THE BERGMAN AND SZEGŐ KERNELS AND THE OBSTRUCTION FUNCTION IN STRICTLY PSEUDOCONVEX DOMAINS IN \mathbb{C}^2

PETER EBENFELT

We will consider bounded strictly pseudoconvex domains Ω in \mathbb{C}^2 . The obstruction function $b\eta_1$ on $\partial\Omega$ is the lowest order term in the singularity at the boundary of the Cheng-Yau solution to the Dirichlet problem for Fefferman's Monge-Ampere operator in Ω . By the work of Graham and Hirachi-Komatsu-Nakzawa, this function is also the restriction to the boundary of the log term in the Bergman and Szegő kernels in Ω . We shall discuss the condition $b\eta_1 = 0$ on $\partial\Omega$; in particular, if Ω also has circular symmetry, then $b\eta_1 = 0$ is equivalent to Ω being biholomorphic to the unit ball \mathbb{B}^2 .

University of California at San Diego, USA *E-mail address*: pebenfel@math.ucsd.edu