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§ 1 Introduction

Kerr spacetime: vacuum, stationary, axi-symmetric, asymptotically flat

In Boyer-Lindquist coordinates

2
s> =— 28 g + Agin? H(dqp— 2aMr dt) + 24P + 3407
A > A
where A(r)=r*-2Mr+a’
2(7‘,9) =r*+a’cos’ 6 A(F,H) = (1’2 +612)2 —A(r)a2 sin” 6

—w<t<+40, —w<r<+0, 0=sfO=m, Os@p<2rx

M : ADM mass a : Kerr parameter (angular momentum L=aM)

a’> <M : larger root of A(¥) =0 (r =M+ VM2 —qa? > M) is the event horizon
a* > M? : always A(r) > 0 holds. No event horizon.

Ring singularity at » =0, 8= /2 1s naked.



The over-spinning Kerr geometry is very interesting.

It is very important but very difficult to predict
the observable signatures from the naked singularity.

Let’s focus on the vicinity of the singularity.

Sorry for being a bit out of the main topics of the workshop...



Collisional Penrose process
M. Patil, T. Harada, KN, P.S. Joshi and M. Kimura (2015)

when a=({1+¢&)M

- my(2M — L,)(2M — L,)

Es 0<e«l1
(‘
\\\\ EZZmJLZ
\ E;
S Nn=——-oo for e >0
r=M .- 2m

No upper bound on efficiency!

Ultra-high-energy cosmic ray!
Ei=m,L,



§ 2 Stability of over-spinning Kerr

Cardoso, Pani, Cadoni, Cavaglia (2008); Pani, Barausse, Berti and Cardoso (2010)

Quasi-normal modes of perturbations
Imaginary part of w is positive —unstable
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TABLE I. Unstable gravitational (s = 2) frequencies with / = m = 2 for a superspinar with a perfect reflecting surface (R = 1) and
with a “stringy event horizon™ (R = 0) at r = r,. All modes in this table have been computed using numerical values of ;A,,
obtained via the continued fraction method [23].

Reflecting BC (wxM, M), R =1 Absorbing BC (wzM, o;M), R = 0

ro/M a=11M a= 1.0IM a= 1L00IM a=1LIM a= 1L0IM a= 1L00IM

0.01 (0.5690, 0.1085) (0.9744_0.0431) (0.9810, 0.0097) (05002, 0.0173) (0.9498, 0.0062) (1.0286, 0.0033)
0.1 (0.5548, 0.1237)  (0.9673, 0.0475)  (0.9794, 0.0110) (04878, 0.0260) (0.9435, 0.0093) (1.0252, 0.0048)
0.5 (0.4571, 0.1941)  (0.9256, 0.0631)  (0.9688, 0.0155) (0.3959, 0.0719) (0.9016, 0.0237)  (1.0052, 0.0091)
0.8 (0.3081, 02617)  (0.8598, 0.0878)  (0.9507, 0.0202) (02537, 0.1053) (0.8298, 0.0376) (0.9793, 0.0095)

1
1.1

(0.1364, 0.3095)
(0.0286, 0.3248)

(0.6910, 0.1742)
(0.4831, 0.2655)

(0.9003, 0.0640)
0.6071, 0.2207)

(0.0916, 0.1219)

( —0.0078, 0.1233)

(0.6530, 0.0821)
(0.4377, 0.1230)

(0.8853, 0.0313)
(05696, 0.1064)
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Quasi-normal modes of perturbations
Imaginary part w; is positive —unstable,

but decreasing fora - M.
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Imaginary part w; is positive —unstable,

but decreasing fora - M.

very long life time!

We are interested in

Near extremal over-spinning Kerr has

a=(1+e)M 0<e«K1

TABLE I. Unstable gravitational (s = 2) frequencies with / = m = 2 for a superspinar with a perfect reflecting surface (R = 1) and
with a “stringy event horizon™ (R = 0) at r = r,. All modes in this table have been computed using numerical values of ;A,,
obtained via the continued fraction method [23].

Reflecting BC (wxM, M), R =1 Absorbing BC (wzM, o;M), R = 0

ro/M a=11M a= 1.0IM a= 1L00IM a=1LIM a= 1L0IM a= 1.00IM

0.01 (0.5690, 0.1085)  (0.9744, 0.0431)  (0.9810, 0.0097) (05002, 0.0173) (0.9498, 0.0062) (1.0286, 0.0033)
0.1 (0.5548, 0.1237)  (0.9673, 0.0475) (09794, 0.0110) (04878, 0.0260) (0.9435, 0.0093) (1.0252, 0.0048)
0.5 (0.4571, 0.1941)  (0.9256, 0.0631)  (0.9688, 0.0155) (0.3959, 0.0719) (0.9016, 0.0237)  (1.0052._0.0091)
0.8 (0.3081, 02617)  (0.8598, 0.0878)  (0.9507, 0.0202) (02537, 0.1053) (0.8298, 0.0376) (0.9793, 0.0095)

1
1.1

(0.1364, 0.3095)
(0.0286, 0.3248)

(0.6910, 0.1742)
(0.4831, 0.2655)

(0.9003, 0.0640)
0.6071, 0.2207)

(0.0916, 0.1219)

( —0.0078, 0.1233)

(0.6530, 0.0821)
(0.4377, 0.1230)

(0.8853, 0.0313)
(05696, 0.1064)




§ 3 How small is an over-spinning body?

Two relativistic particles without any interactions

m —>
Eq
b
< m
E, ’
angular momentum L = buv in center of mass frame
I . . Ei + E L
v = |v; — v,|: relative velocity U= : relativistic reduced mass
c*(Ey + E3)
_ L
Kerr parameter of this system a =-—
Mc
E, +E,

: total mass of this system

c?2



Eq
b
E;
<€ m,
o " GM
Over-spinning condition: a > —-
C

(B E,)2 cGM 2GM

=== b >
EiE, v c? c?

This result suggests that no over-spinning very compact body forms.

In order that the system is smaller than the gravitational radius,
v = |v; — v,| > 2c¢ : Causality Violation

But does this inequality hold even when the gravity is taken into account?



The situation we consider: snapshot of an over-spinning thin shell

KN, M. Kimura, T. Harada, M. Patil, P.S. Joshi(2014) + some improvments

Inside (r < R): Regular curved space

Shell is located on r = R = constant.

3-dimensional metric: y;;

Continuous even on the shell

1

Extrinsic curvature: Kl-j =3

LnYij

Some components may be discontinuous

Outside (r > R): Over-spinning Kerr space

a’ > M?



Intrinsic Metric

di* = ®* (r,0)| A(r,0)dr* + p(r,0)d0” + P(r,0)sin’ 6de’

Outside theshell >R :equivalenttotheinitial data of Kerr

(I)(r,H) =]
A(r.6)= ZA(Z;? p(r.0)=2(r.0) P(r,0)= ;‘E:z))
where A(r)=r2—2Mr+az2 3(r,0)=r"+a’cos’ 6

A(r,H) = (r2 +a’ )2 — A(r)a2 sin” 6
A(r) =0 : horizon

Over spinning: 4> > M :D A(r)>0 No horizon




Intrinsic Metric

di* = ®* (r,0)| A(r,0)dr* + p(r,0)d0” + P(r,0)sin’ 6de’

Inside the shell r<R W(r) Smoothed step function
) given function

(I)(r,H)=1 on theshell r=R 1 -

®(r,0)=? inside the shell r<R

Determined by the Hamiltonian constraint

> r

A(r,H) =

W(r) + Y, [1 — W(r)]

p(r,@) = (r2 +a’ cos’ H)W(r) + 1’ [1 — W(r)]

A(r,H)
E(r,H)

P(I’,H) = W(r)+zpcr2 [I—W(r)]

) . Positive constant



Extrinsic Curvature

Outsidethe shell » > R : equivalenttotheinitial data of Kerr

- AA o (aMr o A 0 (aMr
K" =-|—= K™ =- S
2" or\ A AX" 00\ A

where

A(r)=r2—2Mr+a2 Z(r,0)=r2+a20052¢9
2

A(r,0)= (r2 +a2) —A(r)a2 sin” 6

Inside the shell r < R

19X oo _ | 39X
DA or DX 90

Determined by the Momentum Constraint

K’ =




Numerically solve the constraint equations!

Momentum constraint: Da(K“b—h“btrK)=0
=P ax
A or
Hamiltonian constraint: "R—-K“K , +trK* =0
/zP 0P|, 1 9 [«inp [AP 90
VAZPsin6 06 2 00

2 2
=l31~2(l>—lPsin20 l(%) +l(g)
4 A\ or 2\00

8

0

:>8r

+

1 o ., AP’ 09X
— sin” 6
resin" 6@ 06 > 00

0

— @ar

q)—7




From Israel’s Junction Condition [Q/w ‘Buvf”QL _ 8:r4G s,

A C
I/'O{

. Sy =0 ugtig+ j (U,@pt@uuip)+ p (0,05 + @,0p)

u,=coshfn, +sinhfr,

o =L AP coshf :surface energy density
8t N2 or reo
. 1 VAA . A 8(1’) 0X
j=- sin6 Ma,/—— — |+ —
8t 2 2A or\A/) or B

: surface angular momentum density

p : stress on the shell specified by EOS



Stress-Energy tensor on the shell

From Israel’s Junction Condition [Q,,W —BW””QL -

Shell is located on r = R.

831G g

4 Suv
C

Surface-stress-energy tensor on the shell

S,uv :Guauﬁ +j (ua(pﬁ+(:0auﬁ) +p (Haeﬁ T (pa(:oﬁ)

=pvevpt p0,0s+ PO, Dp

Reasonable energy conditions

Weak Energy Condition: p=0, p+p=0, p+P=0
Strong Energy Condition: p+p=0, p+P =0, p+p+P=0

Dominant Energy Condition: p+[p|=0, p+|P|=0



Numerical Results and implications

Sufficient condition for the existence of EOS that
does not conflict with reasonable energy conditions

o > /2|j]

Satisfied for any positive R?

Inside (r < R): Regular curved space

Yes!

if it is radially moving with large velocity.

Angular momentum density

Rotation of Kerr geometry

Outside (r > R): Over-spinning Kerr space
a’? > M?

Shell is located on r = R = constant.



At least, very compact over-spinning object (R < M) can transiently exist.

High efficiency collisional Penrose process may occur around it.

We may find over-spinning geometry through ultra-high-energy cosmic ray.



At least, very compact over-spinning object (R < M) can transiently exist.

High efficiency collisional Penrose process may occur around it.

We may find over-spinning geometry through ultra-high-energy cosmic ray.

Maybe some implosion processes are necessary.

Not gravitational collapse,
but gravitationally unbound inward motion of very large kinetic energy.

Do implosions occur in astrophysical or cosmological situations?
Explosions are usual.



Two concentric spherical shells composed of collision-less particles
R. Yonekura and KN (2014)

500
shelll ——
. . I shell2 ——
Due to tangential pressure, each shell is oscillating
4004 and occasionally crosses through each other.
2
300+
r/m
2001
|
100- ImpI05|on
\
' |
0 /
0 10000 20000 30000 40000 \50000 L/ 60000

-

1/m

V. Cardoso, J. V. Rocha (2016) from different point of view



CLOSEUP

250
shelll ——
shell2 ——

200 |- -
2
150 |- -
r/m
Gravitationally

100 unbound implosion occurs
50

0 I i % % l

44000 46000 48000 50000 52000 54000

1/m



At least, very compact over-spinning object (R < M) can transiently exist.

High efficiency collisional Penrose process may occur around it.

We may find superspinars through ultra-high-enery cosmic ray.

Maybe some implosions process are necessary.

Not gravitational collapse,
but gravitationally unbound inward motion of very large kinetic energy.

Implosions occur in astrophysical or cosmological situations?
Explosions are usual.

There is the possibility.



