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ań
R

ai
lw

ay
S

ta
ti

o
n

1
9
:3
0
p
m

D
in

n
er

F
ro

m
7
:3
0

B
re

ak
fa

st

9
:0
0
-9
:5
0

M
on

ik
a

L
u

d
w

ig

1
0
:0
0
-1
0
:5
0

C
h
u

an
m

in
g

Z
on

g

1
0
:5
0
-1
1
:2
0

C
off

ee
B

re
ak

1
1
:2
0
-1
1
:5
0

R
en

é
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zá
le

z

1
3
:0
0
-1
5
:3
0

L
u

n
ch

1
5
:3
0
-1
6
:0
0

J
u

n
O

’H
a
ra

1
6
:0
0
-1
6
:3
0

S
h

ig
eh

ir
o

S
a
ka

ta

1
6
:3
0
-1
7
:0
0

S
u

sa
n

n
a

D
a
n

n

1
7
:0
0
-1
7
:1
5

C
o
ff

ee
B

re
a
k

1
7
:1
5
-1
7
:4
5

A
n
to

n
io

C
a
ñ
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ń

R
a
il

w
ay

S
ta

ti
on





Timetable

Monday, 05.06.2017

09:00 - 09:50: Monika Ludwig: Tensor valuations in lattice polytopes.
10:00 - 10:50: Chuanming Zong: Tetrahedral packings, color graphs and

optimization.
10:50 - 11:20: Coffee Break
11:20 - 11:50: René Brandenberg: Why we should allow non-symmetric gauge

bodies when studying radii functionals.
11:50 - 12:20: Katharina Jochemko: h∗-polynomials of zonotopes.
12:20 - 12:50: Masataka Shibata: Symmetric Mahler’s conjecture for the volume

product in the three dimensional case.
13:00 - 15:30: Lunch
15:30 - 16:20: Alina Stancu: Some more results on the Lp Minkowski problem.
16:30 - 17:00: Gabriele Bianchi: The Lp Minkowski problem for −n < p < 1.
17:00 - 17:20: Coffee Break
17:20 - 17:50: Jesús Yepes Nicolás: On Brunn-Minkowski’s inequalities under

projections assumptions.
17:50 - 18:20: Daniel Temesvari: Moments of the maximal number of empty

simplices of a random point set.
18:20 - 18:50: Tomasz Kobos: Grünbaum distance of two planar convex bodies.
19:00: Dinner

Tuesday, 06.06.2017

09:00 - 09:50: Günter M. Ziegler: Semialgebraic sets of f -vectors.
09:55 - 10:25: Thomas Jahn: Hunting for reduced polytopes.
10:25 - 10:55: Sören L. Berg: Discrete slicing problems with low dimensional

subspaces.
10:55 - 11:25: Coffee Break
11:25 - 12:15: Andreas Bernig: Convolution of valuations.
12:20 - 12:50: Dmitry Faifman: Indefinite Crofton formulas and the centro-affine

surface area.
13:00 - 15:30: Lunch
15:30 - 16:20: Francisco Santos: Towards a classification of empty lattice 4-simplices.
16:25 - 16:55: Matthias Schymura: On the covering radius of lattice zonotopes

and its relation to view-obstructions and the Lonely Runner
conjecture.

16:55 - 17:10: Coffee Break
17:10 - 18:00: Andrea Colesanti: Functionals subject to concavity or volume

conditions.
18:05 - 18:35: Fabian Mußnig: Valuations on Log-concave functions.
18:35 - 19:05: Nico Lombardi: Valuations on the space of quasi-concave functions.
19:15: Grill



Wednesday, 07.06.2017

09:00 - 09:50: Semyon Alesker: Some conjectures on intrinsic volumes on
Riemannian and Alexandrov spaces.

09:55 - 10:25: Gil Solanes: Integral geometry of the quaternionic plane.
10:25 - 10:55: Thomas Wannerer: Integral geometry in exceptional spheres.
10:55 - 11:20: Coffee Break
11:20 - 12:10: Matthias Beck: Polyhedral Number Theory.
12:15 - 12:45: Romanos D. Malikiosis: Polyhedral Gauss sums.
12:45 - 13:15: Liping Yuan: Selfishness of convex bodies.
13:15 - 14:30: Lunch
14:30: Excursion to Rogalin’s Palace
19:30: Dinner

Thursday, 08.06.2017

09:00 - 09:50: Joseph H. G. Fu: Riemannian curvature measures.
10:00 - 10:50: Michael Joswig: A tropical isoperimetric inequality.
10:50 - 11:20: Coffee Break
11:20 - 11:50: Jin Li: Laplace transforms and function valued valuations.
11:50 - 12:20: Ignacio Villanueva: Radial continuous valuations on star bodies.
12:20 - 12:50: Carsten Schütt: On the geometry of projective tensor products.
13:00 - 15:30: Lunch
15:30 - 16:20: Elisabeth Werner: Recent results on approximation of convex bodies

by polytopes.
16:30 - 17:00: Florian Besau: Weighted floating bodies.
17:00 - 17:20: Coffee Break
17:20 - 17:50: Galyna Livshyts: On the randomized Log-Brunn-Minkowski

inequality.
17:50 - 18:20: Vitor Balestro: Curvature types in normed planes.
18:20 - 18:50: Agnieszka Bogdewicz: On spherical projection of a convex body and

the related quotient space.
19:00: Social dinner



Friday, 09.06.2017

09:00 - 09:50: Apostolos Giannopoulos: Inequalities about sections and projections
of convex bodies.

10:00 - 10:50: Dmitry Ryabogin: On a local version of the fifth Busemann-Petty
problem.

10:50 - 11:20: Coffee Break
11:20 - 11:50: Vladyslav Yaskin: On polynomially integrable convex bodies.
11:50 - 12:20: Hannes Pollehn: Necessary subspace concentrarion conditions for

the even dual Minkowski problem.
12:20 - 12:50: Bernardo González Merino: On two theorems of Minkowski in the

Geometry of Numbers.
13:00 - 15:30: Lunch
15:30 - 16:00: Jun O’hara: Characterization of unit balls by Riesz energy.
16:00 - 16:30: Shigehiro Sakata: Characterization of regular triangles in terms of

critical points of Riesz potentials.
16:30 - 17:00: Susanna Dann: Maximum area circumscribed polygons.
17:00 - 17:15: Coffee Break
17:15 - 17:45: Antonio Cañete: Bisections minimizing the maximum relative

diameter.
17:45 - 18:15: Micha l Zwierzyński: Isoperimetric-type inequalities and equalities

for planar ovals.
18:15 - 18:45: Tudor Zamfirescu: Discs held in cages.
19:00: Dinner



Main Talks

Some Conjectures on Intrinsic Volumes on Riemannian
and Alexandrov Spaces

Semyon Alesker

Tel Aviv University, Israel

Hadwiger’s theorem says that linear combinations of intrinsic volumes on convex sets
are the only isometry invariant continuous valuations. On the other hand H. Weyl has
extended intrinsic volumes beyond convexity, to Riemannian manifolds. We try to under-
stand the continuity properties of this extension under the Gromov-Hausdorff convergence
(literally, there is no such continuity in general). First, we describe a new conjectural
compactification of the set of all closed Riemannian manifolds with given upper bounds on
dimension and diameter and lower bound on sectional curvature. Points of this compact-
ification are pairs: an Alexandrov space and a constructible (in the Perelman-Petrunin
sense) function on it up to isometries. Second, conjecturally all intrinsic volumes extend
by continuity to this compactification. No preliminary knowledge of Alexandrov spaces
will be assumed, though it will be useful.

Polyhedral Number Theory

Matthias Beck

San Francisco State University, U.S.A.

Several problems in number theory concern integer solutions to a linear system of
inequalities and equations; the most prominent example involve integer partitions and
permutation statistics. We view these enumeration problems geometrically, i.e., as list-
ing/counting integer points in polyhedra. It turns out that from this viewpoint, one can
both give “short” proofs of known number-theoretic results (and extensions of them) and
ask (and sometimes answer) interesting questions about certain classes of polyhedra. We
will survey several results, going in both directions.



Convolution of Valuations
Andreas Bernig

Goethe–Universität Frankfurt, Germany

Valuations play an important role in our understanding of kinematic formulas. There
is a tight connection between algebraic structures on valuations such as product, convo-
lution and Alesker-Fourier transform, and integral-geometric formulas, like intersectional
and additive kinematic formulas and local kinematic formulas. The convolution was first
introduced in the case of smooth translation invariant valuations in a joint work with
Joseph Fu. In more recent works, it was extended to generalized translation invariant
valuations (joint with Dmitry Faifman); to compactly supported generalized valuations
on Lie groups (joint with Semyon Alesker) and to dual area measures. In my talk I
will explain how these constructions are related to each other and to integral-geometric
formulas.

Functionals Subject to Concavity or

Volume Conditions

Andrea Colesanti

Università degli Studi di Firenze, Italy

I will review some results, proved in collaborations with J. Abardia, D. Hug, and
E. Saoŕın-Gómez, which characterize functionals (mainly valuations) defined on the class
of convex bodies, subject to invariance conditions, and to other type of constraints, like
inequalities of Brunn-Minkowski type, or upper and lower bounds in terms of the volume.

Riemannian Curvature Measures

Joseph H. G. Fu

University of Georgia, Athens, U.S.A.

We introduce (again) a valuation-theoretic enhancement of a classical construction
from Riemannian geometry. The best known classical instance arises in Chern’s intrinsic
proof of the Gauss-Bonnet theorem, in the form of a universal primitive, living in the
sphere bundle SM , for the Chern-Gauss-Bonnet curvature form of a smooth oriented
Riemannian manifold Mn+1. It is expressed as a sum of terms built from the Cartan ap-
paratus of curvature and connection forms. Chern’s construction amounts to a particular
expression for the Euler characteristic χ as a smooth valuation on M .

We study the vector space of all valuations expressible in this fashion, or, more
precisely, of the space of objects that assign such valuations to any given concrete Rie-
mannian manifold. Our main result endows this space with a natural structure as a
module over the polynomial algebra R[t] in one variable. Via the fundamental theorem
of algebraic integral geometry, this module constitutes an essential piece of the array of
kinematic formulas in any Riemannian isotropic space. As an illustration of this principle
we compute in full detail an important map arising in hermitian integral geometry.

This represents joint work with Thomas Wannerer.



Inequalities about Sections and Projections of
Convex Bodies

Apostolos Giannopoulos

University of Athens, Greece

We discuss lower dimensional versions of the slicing problem and of the Busemann-
Petty problem, both in the classical setting and in the generalized setting of arbitrary
measures in place of volume. We introduce an alternative approach which is based on the
generalized Blaschke-Petkantschin formula, on asymptotic estimates for the dual affine
quermassintegrals and on some new Loomis-Whitney type inequalities in the spirit of the
uniform cover inequality of Bollobas and Thomason.

A Tropical Isoperimetric Inequality
Michael Joswig

Technische Universität Berlin, Germany

We state and prove a tropical analog of the (discrete version of the) classical isoperi-
metric inequality. The planar case is elementary, but the higher-dimensional generaliza-
tion leads to an interesting class of ordinary convex polytopes. This study is motivated by
deep open complexity questions concerning linear optimization and its tropical analogs.
This connection will be sketched briefly in the talk.

Joint work with Xavier Allamigeon, Pascal Benchimol, Jules Depersin and Stéphane
Gaubert.

Tensor Valuations on Lattice Polytopes
Monika Ludwig

Technische Universität Wien, Austria

Lattice polytopes are convex hulls of finitely many points with integer coordinates in
Rn. A function Z from a family F of subsets of Rn with values in an abelian group is a
valuation if

Z(P ) + Z(Q) = Z(P ∪Q) + Z(P ∩Q)

whenever P,Q, P ∪Q,P ∩Q ∈ F and Z(∅) = 0. The classification of real-valued invariant
valuations on lattice polytopes by Betke & Kneser is classical (and will be recalled). It
establishes a characterization of the coefficients of the Ehrhart polynomial.

Building on this, classification results are established for tensor valuations on lattice
polytopes. The most important tensor valuations are the discrete moment tensor of
rank r,

Lr(P ) =
1

r!

∑
x∈P∩Zn

xr,

where xr denotes the r-fold symmetric tensor product of the integer point x ∈ Rn, and
its coefficients in the Ehrhart tensor polynomial, called Ehrhart tensors. However, there
are additional examples for tensors of rank nine with the same covariance properties.

Based on joint work with Károly J. Böröczky and Laura Silverstein.



On a Local Version of the Fifth Busemann-Petty
Problem

Dmitry Ryabogin

Kent State University, U.S.A.

Let K be an origin-symmetric convex body in Rn, n ≥ 3, satisfying the following
condition: there exists a constant c such that for all directions ξ in Rn,

hK(ξ) voln−1(K ∩ ξ⊥) = c.

(Here ξ⊥ stands for a subspace of Rn of co-dimension 1 orthogonal to a given direction
ξ, and hK(ξ) is the support function of K in this direction). The fifth Busemann-Petty
problem asks if K must be an ellipsoid. We give an affirmative answer to this question
for origin-symmetric convex bodies that are sufficiently close to an Euclidean ball in the
Banach-Mazur distance.

This is a joint work with Maŕıa Ángeles Alfonseca, Fedor Nazarov and Vlad Yaskin.

Towards a Classification of Empty Lattice 4-Simplices
Francisco Santos

University of Cantabria, Spain

A lattice d-simplex is the convex hull of d + 1 affinely independent integer points
in Rd. It is called empty if it contains no integer point apart of the d + 1 vertices.
The determinant of the lattice d-simplex T = conv(p0, . . . , pd) is the absolute value of∣∣∣∣ 1 . . . 1
p0 . . . pd

∣∣∣∣. It equals d! times the Euclidean volume of T .

Empty simplices are the fundamental building blocks in the theory of lattice poly-
topes, in the sense that every lattice polytope P (i.e., polytope with integer vertices) can
be triangulated into empty simplices. (Consider, for example, a Delaunay triangulation
of the set of integer points in P ). In particular, it is very useful to have classifications or,
at least, structural results, concerning the list of all empty simplices in a given dimension.

In dimension two this is trivial as a consequence of Pick’s Theorem: Every empty
triangle is a unimodular triangle, that is, it has volume 1/2 (or, equivalently, determi-
nant 1). In particular, they are all unimodularly equivalent. That is, if T1 and T2 are two
empty triangles then there is an affine map f : R2 → R2 with integer coefficients and
determinant 1 such that T2 = f(T1).

In higher dimension it is still true that all unimodular simplices are empty, and that
they are equivalent, but they are no longer the only empty simplices. Still, in dimension
three there is a quite simple classification of empty simplices due to White:

Theorem 1 (White 1964 [6]). Every empty tetrahedron of determinant q is unimodularly
equivalent to

T (p, q) := conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (p, q, 1)},

for some p ∈ Z with gcd(p, q) = 1. Moreover, T (p, q) is Z-equivalent to T (p′, q) if and
only if p′ = ±p±1 (mod q).



A key for the proof of this classification is the fact that all empty 3-simplices have
lattice width equal to one. That is, for any empty 3-simplex T there is an affine integer
functional f : R3 → R with T ∈ f−1([0, 1]). (Put differently, T lies between two consecu-
tive parallel lattice planes). In the statement of Theorem 1, empty 3-simplices are given
coordinates so that their width is one with respect to the functional f(x, y, z) = z.

In dimension 4 a full classification of empty simplices is not known, but the following
facts are known:

(1) There are infinitely many empty 4-simplices of width 1 (e.g., cones over empty
tetrahedra).

(2) There are infinitely many empty 4-simplices of width 2 [3].

(3) Every empty 4-simplex T is cyclic [1]; that is, Zd/Λ(T ) is a cyclic group, where Λ
is the linear lattice generated by (differences of) vertices of T . (Observe that the
order of this group equals the determinant of T ).

We are interested in the classification of all empty lattice 4-simplices. Athough we
still do not have a complete one, we know that with finitely many exceptions, all empty 4-
simplices have width at most two. (The lattice width of a lattice polytope is the minimum
width of a 1-dimensional affine integer projection of it). More precisely, in this talk I will
discuss the following three statements, each of which implies the stated finiteness:

Theorem 2 ([2]). For each n, there are only finitely many lattice 4-polytopes with exactly
n lattice points and of width larger than two.

Theorem 3 ([4]). There are exactly 179 empty lattice 4-simplices of width larger than
two. Their (normalized) volumes range from 41 to 179 and they all have width three
except for a single example of width four, and volume 101.

Almost Theorem 4 ([1]). Except for finitely many examples, every empty lattice 4-
simplex belongs to one of the 29 families found by Mori, Morrison and Morrison [5]. All
simplices in these families have width one or two.

Theorem 3 was conjectured by Haase and Ziegler [3].
As implicit in our statement, we have found a gap in the proof of Theorem 4 and,

in fact, the statement is not true: there are infinite families that do not exactly fit in
the Mori, Morrison, Morrison classification. Still, the following weaker version of the
theorem is true:

Theorem 5 (corrected version of Theorem 4). Except for finitely many examples, every
empty lattice 4-simplex belongs to one of the 29 families found by Mori, Morrison and
Morrison [5], or to a family obtained as a direct sum of one of these with a finite set.

This is joint work with M. Blanco, C. Haase, J. Hoffman and O. Iglesias-Valiño.
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Some More Results on the Lp Minkowski Problem
Alina Stancu

Concordia University, Montréal, Canada

I will report on some cases of the Lp Minkowski problem that are not, or less, known
in which the methods vary from classical convex geometry techniques to PDEs tools for
the smooth problem.

Recent Results on Approximation of Convex Bodies

by Polytopes

Elisabeth Werner

Case Western Reserve University, Cleveland, U.S.A.

We discuss several recent results related to approximation of convex bodies by poly-
topes.

The first recent result, obtained jointly with J. Grote, generalizes a theorem by Lud-
wig, Schuett and Werner on approximation of a convex body K in the symmetric differ-
ence metric by an arbitrarily placed polytope with a fixed number of vertices.

The second recent result is by S. Hoehner, C. Schuett and E. Werner. It gives a
lower bound, in the surface deviation, on the approximation of the Euclidean ball by an
arbitrary positioned polytope with a fixed number of k-dimensional faces.



Semialgebraic Sets of f-Vectors
Günter M. Ziegler

Freie Universität Berlin, Germany

Steinitz (1906) characterized the sets of all f -vectors of 3-dimensional polytopes as
all the integer points in a 2-dimensional rational cone. Grünbaum and co-workers char-
acterized the sets of all pairs (fi, fj) that appear for 4-dimensional polytopes and got
complete and reasonably simple answers: They found in all cases that this is the set
of all integer points between fairly obvious upper and lower bounds, with finitely-many
exceptions. On the other hand, a characterization of all f -vectors of 4-polytopes remains
elusive, while the characterization of all f -vectors of simplicial d-polytopes exists (the
“g-theorem”) but is complicated.

In our work we start with a definition of “simple answers”: We call a set of integer
points “semi-algebraic” if it is the set of all integer points in a semi-algebraic set defined
over the integers. We then prove that, in particular, the set of pairs (fi, fj) for 4-
dimensional polytopes is semi-algebraic, with one exception: The set of pairs (f1, f2) is
NOT semi-algebraic. Similarly, we show that the set of f -vectors of simplicial d-polytopes
is semi-algebraic for d < 6, but NOT for d = 6. This also implies that the set of f -vectors
of all 6-polytopes is not semi-algebraic.

Work in progress, joint with Hannah Schäfer Sjöberg.

Tetrahedral Packings, Color Graphs and Optimization

Chuanming Zong

Tianjin University / Peking University, China

2,300 years ago, Aristotle claimed that identical regular tetrahedra can fill the whole
space without gap. Unfortunately, this statement is wrong. In 1900, Hilbert listed sphere
packings and tetrahedron packings as the third part of his 18th problem. In this talk, we
will report some progresses on tetrahedral packings, and present a new approach based
on color graphs and optimization.



Contributed Talks

Curvature Types in Normed Planes
Vitor Balestro

Campus Nova Friburgo, Brazil

Heuristically, curvature can be regarded as “amount of rotation”. Having this in
mind, we can extend the usual Euclidean curvature to a smooth and strictly convex
normed plane simply by considering, in such a plane, the natural tools to measure area
and length (namely, a fixed area element and the Minkowski length). In this process, we
define two pairs of dual curvatures, for which all the questions posed and answered for
the Euclidean curvature also make sense.

Let (X, ‖ · ‖) be a smooth and strictly convex normed plane with unit ball B and
unit circle S. Let l(γ) denote the usual Minkowski length of a curve γ in X, and let [·, ·]
denote a fixed nondegenerate symplectic bilinear form (which yields an area measure).
The first natural way to define a curvature concept in a normed plane is to measure the
variation of the area swept in the unit ball by the unit tangent field. Formally, we let
ϕ : [0, 2λ(S)]→ X be a parametrization of the unit circle by twice the area of the sector
from ϕ(0) to ϕ(u), and let s be an arc-length parameter in the curve γ. Then, we let
u(s) : [0, l(γ)] → [0, 2λ(S)] be the function such that γ′(s) = ϕ(u(s)), and we define the
Minkowski curvature of γ at γ(s) to be

km(s) := u′(s).

Analogously, if we consider the variation of the arc-length, instead of area, determined
in the unit circle by the unit tangent field to γ we obtain the arc-length curvature. These
curvature concepts are dual, in the sense that the Minkowski curvature is the arc-length
curvature in the anti-norm.

These curvature types, however, do not behave well when we want to define an oscu-
lating circle (i.e., a 2nd order contact attached to the curve at some point). For this sake,
we define the circular curvature of a curve γ by considering the variation of the arc-length
of the unit circle determined when we regard the unit tangent field γ as tangents to S.
In other words, if ϕ(t) : [0, l(S)]→ X is an arc-length parametrization of the unit circle,
then we let t(s) : [0, l(γ)]→ [0, l(S)] be the function such that γ′(s) = dϕ

dt (t(s)). Then we
define the circular curvature to be

kc(s) := t′(s).

In the Euclidean plane, one can obtain the usual curvature by considering the Frenet
frame. We can do the same here, but extending the usual orthogonality concept to
Birkhoff orthogonality (which we will denote by aB), and regarding two curvatures instead
of one. Let nγ(s) denote, for each s ∈ [0, l(γ)], the unique vector such that γ′(s) aB nγ(s)
and [γ′(s), nγ(s)] = 1. The field nγ(s) is unit in the anti-norm, and then we can measure
the variation of the area swept by it in the unit anti-circle, with respect to the usual
arc-length of γ. By doing so, we obtain the normal curvature (which we denote by kn).



For the Minkowski curvature and the normal curvature the following Frenet formulas
hold:

γ′′(s) = km(s)nγ(s); and

n′γ(s) = −kn(s)γ′(s).

Also, the normal curvature is dual to the circular curvature, in the sense as before: one
gets the other when we switch the norm by the anti-norm. Notice that these curvature
types coincide if and only if the plane is Radon (like also for Minkowski curvature and
arc-length curvature, clearly).

Of course, defining these curvature types gives rise to several questions. We can
mention, e.g., the classification of the curves of constant curvature, the invariance under
isometries of the plane, and the eventual validity of the four vertex theorem. One can
prove that portions of circles and anti-circles are the (unique) curves with constant circu-
lar and normal curvatures, respectively, that all the curvature types are invariant under
isometries of the plane and that the four vertex theorem is valid for all the curvature
types.

It is worth mentioning that, as in the Euclidean case, the sum of the curvature radii
(i.e., the inverse of the circular curvature) at opposite points of a curve of constant width
is constant. This observation allows us to prove that, as also in the Euclidean subcase,
if any affine diameter of a constant width curve divides it into two portions of equal
Minkowski length, then this curve is a Minkowski circle.

Finally, since we have the notion of osculating circle, we can define evolutes, involutes
and parallels of a curve. This can be made by using the techniques of Singularity Theory,
by considering squared distance functions. A little surprising, the behavior of these
concepts in the general case remains analogous to the Euclidean subcase. This suggests
that an inner product is not strictly necessary in developing this theory.

This is a joint work with Horst Martini and Emad Shonoda.

Discrete Slicing Problems with Low Dimensional
Subspaces

Sören Lennart Berg

Technische Universität Berlin, Germany

In recent years, popularity of discrete slicing problems, where structure and properties
of lattice points of a given (symmetric) convex body are studied with regard to affine
and linear subspaces, steadily increased. In this talk we briefly summarize some of the
recent results, and focus on low dimensional subspaces. Moreover, we will see that this
assumption can imply interesting arithmetic properties, such as sum-freeness, of the
underlying set of lattice points.

This is joint work with Martin Henk.



Weighted Floating Bodies
Florian Besau

Goethe–Universität Frankfurt, Germany

The volume of the classical floating body of a convex body naturally gives rise to the
affine surface area of the body. In joint work together with M. Ludwig and E. Werner,
we were able to show, that one may replace both notions, volume and the floating body,
with weighted ones, to obtain a generalization of the classical affine surface area – the
weighted floating area. This weighted floating area still shares many important properties
with the classical affine surface area and is also closely tied to the non-uniform random
approximation of a convex body by polytopes.

For a polytope the affine surface area, as well as the weighted floating area, vanish
and the rate of convergence in the random approximation increases. Instead of the affine
surface area, a combinatorial invariant – the number of flags – is now determining the
asymptotic behavior. Again, the volume of the classical floating body of a polytope gives
rise to this invariant. Together with C. Schütt and E. Werner, we are currently working
on an investigation into the behavior of the weighted floating body of a polytope.

The Lp Minkowski Problem for −n < p < 1
Gabriele Bianchi

Università degli Studi di Firenze, Italy

I will present some results obtained with Károly J. Böröczky and Andrea Colesanti
on the Lp Minkowski problem for −n < p < 1. In particular I will concentrate on the
smoothness of the solution.

On Spherical Projection of a Convex Body and the

Related Quotient Space

Agnieszka Bogdewicz

Politechnika Warszawska, Poland

Consider A ∈ Kn0 . Let F(A) := {A(u) |u ∈ Sn−1} be the set of all faces of A. We
say that S0 ⊂ Sn−1 is spherically convex whenever cone S0 :=

⋃
x∈S0

∆(0, x) is a convex
subset of Rn. Let K(Sn−1) be the family of closed, spherically convex subsets of Sn−1.

We define spherical projection πA : F(A)→ K(Sn−1) and the equivalence relation ≡π
in Kn0 . We consider properties of the related quotient space and of orbits of ≡π.

This is joint work with Maria Moszyńska.



Why We Should Allow Non-Symmetric Gauge Bodies
When Studying Radii Functionals

René Brandenberg

Technische Universität München, Germany

In this talk we summarize some recent developments in the theory of radii of convex
bodies, which were mainly possible because of generalizing the definitions of the radii
functionals, allowing non-symmetric gauge bodies.

Bisections Minimizing the Maximum Relative Diameter
Antonio Cañete

Universidad de Sevilla, Spain

Given a centrally symmetric planar convex body C, a bisection of C is a division of
C into two connected subsets {C1, C2} determined by a simple curve with endpoints in
∂C. For each bisection P of C, the maximum relative diameter is defined by

dM (P ) = max{D(C1), D(C2)},

where D(Ci) denotes the Euclidean diameter of Ci, i = 1, 2.

In this talk we will focus on the bisections of C which minimize the maximum rel-
ative diameter functional dM , showing that they are not unique, and establishing some
sufficient conditions for a bisection to be minimizing. Moreover, we shall study when the
so-called standard bisection (determined by two symmetric inradius segments) is mini-
mizing. We will also see the relation of these questions with classical Borsuk’s problem
in R2.

This is part of a joint work with Uwe Schnell (University of Applied Sciences Zit-
tau/Görlitz) and Salvador Segura (University of Alicante).

Maximum Area Circumscribed Polygons
Susanna Dann

Technische Universität Wien, Austria

A convex polygon Q is circumscribed about a convex polygon P if every vertex of P
lies on at least one side of Q. We present an algorithm for finding a maximum area convex
polygon circumscribed about any given convex n-gon in O(n3) time. As an application,
we disprove a conjecture of Farris. Moreover, for the special case of regular n-gons we
find an explicit solution.

This is joint work with Markus Aussenhofer (University of Wien), Zsolt Lángi (Bu-
dapest University of Technology) and Géza Tóth (Alfréd Rényi Institute of Mathematics,
Budapest).



Indefinite Crofton Formulas and the Centro-Affine
Surface Area

Dmitry Faifman

Universtity of Toronto, Canada

The Euclidean intrinsic volumes are the most important examples of valuations, which
inspired many central notions in convex, differential and integral geometry. In recent
joint works with Alesker and Bernig, the intrinsic volumes corresponding to a general
quadratic form were constructed and studied. In this talk, we will discuss how to write
Crofton-Kubota formulas for those intrinsic volumes. As an application, we will produce
explicit Crofton formulas for a valuation of a different kind - the centro-affine surface
area. A central ingredient in the above is the explicit evaluation of a new Selberg-type
integral.

On Two Theorems of Minkowski in the
Geometry of Numbers

Bernardo González Merino

Technische Universität München, Germany

In 1896 Minkowski proved his ‘First Fundamental Theorem’, which states that every
0-symmetric convex body whose only interior lattice point is the origin 0, has volume
bounded from above by 2n.

Replacing the volume by the number of lattice points in the set (known as the lattice
point enumerator) he showed an analogous ‘discrete’ result to his First Fundamental
Theorem, proving that 3n is the right upper bound in this case. He also showed that if
the set is moreover strictly convex, the latter further reduces to 2n+1 − 1.

In this talk we will show how to extend these two ‘discrete’ theorems of Minkowski,
by allowing any number of interior lattice points in the convex set, following in some
sense the ideas that Blichfeldt and Van der Corput developed in order to extend the
First Fundamental Theorem of Minkowski.

This is a joint work with G. Averkov, I. Paschke, M. Schymura, and S. Weltge.

Hunting for Reduced Polytopes

Thomas Jahn

Technische Universität Chemnitz, Germany

A convex body is said to be reduced if it has no proper compact convex subset shar-
ing the same minimum width. Reduced bodies appear naturally as extremal bodies in
Steinhagen’s inequality or Pál’s problem, and are conceptually related to diametrically
complete and constant width bodies. In spite of the strikingly simple definition, there
are still gaps in understanding reducedness. One of these gaps is the study of reduced
polytopes in d-dimensional Euclidean space, d ≥ 3, concerning first and foremost their
mere existence.

This is joint work with Bernardo González Merino, Alexandr Polyanskii and Gerd
Wachsmuth.



h∗-Polynomials of Zonotopes
Katharina Jochemko

Royal Institute of Technology (KTH) Stockholm, Sweden

The Ehrhart polynomial counts the number of lattice points in integer dilates of a
lattice polytope. A central question in Ehrhart theory is to characterize all possible
Ehrhart polynomials. An important tool is the h∗-polynomial of a lattice polytope,
which encodes the Ehrhart polynomial in a certain binomial basis. One open question
coming from commutative algebra is whether the h∗-polynomial of an integrally closed
lattice polytope is always unimodal. Schepers and Van Langenhoven (2011) proved this
for lattice parallelepipeds.

Using the interplay of geometry and combinatorics, we generalize their result to zono-
topes by interpreting their h∗-polynomials in terms of certain refined descent statistics
on permutations. From that we obtain that the h∗-polynomial of a zonotope is unimodal
with peak in the middle and, moreover, that it has only real roots. Moreover, we are
able to give a complete description of the convex hull of all h∗-polynomials of zonotopes
in a given dimension: it is a simplicial cone spanned by refined Eulerian polynomials.

This is joint work with Matthias Beck and Emily McCullough (both San Francisco
State University).

Grünbaum Distance of Two Planar Convex Bodies

Tomasz Kobos

Jagiellonian University, Poland

For two (not necessarily symmetric) convex bodies K,L ⊂ Rn the classical Banach-
Mazur distance is defined as

dBM (K,L) = inf
T∈GL(n),u,v∈Rn

{r > 0 : K + u ⊂ T (L+ v) ⊂ r(K + u)}.

One of variations of this notion is so called Grünbaum distance, which for two convex
bodies K,L ⊂ Rn is defined as

dG(K,L) = inf
T∈GL(n),u,v∈Rn

{|r| : r ∈ R, K + u ⊂ T (L+ v) ⊂ r(K + u)}.

In simple words, we fit an affine copy of one body between the other body and its positive
or negative homothetic copy. Clearly dG(K,L) ≤ dBM (K,L) for every pair of convex
bodies (K,L).

Maximal Banach-Mazur distance between symmetric convex bodies in Rn is asymp-
totically of order n, but the exact value is known only for n = 2 and it is equal to 3

2 (see [1],
[5]). Maximal Banach-Mazur distance between arbitrary convex bodies in Rn is not de-
termined even in the asymptotic setting. However, maximal Grünbaum distance between
two convex bodies in Rn have been determined and it is equal to n. This was a conjecture
of Grünbaum (see [3]) and have been settled by Gordon, Litvak, Meyer and Pajor (see
[2]), who used an innovative tool of John’s decomposition in the general case. Moreover if
S is a simplex and K is symmetric then one can easily prove that dG(K,S) = n. Jiménez
and Naszódi have therefore conjectured that the equality dG(K,L) = n implies that K
or L is a simplex (see [4]). They have proved their conjecture in the case where K or L
is strictly convex or smooth.



The aim of the talk is to present a sketch of the proof that if K,L ⊂ R2 are convex
bodies such that dG(K,L) = 2 then K or L is a triangle. Conjecture of Jiménez and
Naszódi is therefore true for n = 2, without any other additional conditions on K or L.
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Laplace Transforms and Function Valued Valuations

Jin Li

Technische Universität Wien, Austria

Let p ≥ 1. It was shown before that GL(n) compatible valuations taking values on
the space of p homogeneous and continuous functions on Rn are basically Lp Minkowski
valuations. We found that the Laplace transform on convex bodies is another function
valued valuation which is continuous, positively GL(n) covariant and logarithmic trans-
lation covariant. Conversely, these properties turn out to be sufficient to characterize
this transform. The classic Laplace transform is also characterized after extension.

This is joint work with Dan Ma.

On the Randomized Log-Brunn-Minkowski Inequality
Galyna Livshyts

Georgia Institute of Technology, U.S.A.

Given a scalar λ ∈ [0, 1], and a pair of convex bodies K and L containing the origin
in their interior, with support functions hK and hL, respectively, their geometric average
is defined as follows:

KλL1−λ := {x ∈ Rn : 〈x, u〉 ≤ hλK(u)h1−λL (u) ∀u ∈ Sn−1}.

Böröczky, Lutwak, Yang, Zhang conjectured that

|KλL1−λ| ≥ |K|λ|L|1−λ,

for every pair of symmetric convex bodies K and L. Saroglou showed that proving this
conjecture true is equivalent to proving, in every dimension, that

γ(KλL1−λ) ≥ γ(K)λγ(L)1−λ



for some probability log-concave measure γ and when K and L are images of the unit
cube under linear operators. This suggests a more general matrix form to the Log-Brunn-
Minkowski inequality. We verify this matrix inequality on average for random matrices,
and prove concentration bounds, in the case when the restriction of the measure γ on a
parallelepiped is positively log-concave.

This is a joint work with Paata Ivanishvili, Christos Saroglou and Ionel Popescu.

Valuations on the Space of Quasi-Concave Functions
Nico Lombardi

Università degli Studi di Firenze, Italy

We present some results concerning valuations defined on quasi-concave functions.
We recall that a function f : RN → R+ is said to be quasi-concave if the set

Lt(f) = {x ∈ RN | f(x) ≥ t}

is a convex body or the empty set, for all t > 0. Let CN be the set of quasi-concave
functions.

We define a valuation on CN as a functional µ : CN → R such that

µ(f) + µ(g) = µ(f ∨ g) + µ(f ∧ g),

where ∨ and ∧ are the maximum and minimum operators, for all f , g and f ∨ g quasi-
concave functions.

There are many connections between quasi-concave functions and convex bodies which
inspire the study of valuations on CN .

We present some characterization results for valuations on CN . First of all, with
the additional hypothesis of continuity (w.r.t. a suitable topology) and rigid motion
invariance, we present a characterization theorem as Hadwiger Theorem. Moreover we
consider the homogeneous case and we show a decomposition theorem as McMullen
Theorem.

This is joint work with Andrea Colesanti and Lukas Parapatits.

Polyhedral Gauss sums
Romanos Diogenes Malikiosis

Technische Universität Berlin, Germany

We define certain natural finite sums of n’th roots of unity, called GP (n), that
are attached to each convex integer polytope P , and which generalize the classical 1-
dimensional Gauss sum G(n) defined over Z/nZ, to higher dimensional abelian groups
and integer polytopes. We consider the finite Weyl groupW, generated by the reflections
with respect to the coordinate hyperplanes, as well as all permutations of the coordinates;
further, we let G be the group generated by W as well as all integer translations in Zd.
We prove that if P multi-tiles Rd under the action of G, then we have the closed form
GP (n) = vol(P )G(n)d. Conversely, we also prove that if P is a lattice tetrahedron in
R3, of volume 1/6, such that GP (n) = vol(P )G(n)d, for n ∈ {1, 2, 3, 4}, then there is
an element g in G such that g(P ) is the fundamental tetrahedron with vertices (0, 0, 0),
(1, 0, 0), (1, 1, 0), (1, 1, 1).



Valuations on Log-concave Functions
Fabian Mussnig

Technische Universität Wien, Austria

A function Z defined on the subset S of a lattice (L,∨,∧) and taking values in an
abelian semigroup is called a valuation if

Z(f ∨ g) + Z(f ∧ g) = Z(f) + Z(g),

whenever f, g, f ∨ g, f ∧ g ∈ S.
In the classical theory, valuations on the set of convex bodies (non-empty, compact,

convex sets), Kn, in Rn are studied, where ∨ and ∧ denote union and intersection, re-
spectively. The celebrated Hadwiger classification theorem gives a complete classification
of continuous, rotation and translation invariant valuations on Kn and provides a char-
acterization of intrinsic volumes. Among them, the Euler characteristic and volume form
the basis of all continuous and SL(n) invariant valuations on the space of convex bodies
that contain the origin. Moreover, valuations with values in Kn together with Minkowski
addition, also called Minkowski valuations, have attracted interest. Furthermore, since
several important geometric operators like the Steiner point and the moment vector are
not translation invariant, translation covariant valuations were studied.

More recently, valuations were defined on function spaces. For a space S of real-
valued functions f ∨ g denotes the pointwise maximum of f and g while f ∧ g denotes
their pointwise minimum. Motivated by previous results on convex bodies, a classifica-
tion of continuous, homogeneous, SL(n) and translation covariant Minkowski valuations
on the space of log-concave functions is established. Thereby, the recently introduced
level set body, its reflection and the moment vector of a log-concave function are char-
acterized. In the proof of this result, a classification of continuous, homogeneous, SL(n)
and translation invariant real-valued valuations is established, where suitable analogs of
the Euler characteristic and volume for log-concave functions are characterized.

Characterization of Unit Balls by Riesz Energy
Jun O’Hara

Chiba University, Japan

We show that unit balls can be characterized by regularized Riesz energy, which is
generalization of

∫
M×M |x− y|

zdxdy (M is a compact body in the Euclidean space) via
analytic continuation (z ∈ C) or equivalently by Hadamard regularization.



Necessary Subspace Concentrarion Conditions for the
Even Dual Minkowski Problem

Hannes Pollehn

Technische Universität Berlin, Germany

Recently Huang, Lutwak, Yang and Zhang introduced a broad class of geometric
measures related to convex bodies. Among these are the dual curvature measures which
are the counterparts to the classical curvature measures of convex bodies in the dual
Brunn-Minkowski theory. Here we discuss the associated dual Minkowski problem and
show necessary subspace concentration conditions for dual curvature measures C̃q(K, ·)
of an n-dimensional symmetric convex body in the cases q ≤ n and q ≥ n+ 1.

This is joint work with Károly Böröczky Jr. and Martin Henk.

Characterization of Regular Triangles in Terms of
Critical Points of Riesz Potentials

Shigehiro Sakata

Miyazaki University, Japan

For a convex body K in Rn, Professor Maria Moszyńska looked for a “good” position
of the origin for K and investigated a maximizer of the function

ΦK(x) :=

∫
Sn−1

ρK−x(u)αdσ(u), x ∈ intK,

where ρK−x(u) = max{λ |λu + x ∈ K} (u ∈ Sn−1) is the radial function of K with
respect to x. A maximizer of ΦK is called a radial center of order α of K. It is easy to
show that ΦK is proportional to the Riesz potential of order α,

V
(α)
K (x) :=

∫
K
|x− y|α−ndy.

Professor Jun O’Hara showed that the family of radial centers with respect to α includes
the centroid (center of mass) and the Chebyshev center of K. Thus, in general, radial
centers of K move in α. We will consider the shape of a triangle with radial centers not
moving in α.
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On the Geometry of Projective Tensor Products
Carsten Schütt

Universität Kiel, Germany

We study the volume ratio of projective tensor products `np ⊗π `nq ⊗π `nr where 1 ≤ p ≤
q ≤ r ≤ ∞. As a consequence of the Bourgain-Milman upper estimate on the volume
ratio of Banach spaces by the cotype 2 constant, we obtain information on the cotype
of `np ⊗̂π`nq ⊗̂π`nr . Our results naturally generalize to k-fold projective tensor products
`np1 ⊗π · · · ⊗π `

n
pk

.
This is joint work with Ohad Giladi, Joscha Prochno, Nicole Tomczak-Jaegermann,

and Elisabeth Werner.

On the Covering Radius of Lattice Zonotopes and

its Relation to View-Obstructions and
the Lonely Runner Conjecture

Matthias Schymura

Freie Universität Berlin, Germany

The covering radius of a convex body K in Rn is the minimal dilation factor r > 0
such that the lattice arrangement rK + Zn covers the whole space. This classic concept
in the geometry of numbers has been of interest ever since its introduction and connects
fruitfully to Number Theory, Integer Programming and Convex Geometry, among others.

The view-obstruction problem of Cusick asks for the minimal edge length in a lattice
arrangement of cubes that is necessary to obstruct every non-trivial view through space.
We give a reformulation of this question as a study of covering radii of lattice zonotopes.
This allows to apply tools from Convex and Discrete Geometry, which we use to estimate
the necessary edge length in terms of the rational dimension of the view direction. In
terms of zonotopes we need to estimate the covering radii in dependence on the number
of generators.

Our investigations are motivated by the popular Lonely Runner Conjecture, a problem
in Diophantine Approximation originally posed by Jörg Wills in 1967. In the talk, I will
discuss consequences of our findings to this perennial problem.

This is joint work with Romanos-Diogenes Malikiosis (http://arxiv.org/abs/1609.
01939).

http://arxiv. org/abs/1609.01939
http://arxiv. org/abs/1609.01939


Symmetric Mahler’s Conjecture for the Volume
Product in the Three Dimensional Case

Masataka Shibata

Tokyo Institute of Technology, Japan

Mahler conjectured the inequality for the volume product:

|K||K◦| ≥ 4n

n!

for any symmetric convex body K ⊂ Rn and its polar K◦. In the case n = 1 is trivial,
and Mahler showed the inequality in the case n = 2. For general n, Reisner showed that
the inequality holds if K is a zonoid, and Saint Raymond showed that the inequality
holds if K is symmetric with respect to each of the coordinate hyperplanes. However,
the conjecture is still open even in the case n = 3. In this talk, we discuss our recent
results about the conjecture in the three dimensional case.

The talk is based on a joint work with Hiroshi Iriyeh.

Integral Geometry of the Quaternionic Plane
Gil Solanes

Serra Húnter Fellow, Universitat Autònoma de Barcelona, Spain

A valuation is a finitely additive functional on the space of convex bodies. Hadwiger’s
classification theorem states that the space ValSO(n) of continuous rigid motion invariant
valuations is spanned by the so-called intrinsic volumes. This yields a simple proof of
the principal kinematic formula of Blaschke and Santaló.

It was shown by Alesker [1] that the space of continuous, translation-invariant and G-
invariant valuations ValG has finite dimension for any group G ⊂ O(n) acting transitively
on the sphere Sn−1. The list of such groups, obtained by Montgomery-Samelson and
Borel, is the following

G = SO(n), U(n), SU(n), Sp(n), Sp(n)U(1), Sp(n)Sp(1),

plus the exceptional groups G = G2, Spin(7), Spin(9). In particular, kinematic formulas
exist for each of these groups. The explicit computation of these formulas is a difficult
problem that has been recently solved for G = SO(n), U(n), SU(n), G2, Spin(7) in [4, 2,
3]. This was possible thanks to a new approach developed by Bernig and Fu, based on
algebraic structures discovered by Alesker on the space of valuations.

The cases G = Sp(n), Sp(n)U(1), Sp(n)Sp(1), Spin(9) are still open, except for
Sp(2)Sp(1), which is the subject of this talk. We will present the classification of
Sp(2)Sp(1)-invariant valuations on the quaternionic plane [5], as well as the kinematic
formulas of this space [6]. This is a first step in the investigation of integral geometry of
quaternionic spaces.
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Moments of the Maximal Number of Empty Simplices of

a Random Point Set

Daniel Temesvari

Ruhr University Bochum, Germany

For a finite setX of n points from RM , the degree of anM -element subset {x1, . . . , xM}
of X is defined as the number of empty simplices, i.e., the number of points z ∈
X \ {x1, . . . , xM} such that the intersection of the convex hull of {x1, . . . , xM , z} with
the set X contains only the points x1, . . . , xM , z. Furthermore, the degree of the set X,
denoted by deg(X), is introduced as the maximal degree of any of its m-element subsets.

The purpose of this talk is to show that the moments of the degree of X satisfy
E[deg(X)k] ≥ cnk/log n, for some constant c > 0, if the elements of the set X are chosen
uniformly from a convex body W ⊂ Rn.

Radial Continuous Valuations on Star Bodies
Ignacio Villanueva

Universidad Complutense de Madrid, Spain

We characterize rotation invariant radial continuous valuations defined on the n-
dimensional star bodies by means of an integral in Sn−1 with respect to the Lebesgue
measure. Next we study to which extent this characterization remains valid if we remove
the condition of rotation invariance. The talk is based on Radial continuous rotation
invariant valuations on star bodies, Adv. Math. 291 (2016) and Radial continuous valu-
ations on star bodies and star sets, arXiv:1611.03345.

This is joint work with Pedro Tradacete.



Integral Geometry in Exceptional Spheres
Thomas Wannerer

Friedrich-Schiller-Universität Jena, Germany

The kinematic formulas for spheres go back to Blaschke, Chern, and Santaló and
are in some sense entirely classical. For spheres of dimension 6 and 7 however, new
kinematic formulas have been discovered recently. In this talk we will report on ongoing
joint work with Gil Solanes on kinematic formulas in these exceptional spheres. We will
put our results within the framework of Alesker’s theory of valuations and we will explain
how properties of the octonions shape the integral geometry in these special dimensions.
Implications for the integral geometry of general isotropic spaces will be touch upon
briefly. Finally, we will present a generalization of the Klain-Schneider characterization
of simple valuations.

On Polynomially Integrable Convex Bodies

Vladyslav Yaskin

University of Alberta, Canada

Let K be a convex body in Rn . The parallel section function of K in the direction
ξ ∈ Sn−1 is defined by

AK,ξ(t) = voln−1(K ∩ {(x, ξ) = t}), t ∈ R,

where (x, ξ) is the scalar product in Rn.
A convex body K in Rn is called polynomially integrable (of degree N) if

AK,ξ(t) =

N∑
k=0

ak(ξ) t
k

for some integer N , all ξ ∈ Sn−1 and all t for which the set K ∩ {x : (x, ξ) = t} is
non-empty. Here, ak are functions on the sphere. We assume that the function aN is not
identically zero.

We prove that the only smooth convex bodies with this property in odd dimensions
are ellipsoids, if N ≥ n − 1. This is in contrast with the case of even dimensions and
the case of odd dimensions with N < n − 1, where such bodies do not exist, as it was
recently shown by Agranovsky.

This is joint work with A. Koldobsky and A. Merkurjev.



On Brunn-Minkowski’s Inequalities under Projections
Assumptions
Jesús Yepes Nicolás

Universidad de León, Spain

The well-known Brunn-Minkowski inequality asserts that vol((1− λ)K + λL)1/n, for
K,L ∈ Kn convex bodies, is a concave function in λ ∈ [0, 1], where the exponent 1/n is
moreover the best that one may expect for such an inequality.

Nevertheless, from a classic result by Bonnesen, we may state that

vol((1− λ)K + λL) ≥ (1− λ)vol(K) + λvol(L),

provided that K and L have a projection onto a hyperplane of the same measure.
The natural hypothesis of a common (n − k)-plane projection of the sets does not

imply, however, that the (1/k)-th powered volume function is concave.
In this talk we will discuss which is the, somehow, best projection type assumption

that is needed in order to get concavity for vol((1− λ)K + λL)1/k. In the same way, we
will show that such a result can be obtained in a more general setting: for compact sets
on the one hand and, on the other, for its functional analogue, via the Prékopa-Leindler
inequality.

This is joint work with Maŕıa A. Hernández Cifre (University of Murcia).

Selfishness of Convex Bodies

Liping Yuan

Hebei Normal University, China

Let F be a family of sets in Rd. A set M ⊂ Rd is called F-convex if for any pair of
distinct points x, y ∈M there is a set F ∈ F such that x, y ∈ F and F ⊂M .

We call a family F of compact sets complete if F contains all compact F-convex sets.
A single convex body K will be called selfish, if the family of all convex bodies similar
to K (resulting from an isometry and a dilation) is complete. We investigate here the
selfishness of convex bodies.

This is joint work with Tudor Zamfirescu.



Discs Held in Cages
Tudor Zamfirescu

Hebei Normal University, China

A cage is defined as the 1-skeleton of a convex polyhedron. More than half a century
ago, Coxeter, Besicovitch, Aberth and Valette investigated 3-dimensional balls held by
cages, and determined the minimal total length of those cages. In this talk we consider
discs, i.e. 2-dimensional balls, held by cages, and try to determine the various positions
the discs may have when being “almost fixed” by the cage. We shall determine the exact
number of such positions for tetrahedral cages and the maximal number for pentahedral
cages.

Isoperimetric-type Inequalities and Equalities for
Planar Ovals
Micha l Zwierzyński

Politechnika Warszawska, Poland

During this talk we will introduce definitions of affine λ-equidistants of planar curves,
including the Wigner caustic, and of the Constant Width Measure Set. We will show the
geometric properties of these sets and also we will show that oriented areas of these sets
give the improvement in the classical isoperimetric inequality for planar closed convex
smooth curves (ovals).

The Wigner caustic can be viewed as the measure of centrally symmetric property of
an oval and the Constant Width Measure Set can be viewed as the measure of constant
width property of an oval.

The oriented area of the Wigner caustic gives the exact relation between the length
and the area of the region bounded by an oval when the oval is an oval of constant width.
The same holds for the Constant Width Measure Set and centrally symetric ovals.

It turns out that the linear combination of the oriented areas of the Wigner caustic
and the Constant Width Measure Set gives the isoperimetric equality for ovals.
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Posters Contributions

On a Discrete Brunn-Minkowski Inequality
David Iglesias López

Universidad de Murcia, Spain

Relating the volume with the Minkowski (vectorial) addition of compact (not neces-
sarily convex) sets, one is led to the famous Brunn-Minkowski inequality. One form of it
states that Vn(K + L)1/n ≥ Vn(K)1/n + Vn(L)1/n for any compact sets K,L ⊂ Rn. The
Brunn-Minkowski inequality is one of the most powerful results in Convex Geometry and
beyond: its equivalent analytic version (Prékopa-Leindler inequality) and the fact that
the compactness assumption can be ‘weakened’ to consider just Lebesgue measurable
sets, have allowed it to move in much wider fields.

In 2001, Gardner & Gronchi moved it to the discrete setting and proved a discrete
version of the Brunn-Minkowski inequality for finite subsets of the integer lattice Zn: if
A,B ⊂ Zn are finite with dimB = n, then |A + B| ≥ |DB

|A| + DB
|B||; here | · | denotes

the cardinal function, and DB
|A|, D

B
|B| are, roughly speaking, like an intersection of some

simplices with Zn, having the same cardinality as A and B, respectively.
In this poster we aim to present a new type of discrete Brunn-Minkowski inequality.

More precisely, we will show that if A,B ⊂ Zn are finite, then

|A+B|1/n ≥ |A|1/n + |B|1/n,

where A is an extension of A which is obtained by adding some new integer points in a
particular way. We also prove that the inequality is sharp, providing examples for the
equality case, and show that the number of additional points is somehow controlled, and
depends on the structure of A.

This is joint work with Maŕıa A. Hernández Cifre and Jesús Yepes Nicolás.

Classification of Empty Lattice 4-Simplices
Oscar Iglesias-Valiño

Universidad de Cantabria, Spain

A lattice d-simplex is the convex hull of d + 1 affinely independent integer points in
Rd. It is called empty if it contains no lattice point apart of its d + 1 vertices. The
classification of empty 3-simplices is known since 1964 (White), based on the fact that
they all have width one. But for dimension 4 no complete classification is known.

Haase and Ziegler (2000) computed all empty 4-simplices up to determinant 1000 and
based on their results conjectured that after determinant 179 all empty 4-simplices have
width one or two. We prove this conjecture as follows:

- We show that no empty 4-simplex of width three or more can have determinant
greater than 5058, by combining the recent classification of hollow 3-polytopes (Averkov,
Krümpelmann and Weltge, to appear) with general methods from the geometry of num-
bers.

- We continue the computations of Haase and Ziegler up to determinant 7600, and
find that no new 4-simplices of width larger than two arise.



In particular, we give the whole list of empty 4-simplices of width larger than two,
which is as computed by Haase and Ziegler: There is a single empty 4-simplex of width
four (of determinant 101), and 178 empty 4-simplices of width three, with determinants
ranging from 41 to 179.

Valuations on Lipschitz Functions
Daniele Pagnini

Università degli Studi di Firenze, Italy

We prove a characterization theorem for continuous, dot product-invariant and rotation-
invariant valuations defined on the space Lip(S1) of Lipschitz continuous functions on
the bidimensional sphere: we show that every such valuation admits a precise integral
representation.

Moreover, we prove that a continuous valuation on Lip(S2) is uniquely determined
by the values it attains on the set of convex functions defined on S2.



Participants List

• Semyon Alesker (Tel Aviv University, Israel)

• Vitor Balestro (CEFET/RJ Campus Nova Friburgo, Brasil)

• Matthias Beck (San Francisco State University, U.S.A.)
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