European options sensitivity with respect to the correlation for multidimensional Heston models

Lokman Abbas-Turki (Work done with Prof. D. Lamberton)

TU Berlin
June 10, 2013

Plan

From B\&S to Heston

The monotony for the $B \& S$ model
Building the multi-asset Heston model
Generalization problems

For short maturities
Theoretical results
Simulation results

For small values of η_{i}, ρ_{i} and $\sqrt{1-\rho_{i}^{2}}$

Theoretical results
Simulation results
Studying prices

Final discussion

Plan

From B\&S to Heston

The monotony for the B\&S model
Building the multi-asset Heston model Generalization problems

Theoretical results Simulation results

For small values of η_{i},

 ρ_{i} and $\sqrt{1-\rho_{i}^{2}}$Theoretical results
Simulation results
Studying prices

Final discussion

Lokman (TU Berlin)

2D B\&S model

Only ρ is unknown

$$
\begin{gathered}
d S_{t}^{1}=S_{t}^{1} \sigma_{1} d W_{t}^{1} \quad S_{0}^{1}=x_{0}^{1}, \\
d S_{t}^{2}=S_{t}^{2} \sigma_{2}\left(\rho d W_{t}^{1}+\sqrt{1-\rho^{2}} d W_{t}^{2}\right), \quad S_{0}^{2}=x_{0}^{2} .
\end{gathered}
$$

Using Ito calculus and B\&S PDE :

$$
\begin{align*}
F(t, s)= & E\left(F\left(T, \bar{S}_{T}\right)\right)-F\left(0, S_{0}\right)=\Delta \rho E\left\{\int_{0}^{T} \sigma_{1} \sigma_{2} \frac{\partial^{2} F}{\partial x_{1} \partial x_{2}}\left(t, \bar{S}_{t}\right) \bar{S}_{t}^{1} \bar{S}_{t}^{2} d t\right\}, \\
& \text { with } \Delta \rho=\bar{\rho}-\rho .
\end{align*}
$$

The payoff $f(s)=$ $\left(a_{1} s_{1}+a_{2} s_{2} \pm K\right)_{+}$

$$
\begin{aligned}
\frac{\partial^{2} F}{\partial x_{1} \partial x_{2}}(t, x) & =a_{1} a_{2} E_{t, x}\left(\frac{S_{T}^{1}}{x_{1}} \frac{S_{T}^{2}}{x_{2}} \varepsilon\left(a_{1} S_{T}^{1}+a_{2} S_{T}^{2} \pm K\right)\right) \\
& =-\frac{a_{2}}{x_{1}} \int_{\mathbb{R}_{+}^{2}} 1_{a_{1} x_{1} v_{1}+a_{2} x_{2} v_{2} \geq \pm K} \partial_{v_{1}}\left[v_{1} v_{2} g\left(v_{1}, v_{2}\right)\right] d v_{1} d v_{2} \\
& =-\frac{a_{1}}{x_{2}} \int_{\mathbb{R}_{+}^{2}} 1_{a_{1} x_{1} v_{1}+a_{2} x_{2} v_{2} \geq \pm K} \partial_{v_{2}}\left[v_{1} v_{2} g\left(v_{1}, v_{2}\right)\right] d v_{1} d v_{2} .
\end{aligned}
$$

Uniqueness of ρ : implied correlation.

Only ρ is unknown

$$
\begin{gather*}
S_{T}^{1}=x_{1} \exp \left(\int_{0}^{T} \sqrt{\nu_{s}^{1}} d W_{s}^{1}-\frac{1}{2} \int_{0}^{T} \nu_{s}^{1} d s\right) \tag{2}\\
S_{T}^{2}=x_{2} \exp \left(\int_{0}^{T} \sqrt{\nu_{s}^{2}}\left(\rho d W_{s}^{1}+\sqrt{1-\rho^{2}} d W_{s}^{2}\right)-\frac{1}{2} \int_{0}^{T} \nu_{s}^{2} d s\right) . \tag{3}\\
\nu_{T}^{1}=y_{1}+\kappa_{1} \int_{0}^{T}\left(\theta_{1}-\nu_{s}^{1}\right) d s+\eta_{1} \int_{0}^{T} \sqrt{\nu_{s}^{1}} d B_{s}^{1} \\
B_{s}^{1}=\rho_{1} W_{s}^{1}+\sqrt{1-\rho_{1}^{2}} \widetilde{W}_{s}^{1} \tag{4}\\
\nu_{T}^{2}=y_{2}+\kappa_{2} \int_{0}^{T}\left(\theta_{2}-\nu_{s}^{2}\right) d s+\eta_{2} \int_{0}^{T} \sqrt{\nu_{s}^{2}} d B_{s}^{2} \\
B_{s}^{2}=\rho_{2}\left(\rho W_{s}^{1}+\sqrt{1-\rho^{2}} W_{s}^{2}\right)+\sqrt{1-\rho_{2}^{2}} \widetilde{W}_{s}^{2} . \tag{5}
\end{gather*}
$$

(A1) $4 \kappa_{i} \theta_{i}>\eta_{i}^{2}$,
and
(A2) $\quad|\rho|<1, \quad\left|\rho_{1}\right|<1, \quad\left|\rho_{2}\right|<1$.

Proposition If the assumptions (A1) \& (A2) are fulfilled and f is convex then

$$
\begin{equation*}
\frac{E\left(f\left(\bar{S}_{T}\right)\right)-E\left(f\left(S_{T}\right)\right)}{\Delta \rho}=E\left\{\int_{0}^{\frac{T}{1}} \bar{S}_{t}^{2} \sqrt{\bar{\nu}_{t}^{1} \bar{\nu}_{t}^{2}} E_{t, \bar{S}_{\mathbf{t}}, \bar{\nu}_{t}}\left[\partial_{s_{1}, s_{\mathbf{2}}}^{2} f\left(S_{T}\right) \frac{S_{T}^{1}}{S_{t}^{1}} \frac{S_{T}^{2}}{S_{t}^{2}} \alpha_{t, T^{1}}^{1} \alpha_{t, T}^{2}\right] d t\right\} \tag{6}
\end{equation*}
$$

with $\Delta \rho=\bar{\rho}-\rho$
and $\left\{\begin{array}{c}\alpha_{t, T}^{1}=1+\eta_{1} \rho_{1}\left(\int_{t}^{T} \frac{\dot{\nu}_{s}^{1}}{2 \sqrt{\nu_{s}^{1}}} d W_{s}^{1}-\frac{1}{2} \int_{t}^{T} \dot{\nu}_{s}^{1} d s\right), \\ \alpha_{t, T}^{2}=1+\eta_{2} \rho_{2}\left(\int_{t}^{T} \frac{\dot{\nu}_{s}^{2}}{2 \sqrt{\nu_{s}^{2}}}\left(\rho d W_{s}^{1}+\sqrt{1-\rho^{2}} d W_{s}^{2}\right)-\frac{1}{2} \int_{t}^{T} \dot{\nu}_{s}^{2} d s\right)\end{array}\right.$
where $\left\{\dot{\nu}_{s}^{i}\right\}_{t \leq s \leq T}^{i=1,2}$ are the flow derivatives.

Plan

```
From B\&S to Heston
```


The monotony for the B\&S model
 Building the multi-asset Heston model Generalization problems

For short maturities
Theoretical results
Simulation results

For small values of η_{i},
ρ_{i} and $\sqrt{1-\rho_{i}^{2}}$
Theoretical results
Simulation results
Studying prices

Final discussion

The flow regularity :
$y \mapsto \nu_{s}(y)=y+\kappa \int_{t}^{s}\left(\theta-\nu_{u}(y)\right) d u+\eta \int_{t}^{s} \sqrt{\nu_{u}(y)} d B_{u}$

Some preliminary Let $\tau(y)=\inf \left\{s>0: \nu_{s}(y)=0\right\}$, for $s<\tau(y)$ computations

$$
\begin{equation*}
\dot{\nu}_{s}=\frac{\sqrt{\nu_{s}}}{\sqrt{y}} \exp \left(-\frac{\kappa s}{2}-\frac{1}{2}\left(\kappa \theta-\frac{\eta^{2}}{4}\right) \int_{0}^{s} \frac{d r}{\nu_{r}}\right) . \tag{7}
\end{equation*}
$$

Proposition (based When (A1): $4 \kappa \theta>\eta^{2}$ is fulfilled, there exists a modification $\widetilde{\nu}$ of ν such on Vostrikova 09) that $(0, \infty) \ni y \mapsto \tilde{\nu}_{s}$ is \mathcal{C}^{1} in probability sense. Moreover, $\partial_{y} \widetilde{\nu}$ coincides with $\dot{\nu}:=\partial_{y} \nu$ on $[0, \tau(y)[$ and the former derivative vanishes on $[\tau(y), \infty[$.
ν^{2} regularity according to ρ, where :

$$
\begin{aligned}
& \nu_{T}^{2}=y_{2}+\kappa_{2} \int_{0}^{T}\left(\theta_{2}-\nu_{s}^{2}\right) d s+\eta_{2} \int_{0}^{T} \sqrt{\nu_{s}^{2}} d B_{s}^{2}, \\
& B_{s}^{2}=\rho_{2}\left(\rho W_{s}^{1}+\sqrt{1-\rho^{2}} W_{s}^{2}\right)+\sqrt{1-\rho_{2}^{2}} \widetilde{W}_{s}^{2} .
\end{aligned}
$$

Theorem $\quad \nu^{2}$ is continuous with respect to $\rho \in(-1,1)$ and if (A0): $2 \kappa_{2} \theta_{2} \geq \eta_{2}^{2}$ is fulfilled, ν^{2} is differentiable and its derivative satisfies the SDE

$$
\begin{align*}
\partial_{\rho} \nu_{s}^{2} & =-\kappa_{2} \int_{0}^{s} \partial_{\rho} \nu_{u}^{2} d u+\eta_{2} \int_{0}^{s} \frac{\partial_{\rho} \nu_{u}^{2}}{2 \sqrt{\nu_{u}^{2}}} d B_{u}^{2} \\
& +\eta_{2} \rho_{2} \int_{0}^{s} \sqrt{\nu_{u}^{2}}\left(d W_{u}^{1}-\frac{\rho}{\sqrt{1-\rho^{2}}} d W_{u}^{2}\right) \quad \partial_{\rho} \nu_{0}^{2}=0 \tag{8}
\end{align*}
$$

The SDE (8) can be solved by a variation of constants method, to obtain

$$
\begin{equation*}
\partial_{\rho} \nu_{s}^{2}=\dot{\nu}_{s}^{2}\left(\eta_{2} \rho_{2} \int_{0}^{s} \frac{\sqrt{\nu_{u}^{2}}}{\dot{\nu}_{u}^{2}}\left(d W_{u}^{1}-\frac{\rho}{\sqrt{1-\rho^{2}}} d W_{u}^{2}\right)\right) . \tag{9}
\end{equation*}
$$

The payoff $f(s)=\left(a_{1} s_{1}-a_{2} s_{2}\right)_{+},\left(a_{1}, a_{2}\right) \in\left(\mathbb{R}_{+}^{*}\right)^{2}$

Assumption (A3)

$$
\exists C \in \mathbb{R}^{*} \text { such that } \ln \left(\frac{a_{2} x_{2}}{a_{1} x_{1}}\right)=C \sqrt{T}+o(\sqrt{T})
$$

with $x_{1}=S_{0}^{1}$ and $x_{2}=S_{0}^{2}$.
Theorem Under the assumptions (A0), (A2) and (A3). For short maturities, the price derivative with respect to ρ can be asymptotically approximated by

$$
\frac{\partial}{\partial \rho} E\left(\left(a_{1} S_{T}^{1}-a_{2} S_{T}^{2}\right)_{+}\right)=-a_{2} x_{2} \sqrt{\frac{T \nu_{0}^{1} \nu_{0}^{2}}{2 \pi \lambda}} \exp \left(-\frac{1}{2}\left[\frac{C}{\sqrt{\lambda}}\right]^{2}\right)+o(\sqrt{T})
$$

with $\lambda=\nu_{0}^{1}+\nu_{0}^{2}-2 \rho \sqrt{\nu_{0}^{1} \nu_{0}^{2}}$ and the constant C comes from (A3).

Under the assumptions (A1), (A2) and (A3)

$\left(a_{1} s_{1}-a_{2} s_{2}\right)_{+}, \quad$ The derivative of the price according to ρ, for short maturities, is given by $\left(a_{1}, a_{2}\right) \in\left(\mathbb{R}_{+}^{*}\right)^{2}$

$$
\begin{equation*}
-a_{2} x_{2} \sqrt{\frac{T \nu_{0}^{1} \nu_{0}^{2}}{2 \pi \lambda}} \exp \left(-\frac{1}{2}\left[\frac{\ln \left(\frac{a_{2} x_{2}}{a_{1} x_{1}}\right)}{\sqrt{T \lambda}}+\frac{\sqrt{T \lambda}}{2}\right]^{2}\right), \quad \lambda=\nu_{0}^{1}+\nu_{0}^{2}-2 \rho \sqrt{\nu_{0}^{1} \nu_{0}^{2}} . \tag{10}
\end{equation*}
$$

$K \neq 0$, Denoting $\widetilde{x}_{1}=x_{1}+\frac{K}{a_{1}}$ and $\widetilde{x}_{2}=x_{2}-\frac{K}{a_{2}}$, we approximate the derivative $\left(a_{1} s_{1}-a_{2} s_{2}+K\right)_{+}, \quad$ according to ρ by

$$
\begin{align*}
\left(a_{1}, a_{2}\right) \in\left(\mathbb{R}_{+}^{*}\right)^{2} & \frac{-a_{2} \widetilde{x}_{2}}{2} \sqrt{\frac{T \nu_{0}^{1} \nu_{0}^{2}}{2 \pi \lambda}} \exp \left(-\frac{1}{2}\left[\frac{\ln \left(a_{2} \widetilde{x}_{2} / a_{1} x_{1}\right)}{\sqrt{T \lambda}}+\frac{\sqrt{T \lambda}}{2}\right]^{2}\right) \\
+ & \frac{-a_{2} x_{2}}{2} \sqrt{\frac{T \nu_{0}^{1} \nu_{0}^{2}}{2 \pi \lambda}} \exp \left(-\frac{1}{2}\left[\frac{\ln \left(a_{2} x_{2} / a_{1} \widetilde{x}_{1}\right)}{\sqrt{T \lambda}}+\frac{\sqrt{T \lambda}}{2}\right]^{2}\right) .
\end{align*}
$$

Varying η, κ and $\theta, T=0.2$

(a) $\kappa_{1}=\kappa_{2}=2.25, \theta_{1}=\theta_{2}=0.1, \nu_{0}^{1}=\nu_{0}^{2}=0.5, a_{1} x_{1}=a_{2} x_{2}=100$ and $K=0$,
(b) $\eta_{1}=\eta_{2}=0.4, \nu_{0}^{1}=\nu_{0}^{2}=0.5, a_{1} x_{1}=a_{2} x_{2}=100$ and $K=0$.

Maturity $T=0.1, f(s)=\left(a_{1} s_{1}+a_{2} s_{2} \pm K\right)_{+}$

(a)

(b)
(a) $\kappa_{1}=\kappa_{2}=3.0, \theta_{1}=\theta_{2}=0.1, \eta_{1}=\eta_{2}=0.1, \nu_{0}^{1}=\nu_{0}^{2}=0.5, x_{1}=x_{2}=100$ and $K=0$,
(b) $\kappa_{1}=\kappa_{2}=3.0, \theta_{1}=\theta_{2}=0.1, \eta_{1}=\eta_{2}=0.1, \nu_{0}^{1}=\nu_{0}^{2}=0.5$ and $a_{1} x_{1}=a_{2} x_{2}=100$.

when

- $T \leq 0.1$ and the payoff is less than 20% ITM or OTM, the approximation (11) can be accepted when $\theta_{i} / \nu_{0}^{i}>1 / 4$ and $\kappa_{i}<3$.
- $T \leq 0.2$ and the payoff is less than 20% ITM or OTM, the approxima (11) can be accepted when $\theta_{i} / \nu_{0}^{i}>1 / 4$ and $\kappa_{i}<1.5$.

Plan

From B\&S to Heston

The monotony for the B\&S model
 Building the multi-asset Heston model Generalization problems

For short maturities
Theoretical results
Simulation results

For small values of η_{i},
ρ_{i} and $\sqrt{1-\rho_{i}^{2}}$
Theoretical results
Simulation results
Studying prices

Final discussion

Theorem Under the assumptions (A1) and (A2) and $f(s)=\left(a_{1} s_{1}+a_{2} s_{2} \pm K\right)_{+}$ with $a_{1}, a_{2} \in\left(\mathbb{R}^{*}\right)^{2}$ then $E\left(f\left(S_{T}\right)\right)$ is differentiable according to ρ with

$$
\begin{equation*}
\partial_{\rho} E\left(f\left(S_{T}\right)\right)=E\left\{\int_{0}^{T} S_{t}^{1} S_{t}^{2} \sqrt{\nu_{t}^{1} \nu_{t}^{2}} E_{t, S_{t}, \nu_{t}}\left[\partial_{s_{1}, s_{\mathbf{2}}}^{2} f\left(S_{T}\right) \dot{S}_{T}^{1} \dot{S}_{T}^{2} \alpha_{t, T}^{1} \alpha_{t, T}^{2}\right] d t\right\} \tag{12}
\end{equation*}
$$

and

$$
\begin{gathered}
\alpha_{t, T}^{1}=1+\eta_{1} \rho_{1}\left(\int_{t}^{T} \frac{\dot{\nu}_{s}^{1}}{2 \sqrt{\nu_{s}^{1}}} d W_{s}^{1}-\frac{1}{2} \int_{t}^{T} \dot{\nu}_{s}^{1} d s\right) \\
\alpha_{t, T}^{2}=1+\eta_{2} \rho_{2}\left(\int_{t}^{T} \frac{\dot{\nu}_{s}^{2}}{2 \sqrt{\nu_{s}^{2}}}\left(\rho d W_{s}^{1}+\sqrt{1-\rho^{2}} d W_{s}^{2}\right)-\frac{1}{2} \int_{t}^{T} \dot{\nu}_{s}^{2} d s\right),
\end{gathered}
$$

Thus, if :
c1) $\left\{\eta_{i} \rho_{i}\right\}_{i=1,2}=0$ or
c2) $\eta_{1} \rho_{1}=0, \eta_{2} \sqrt{1-\rho_{2}^{2}}=0$ and $2 \kappa_{2}-\eta_{2} \rho_{2}>0$ or
c3) $\eta_{2} \rho_{2}=0, \eta_{1} \sqrt{1-\rho_{1}^{2}}=0$ and $2 \kappa_{1}-\eta_{1} \rho_{1}>0$,
then the price is monotonous with respect to $\rho:$ Increases if $a_{1} a_{2}>0$, decreases if $a_{1} a_{2}<0$.

The considered payoff

$$
f(s)=\left(a_{1} s_{1}+a_{2} s_{2} \pm K\right)_{+}
$$

Relative Increment
\%

$$
\begin{equation*}
100 * \frac{F\left(\rho_{i}\right)-F\left(\rho_{i+1}\right)}{F\left(\rho_{i}\right)}, \tag{13}
\end{equation*}
$$

$F\left(\rho_{i}\right)$ is the price obtained by Monte Carlo.

Lokman (TU Berlin)

Maturity $T=5, \eta$ very small

(a) $\eta_{1}=\eta_{2}=0.1, \kappa_{1}=\kappa_{2}=3.0, \theta_{1}=\theta_{2}=0.2, \nu_{0}^{1}=\nu_{0}^{2}=0.4, x_{1}=x_{2}=100$ and $K=0$,
(b) $\eta_{1}=\eta_{2}=0.1, \kappa_{1}=\kappa_{2}=3.0, \theta_{1}=\theta_{2}=0.2, \nu_{0}^{1}=\nu_{0}^{2}=0.4$ and $a_{1} x_{1}=a_{2} x_{2}=100$

Maturity $T=5, \eta$ large

(a) $\eta_{1}=\eta_{2}=1.5, \kappa_{1}=\kappa_{2}=3.0, \theta_{1}=\theta_{2}=0.2, \nu_{0}^{1}=\nu_{0}^{2}=0.4, x_{1}=x_{2}=100$ and $K=0$,
(b) $\eta_{1}=\eta_{2}=1.5, \kappa_{1}=\kappa_{2}=3.0, \theta_{1}=\theta_{2}=0.2, \nu_{0}^{1}=\nu_{0}^{2}=0.4$ and $a_{1} x_{1}=a_{2} x_{2}=100$.

Maturity $T=1, \eta$ large

(a) $\eta_{1}=\eta_{2}=1.5, \kappa_{1}=\kappa_{2}=3.0, \theta_{1}=\theta_{2}=0.2, \nu_{0}^{1}=\nu_{0}^{2}=0.4, x_{1}=x_{2}=100$ and $K=0$,
(b) $\eta_{1}=\eta_{2}=1.5, \kappa_{1}=\kappa_{2}=3.0, \theta_{1}=\theta_{2}=0.2, \nu_{0}^{1}=\nu_{0}^{2}=0.4$ and $a_{1} x_{1}=a_{2} x_{2}=100$.

Maturity $T=10, \eta$ large

(a) $\eta_{1}=\eta_{2}=1.5, \kappa_{1}=\kappa_{2}=3.0, \theta_{1}=\theta_{2}=0.2, \nu_{0}^{1}=\nu_{0}^{2}=0.4, x_{1}=x_{2}=100$ and $K=0$,
(b) $\eta_{1}=\eta_{2}=1.5, \kappa_{1}=\kappa_{2}=3.0, \theta_{1}=\theta_{2}=0.2, \nu_{0}^{1}=\nu_{0}^{2}=0.4$ and $a_{1} x_{1}=a_{2} x_{2}=100$.

Plan

From B\&S to Heston

The monotony for the B\&S model
 Building the multi-asset Heston model
 Generalization problems

For short maturities

```
Theoretical results
Simulation results
```

For small values of η_{i},
$\rho ;$ and $\sqrt{1-\rho_{i}^{2}}$
Theoretical results
Simulation results
Studying prices

Final discussion

Results to explore

- Asymptotic behavior for large T
- Generalization to other SDEs

Using GPUs

- Studying the asymptotic error within seconds
- Simulating 2^{22} trajectories with $\delta t=0.01$ and $T=10$ within minutes

Calibration Dichotomy by Monte Carlo algorithm is implemented in Premia 15

Thank you

Questions?

