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Introduction

Preliminary remarks

We consider the classical problem of maximization of
expected terminal log-utility.
The main novelty is the market model:

1 The coefficients in the asset price dynamics depend on an
unobservable finite-state Markovian factor process θt
(regime-switching model).

2 the asset prices (their log-values) are observed, and
consequently the portfolio is re-balanced, only at doubly
stochastic random times, for which the associated counting
process forms a Cox process having an intensity that depends
on the same unobservable factor process.



Introduction

Preliminary remarks

Financial relevance of the model

Regime switching (widely used) may account for various
stylized facts, such as volatility clustering.
Random time observations are more realistic in
comparison with diffusion-type models, especially on small
time scales: prices do not vary continuously but by
tick-size at random times in reaction to arrival of significant
new information.



Introduction

Preliminary remarks

Financial relevance of the model (continued)

Restricting observations and trading to random times
corresponds to the fact that portfolios cannot be
re-balanced continuously: think of transaction costs and/or
liquidity restrictions.
The partial information setup allows for continuous
updating of the underlying model.



Introduction

Outline

Description of the model and the objective.
Remarks on the problem setup and on the approach.
Filtering and an ensuing contraction operator.
Preliminary results:

i) Auxiliary results in view of determining the
optimal strategy;

ii) an auxiliary value function.
Main result.



Model and objective

The model

The model

θt : the hidden finite-state Markovian factor process

dθt = Q∗θtdt + dMt , θt ∈ E := {e1, · · · ,eN}, θ0 = ξ ∈ E

Q : transition intensity matrix; Mt : jump martingale on
(Ω,F ,Ft ,P).



Model and objective

The model

With pt := (p1
t , · · · ,pN

t ) the state-probability vector, i.e.
pi

t = P{θt = ei}, we consider on

SN :=

{
p ∈ RN |

N∑
i=1

pi = 1 >; 0 ≤ pi , i = 1, · · · ,N

}

the Hilbert metric

dH(p, p̄) := log

(
sup

p̄(A)>0,A⊂E

p(A)

p̄(A)
sup

p(A)>0,A⊂E

p̄(A)

p(A)

)



Model and objective

The model

Given are m risky assets with prices Si
t satisfying

dSi
t = Si

t{r i(θt)dt +
∑

j

σi
j (θt)dBj

t}

and let X i
t := log Si

t .
Given is also a non-risky asset with price S0

t satisfying

dS0
t = r0S0

t dt

and let S̃i
t :=

Si
t

S0
t
, with X̃ i

t := log S̃i
t so that

dX̃ i
t = {r i(θt)− r0 − d(σσ∗(θt))

i}dt +
m∑

j=1

σi
j (θt)dBj

t

with d(σσ∗(θ)) = (1
2(σσ∗)11(θ), . . . , 1

2(σσ∗)mm(θ)) (column
vector).



Model and objective

The model

Prices (and thus also the logarithms of their discounted
values) are only observed at the random times τ0, τ1, τ2, · · ·
so that, putting X̃ i

k := X̃ i
τk

, the observations (τk , X̃k ) form a
multivariate marked point process with counting measure

µ(dt ,dx) =
∑

k

1{τk<∞}δ{τk ,X̃k}(t , x)dtdx

The corresponding counting process

Λt :=

∫ t

0

∫
Rm
µ(dt ,dx)

is supposed to be a Cox process with intensity n(θt), i.e.

Λt −
∫ t

0
n(θs)ds is an (Ft ,P)−martingale.



Model and objective

The model

Consider the F−subfiltrations

Gt := F0 ∨ σ{µ((0, s]× B) : s ≤ t ,B ∈ B(Rm)},

Gk := F0 ∨ σ{τ0, X̃0, τ1, X̃1, τ2, X̃2, . . . , τk , X̃k}.

Below we shall need the the conditional (on Fθ) mean and
variance of X̃t − X̃k , for which we put

mθ
k (t) =

∫ t
τk

[r(θs)− r01− d(σσ∗(θs))]ds,

σθk (t) =
∫ t
τk
σσ∗(θs)ds

and we let, for z ∈ Rm,

ρθτk ,t(z) ∼ N(z; mθ
k (t), σθk (t))

.



Model and objective

Investment strategies, portfolios

N i
t : number of assets of type i in the portfolio at time t :

N i
t =

∑
k

1[τk ,τk+1)(t)N
i
τk

The wealth process at time t is then Vt :=
∑m

i=0 N i
t S

i
t . and the in-

vestment ratios

hi
t :=

N i
t S

i
t

Vt
, (hi

k := hi
τk

)

are defined on

H̄m := {(h1, . . . ,hm); h1 + h2 + . . .+ hm ≤ 1,0 ≤ hi , i = 1,2, . . . ,m}

→ No shortselling is allowed and H̄m is closed and
bounded.



Model and objective

Investment strategies, portfolios

The dynamics of a self-financing portfolio are (ht ∈ H̄m)

dVt = Vt {[r0 + h∗t {r(θt)− r01}]dt + h∗t σ(θt)dBt}

Defining γ : Rm × H̄m → H̄m by

γ i(z,h) :=
hi exp(z i)

1 +
m∑

i=1
hi(exp(z i)− 1)

, i = 1, , . . . ,m

one has that, for t ∈ [τk , τk+1),

hi
t = γ i(X̃t − X̃k ,hk )

→ ht is thus determined by hk , X̃k , X̃t where X̃t is
unobserved for t ∈ (τk , τk+1).



Model and objective

Investment strategies, portfolios

The set A of admissible strategies is

A := {{hk}∞k=0|hk ∈ H̄m, Gk measurable and self-financing}

For n > 0 let

An := {h ∈ A|hn+i = hτn+i− for all i ≥ 1}

→ Given h ∈ An, for the corresponding process Nt
one has (recall that Nt is constant on [τk , τk+1))

Nn+k = Nn+k−1 = Nn

→ A0 ⊂ A1 ⊂ · · ·An ⊂ An+1 · · · ⊂ A.



Model and objective

Investment strategies, portfolios

Recalling the dynamics of a self financing portfolio we have

log VT = log v0 +
∫ T

0 h∗t σ(θt)dBt

+
∫ T

0 [r0 + h∗t {r(θt)− r01} − 1
2h∗t σσ

∗(θt)ht ]dt

= log v0 +
∫ T

0 h∗t σ(θt)dBt +
∫ T

0 f (θt ,ht) dt

having put

f (θ,h) := r0 + h∗{r(θ)− r01} − 1
2

h∗σσ∗(θ)h

→ Our problem can now be formulated as follows



Model and objective

The problem

Problem: Given a finite planning horizon T > 0, determine the opti-
mal value

suph∈A E {log VT |τ0 = 0,p0 = p}

= log v0 + suph∈A E
{∫ T

0 f (θt ,ht)dt |τ0 = 0,p0 = p
}

as well as an optimal maximizing strategy

ĥ ∈ A



Model and objective

Outline

Description of the model and the objective.
Remarks on the problem setup and on the approach.
Filtering and an ensuing contraction operator.
Preliminary results:

i) Auxiliary results in view of determining the
optimal strategy;

ii) an auxiliary value function.
Main result.



Remarks on the problem and on the approach

Remarks on problem setup

Our problem is a stochastic control problem under
incomplete information. The standard approach to such
problems is to transform them into a complete information
problem, the so-called ”separated problem”, where instead
of the unobservable quantities one considers their
distributions, conditional on the observations.

This requires:

i) solving the associated filtering problem;
ii) formulating the separated problem so that its solution

is indeed a solution of the original incomplete
information problem.



Remarks on the problem and on the approach

Remarks on problem setup

The associated filtering problem has been solved in work
by Cvitanic, Liptser, Rozovskii and it was found that ”the
given problem does not fit into a standard diffusion or point
process filtering framework”.
Not only the filtering problem, but also the control part of
the problem does not fit into any standard framework and
so there remained the task to find an approach also for the
control part.

→ Here we do it for a log-utility function. (For power
utility a different approach had to be derived: FNR
in AMO (2013))



Remarks on the problem and on the approach

Remarks on the approach

We show that also in our setup one can obtain results that
are analogous to the classical ones, in particular, we also
obtain a myopic optimal policy for this log-utility problem.

This can however not be shown directly as in the classical cases and
so we derive:

i) an approximation result leading to a ”value
iteration”-type algorithm;

ii) a general dynamic programming principle



Remarks on the problem and on the approach

Outline

Description of the model and the objective.
Remarks on the problem setup and on the approach.
Filtering and an ensuing contraction operator.
Preliminary results:

i) Auxiliary results in view of determining the
optimal strategy;

ii) an auxiliary value function.
Main result.



Summary of filtering results

Filtering

The filtering problem associated to our incomplete information
stochastic control problem has been studied in Cvitanic, Liptser, Ro-
zovskii (2006).

To summarize their results, recall the following:

µ(dt ,dx) =
∑

k 1{τk<∞}δ{τk ,X̃k}(t , x)dtdx counting measure

n(θt) : intensity of the Cox process Λt :=
∫ t

0

∫
Rm µ(dt ,dx)

ρθτk ,t(z) ∼ N(z; mθ
k (t), σθk (t)) : distribution of X̃t − X̃k



Summary of filtering results

Filtering

Put (for f (θ) given)

φθ(τk , t) = n(θt)e
−

R t
τk

n(θs)ds
: distribution of inter-jump times

ψk (f ; t , x) := E
{

f (θt)ρ
θ
τk ,t(x − X̃k )φθ(τk , t)|σ{θτk} ∨ Gk

}
πt(ϕ(θt , t , x)) := E{ϕ(θt , t , x) | Gt} (expectation w.r.to θt)

P̃(G) := P(G)⊗ B(Rm) with P(G)
the predictable σ − algebra on Ω× [0,∞) with respect to G



Summary of filtering results

Filtering

Lemma: The compensator of µ(dt ,dx) w.r.to P̃(G) is

ν(dt ,dx) =
∑

k

1(τk ,τk+1](t)
πτk (ψk (1, t , x))∫∞

t

∫
Rm πτk (ψk (1, s, y))dyds

dtdx

Theorem: Given f (θ), the filter process πt(f ) := E{f (θt) | Gt} satis-
fies (recall π0(·) = p0(·))

dπt(f ) = πt(Qf )dt

+
∫ ∑

k 1(τk ,τk+1](t)
[
πτk (ψk (f ;t ,x))

πτk (ψk (1;t ,x)) − πt−(f )
]
(µ− ν)(dt ,dx)



Summary of filtering results

Filtering

Since the observations take place only along τ1, τ2, · · · ,
useful information also arrives only along that sequence
and we have

Corollary: At the generic jump time τk+1, noticing that
dπt(f )|t=τk+1 = πτk+1(f )− πτk+1−(f ), we have then

πτk+1(f ) =
πτk (ψk (f ; t , x))

πτk (ψk (1; t , x))

∣∣∣∣
t=τk+1,x=X̃k+1



Summary of filtering results

Filtering

Being θt ∈ {e1, · · · ,eN}, we have f (θt) =
∑

i f (ei)1ei (θt). It
thus suffices to consider πi

t = π (1ei (θt)) and it results that

πi
τk+1

= M i
(
τk+1 − τk , X̃τk+1 − X̃τk , πτk

)
for suitable functions M i(·) and with πτk :=

(
π1
τk
, · · · , πN

τk

)
→ Putting πk = πτk , we obtain the Markov process{

τk , πτk , X̃τk

}∞
k=1

with respect to Gk that will turn
out to be the state process for the ”separated”
(completely observed) control problem.



Summary of filtering results

A contraction operator

Recall
SN :=

{
p ∈ RN |

∑N
i=1 pi = 1 >; 0 ≤ pi , i = 1, · · · ,N

}
with the Hilbert metric and let Σ := [0,∞)× SN

→ Also the filter values πt = (π1
t , · · · , πN

t ) ∈ SN

Let Cb(Σ) be the set of bounded continuous functions
g : Σ → R with norm ‖g‖ := maxx∈Σ | g(x) | .
Let Cb,lip(Σ) be the set of bounded and Lipschitz continuous
functions g : Σ → R with norm Nλ(g) := λ‖g‖+ [g]lip

→ Cb,lip(Σ) is a Banach space with norm
Nλ(g), ∀λ > 0.



Summary of filtering results

A contraction operator

Definition: Let J : Cb(Σ) → Cb(Σ) be the operator

Jg(τ, π) = E
{

g(τ1, π1)1{τ1<T}|τ0 = τ, π0 = π
}

Lemma 1: J is a contraction operator on Cb(Σ) with contraction
constant c := 1− e−n̄T < 1, where n̄ := max n(θ) = maxi n(ei).

Lemma 2: J is a contraction operator on Cb,lip(Σ) having contraction
constant c′ := (c+max(n̄, 2

log 3) 1
λ) with λ large enough so that c′ < 1.



Summary of filtering results

Outline

Description of the model and the objective
Remarks on the problem setup and on the approach also
in relation to classical approaches to portfolio optimization.
Filtering and an ensuing contraction operator.
Preliminary results:

i) Auxiliary results in view of determining the
optimal strategy;

ii) an auxiliary value function.
Main result.



Preliminary results to the main theorem

Preliminary to the optimal strategy

Recall
E{log VT |τ0 = t ,p0 = p}

= log Vt + E
{∫ T

t f (θs,hs)ds|τ0 = t ,p0 = p
}

Definition: Let

Ĉ(τ, π,h) = E

{∫ T∧τ1

τ
f (θs,hs)ds|τ0 = τ, π0 = π

}



Preliminary results to the main theorem

Preliminary to the optimal strategy

Lemma: We have

i) E
{∫ T

t f (θs,hs)ds|τ0 = t , π0 = π
}

= E
{∑

k
Ĉ(τk , πk ,hk )1{τk<T}|τ0 = t , π0 = π

}

ii) Ĉ is bounded and continuous on [0,T ]× SN × H̄m

iii) ∃ ĥ(τ, π) s.t. suph∈H̄m
Ĉ(τ, π,h) = Ĉ(τ, π, ĥ(τ, π)) := C(t , π)

iv) C(t , π) is Lipschitz for the metric
|t − t̄ |+ dH(π, π̄) +

∑m
i=1 |hi − h̄i |



Preliminary results to the main theorem

Preliminary to value function

The sum on the RHS in i) has to be considered to be infinite: al-
though the number of observation times τk up to T is a.s. finite, it
depends on ω.

→ The optimal strategy will turn out to be myopic and
given by a maximizer of the individual terms in the
sum on the RHS in i). Due to the infinite sum, this
however does not follow directly.



Preliminary results to the main theorem

Preliminary to value function

The reformulation of the control problem by means of the
functions Ĉ(τk , πk ,hk ) is rather crucial by considering that
we choose the strategy hk only at the instants τk , while the
portfolio proportion ht = γ(X̃t − X̃k ,hk ) depends on the
evolution of the security prices that, on each of the open
intervals (τk , τk+1), is unobserved.
Furthermore, our criterion depends also on the
unobservable state process θt .



Preliminary results to the main theorem

Preliminary to value function

For E{log VT |τ0 = t , π0 = π} what matters is
E
{∫ T

t f (θs,hs)ds|τ0 = t , π0 = π
}

.

Definition:

W (t , π, h.) := E
{∫ T

t f (θs,hs)ds|τ0 = t , π0 = π
}

= E

{ ∞∑
k=0

Ĉ(τk , πk ,hk )1{τk<T}|τ0 = t , π0 = π

}

W (t , π) := sup
h∈A

W (t , π,h)

W n(t , π) := sup
h∈An

W (t , π, h)



Preliminary results to the main theorem

Preliminary to value function

Working directly with the above value function leads to
various difficulties

→ Need an auxiliary value function

Recall that J is a contraction operator on Cb,lip(Σ) with norm Nλ(·).
→ limn→∞

∑n
k=0 Jk C(t , π) exists where, we recall,

C(t , π) = suph∈H̄m
Ĉ(τ, π,h)



Preliminary results to the main theorem

Preliminary to value function

Definition: Let

W̄ (t , π) :=
∞∑

k=0

JkC(t , π)

Lemma:
W̄ (t , π) = C(t , π) + JW̄ (t , π)



Preliminary results to the main theorem

”Value iteration” for the auxiliary value function

Recall that, for t ∈ [τk , τk+1) we have hi
t = γ i(X̃t − X̃k ,hk )

Definition: Let

W̄ 0(t , π,h) := E

{∫ T

t
f (θs, γ(X̃s − X̃t ,h))ds|τ0 = t , π0 = π

}

which is bounded and continuous and define, recursively,

W̄ 0(t , π) := maxh∈H̄m
W̄ 0(t , π, h)

W̄ n(t , π) := C(t , π) + JW̄ n−1(t , π)

=
n−1∑
k=0

JkC(t , π) + JnW̄ 0(t , π)



Preliminary results to the main theorem

”Value iteration” for the auxiliary value function

Lemma: We have
1 (Will lead to the DP principle)

W̄ n(t , π) = E
{∑n−1

k=0 C(τk , πk )1{τk<T}

+W̄ 0(τn, πn)1{τn<T} | τ0 = t , π0 = π
}

2 (Will lead to the approximation result)
Recalling the Lipschitz constant c′ in Cb,lip(Σ), given ε > 0, let
nε := (log(1− c′) + log ε− log Nλ(W̄ 1 − W̄ 0))/ log c′. Then

Nλ(W̄ − W̄ n) < ε ∀ n ≥ nε

Proposition: For all n ≥ 0 we have

W n(t , π) = W̄ n(t , π)



Main result

Main theorem

1 ”Approximation theorem”. Given ε > 0, let nε be as defined
previously. Then

Nλ(W − W̄ n) < ε ∀ n ≥ nε

i.e. the recursive algorithm for computing W̄ n is a ”value
iteration algorithm” for the actual optimal value function W.

2 ”Dynamic Programming Principle”. For any n > 0

W (t , π) = sup
h∈An

E

{
n∑

k=0

Ĉ(τk , πk ,hk )1{τk<T}

+W (τn+1, πn+1)1{τn+1<T}|τ0 = t , π0 = π
}



Main result

Main theorem (contd.)

3. Optimal value and optimal strategy

Given V0 = v0, τ0 = 0, π0 = π we have

sup
h∈A

E {log VT |τ0 = 0, π0 = π}

= log v0 + sup
h∈A

E

{∫ T

0
f (θt ,ht)dt |τ0 = 0, π0 = π]

}

= log v0 + C(0, π)
+
∑∞

k=1 E
{

C(τk , πk )1{τk<T}|τ0 = 0, π0 = π
}



Main result

Main theorem (contd.)

The optimal strategy is given by

i) for t = τk : ĥk = ĥ(τk , πτk ) such that

C(t , π) = sup
h∈H̄m

Ĉ(τ, π,h) = Ĉ(τ, π, ĥ(τ, π))

ii) for t ∈ [τk , τk+1) : ĥi
t = γ i(X̃t − X̃k , ĥk )



Thank you for your attention
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