphi_{\beta})$ $= \rho v_{\alpha}v_{\beta} + p \theta_{\alpha}\theta_{\beta} + P \Phi_{\alpha}\Phi_{\beta}$

Reasonable energy conditions

Weak Energy Condition: $\rho \ge 0$, $\rho + p \ge 0$, $\rho + P \ge 0$ Strong Energy Condition: $\rho + p \ge 0$, $\rho + P \ge 0$, $\rho + p + P \ge 0$ Dominant Energy Condition: $\rho + |p| \ge 0$, $\rho + |P| \ge 0$

Numerical Results and implications

Sufficient condition for the existence of EOS that does not conflict with reasonable energy conditions

Shell is located on r = R = constant.

At least, very compact over-spinning object (R < M) can transiently exist.

High efficiency collisional Penrose process may occur around it.

We may find over-spinning geometry through ultra-high-energy cosmic ray.

At least, very compact over-spinning object (R < M) can transiently exist.

High efficiency collisional Penrose process may occur around it.

We may find over-spinning geometry through ultra-high-energy cosmic ray.

Maybe some implosion processes are necessary.

Not gravitational collapse, but gravitationally unbound inward motion of very large kinetic energy.

Do implosions occur in astrophysical or cosmological situations? Explosions are usual. Two concentric spherical shells composed of collision-less particles R. Yonekura and KN (2014)

V. Cardoso, J. V. Rocha (2016) from different point of view

CLOSEUP

At least, very compact over-spinning object (R < M) can transiently exist.

High efficiency collisional Penrose process may occur around it.

We may find superspinars through ultra-high-enery cosmic ray.

Maybe some implosions process are necessary.

Not gravitational collapse, but gravitationally unbound inward motion of very large kinetic energy.

Implosions occur in astrophysical or cosmological situations? Explosions are usual.

There is the possibility.