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Introduction

» Seel & Strack! introduced a gambling contest
» Each player
» Privately observes a drifting Brownian motion (starts above
zero, absorbed at zero)
» Chooses when to stop it
» The player with the highest stopped value wins
» Objective: to maximise the probability of winning

!Christian Seel & Philipp Strack 2012. Gambling in contests. Forthcoming
in Journal of Economic Theory.



» Stylised model for competition between fund managers
» Best performing manager gets a prize
» Simple contest

» Rich and subtle solutions



The Model

» n players with labels i € | = {1,2,...,n}
» Player i privately observes a BM X' = (X});cr+

» X' is absorbed at zero.

» X§=x0>0is a contant.

» Processes X' are independent.



Stategies

» Fi=o({Xi:s<t})and F' = (Fi)eo
» Strategies of player i: F'-stopping times 7’
» Require 7/ < Hj = inf{t > 0: X/ = 0}.

» Notice: player i can observe neither X’ nor 77 for any j # i.



v

Player i wins 1 if X/; > Xi,- Vj # .

v

Ties are broken evenly.

v

Payoff:
1

k
Where k = ’{I S / . X,7I_, = maXJEIX"TI'-’}’

1

i _ i
{X:_’- =maX;c| XTj } ’

Insight: payoff only deponds upon 7' via XT",-.

v



> Two stages:
» Find an optimal target distribution F’
> Verify that 377 such that X/, ~ F/
» First stage: to find Nash equilibria
» Second stage: the Skorokhod embedding problem

» Any distribution on R™ with mean xp can be embedded with a
finite stopping time 7.



Nash Equilibrium

Nash equilibrium

(F')ics is a Nash equilibrium if, for each i € /, if the other agents
use stopping rules 7/ such that Xij ~ FJ, then the optimal target
distribution for agent i is F/, and she may use any stopping rule 7’
such that X!; ~ F'.



Symmetry & Atom-free

A Nash equilibrium is
» Symmetric if F' does not depend on i

» Atom-free if each F' is atom-free

Theorem 1 [Seel & Strack 2012]

Any Nash equilibrium has the property that it is symmetric and
atom-free.



Solution to Original Contest

Theorem 2 [Seel & Strack 2012]

There exists a symmetric, atom-free Nash equilibrium for the
problem for which X'; has law F(x), where for x > 0

Fx) = min{ i/ % 1.

» Randomised strategies = the stopped level is stochastic.

Observations:

» Set of stopped levels is bounded above by nxg.



» Different proof based on a Lagrangian approach
» Our aim:
» to consider more general processes

» to add regret



Contests with Regret

» An extension: adding a penalty
» Agent is penalised if her strategy is suboptimal.

» Payoff:

K1,,; i i
{XI; <maxj X! <M}

l{Xii:maxj-el X;’_J} -
where K > 0 is a constant and
M7"_,- = max{Xi;O <t< Ti}.

» Nash equilibrium: Symmetric and atom-free



Given that Xij ~ F Yj # i, agent i aims to choose a feasible
measure v(x, m) for (XT",-, I\/l;',-) to maximise

£ [F(qu:i)nil] — KE [F(Mﬂ’._,-)"*l - F(X‘Il:i)nfl]
(1+K)E [F(X’ ) ] KE [F(I\/Ii,-)"*l]

/ / (1 + K)F(x)" = KF(m)"~] v(dx, dm).



Constraints on optimal v

Constraints on optimal v:

> v is a probability measure on [0,00) x [0, 00) that has no mass
on {(x,m):m< xor m< xp}.

» EX ] =x0 = [y Jo xv(dx, dm) = x.
> (Xear)e>o is @ u.i. martingale & Doob’s (sub)martingale
inequality = E[X; —z; M; > z] =0, Vz > xp.

= [0 [or (x — z)v(dx,dm) =0, Vz > xo.



Optimisation Problem

» Let £(xo) be the set of measures v on [0, 00) X [0, 00) that
has no mass on {(x,m): m < x or m < xp}.

» Given F(x), the agent solves

max { /0 h /0 T+ K)FG)™ = KF(m)™] w(dk, dm)}

subject to [,° [¥ xv(dx,dm) = xo, [, [y~ v(dx,dm) =

and [ = [ (x — z)v(dx,dm) =0 Vz > xp.



Lagrangain Approach

> Lagrangian:
‘CF(V; >‘a'7a77) = /0 /0 L(x,m)u(dx,dm) + Axg + 7,
where
Lx,m) = (14 K)o () = Km) = x = = [ n(z)(x—2)dz

and (x) = F(x)" L.
» Expect: L(x,m) =0 < v(dx,dm) > 0.



When v(dx, dm) > 0

» Recall: payoff is (1 + K)F(X;)""! — KF(M,)"!
» To maximise the payoff,
» for any feasible X, find the joint law of (X, M) for which

M. is as small as possible in distribution < Perkins® and
Hobson and Pedersen®

» maximise over feasible laws of X..

2E. Perkins 1986. The Cereteli-Davis solution to the H'-embedding problem
and an optimal embedding in Brownian motion.

3D. G. Hobson and J. L. Pedersen 2002. The Minimum Maximum of a
Continuous Martingale with Given Initial and Terminal Laws



Smallest M,

Smallest M,
Given X;, the joint law of (X, M;) for which M, is minimised is
such that mass is placed only on the set

A={(x,x);x>x}U{(x,P(x));x < xo}

where @ : (0, xp) — (xp,00) is a decreasing function (and if X; is
atom-free, a strictly decreasing function).



Distribution of M.

» The conditional distribution of M, given X is

o X‘r 7ifXT2XOa
Tl oX:) L i0< X, < x.

» Expected payoff:

E[(1+ K)F(X;)" ' — KF(M;)" ]

JE[F(X)"Y], if Xr > xo,
O\ E[Q+K)F(X)" = KF((X-)" Y], i 0 < X, < xo.



Smallest M,

Smallest M,
Given X;, the joint law of (X, M;) for which M, is minimised is
such that mass is placed only on the set

A={(x,x);x>x0} U{(x,®(x));x < x0}

where @ : (0, xp) — (xp,00) is a decreasing function (and if X; is
atom-free, a strictly decreasing function).

Let ¢ be inverse to O.
» Expect: v(dx,dm) > 0 < either x = m or x = ¢(m).



» Recall that L(x, m) =0 < v(dx,dm) > 0. Thus
L(mm)=0;  L(¢(m),m)=0. 2)

» Since L(x,m) <0 forany 0 < x <m, ¢(m) < mand
L(¢(m), m) = 0, we expect

oL

o (@(m),m) = 0. G



Candidate Solution

Candidate solution comes from

p(m) —Am —y — [T n(z)(x — z)dz = 0,
(1 + K)ip(d(m)) — Kp(m) — Ap(m) — v — [ n(2)(x — z)dz = 0,
(14 K)g'(¢(m)) — A = [ n(z)dz = 0.

(4)



Simplification

> (4) can be rewritten as

¢/ (m)y!(m) = (L + K)8'(m),
Kyp'(m) = (y — ¢(m))y"(m), ()

ALY (m) = (@(m)7 T — 1) 0(m)"=E — 6(m).

» Boundary conditions: ¢(xo) = xo, ¥(r) = 1, ¢/(r—) = £,
¥(r=) = *EE and 0(x0) = ¥(x).
» Remarks:
» r=sup{x>0:F(x)<1}; ¢:[xo,r] — [0, x0]-

» O(x) = F(gﬁ(x))nfl for xo < x <r; (x) = F(X)"*l for
X0 <x<r.




Lemma 1
Let J(u) solve the ordinary differential equation

yoy o JW)+1—(1—w)V/ D
) = A= v = s

subject to J(0) =0 and u > 0. Let

u* = sup {u s J(u) < (11— u)l/("*l)} .

i) Define
K

(K+1)[z—=J(1 —2z)" 1]
on [z*,1], where z* =1 — u*. Then z* > 0, H is positive on (z*,1)
and L exp (fjv H(v)dv) dw < (K +1).

H(z) =



ii) Define
. XO(K —+ 1)
(K+1)— le* exp (fml/ H(v)dv) dw

V() = g [(K+1)—/Zl exp (/Wl H(v)dv) dw]

on [z*,1]. Let ¢ = W~ be the inverse function of W. Then
xo < r <ooand:[xp,r]+— [0,1] is a strictly increasing and
strictly convex function that satisfies ¢(r) = 1, ¢/(r—) = £
¢//(r7) _ K(K+1)_

r2

and

and




iii) Define

Ky'(m)

W(m)

Then ¢ : [xo0, r] — [0, x0] is a strictly decreasing function with
¢(X0) = Xp.

iv) Define

o{m) = m—

0m) = vlo0) + o [ 600 (e

Then 6 : [xo, r] — [0,1] is a strictly decreasing function with

0(x0) = ¥(x0)-



Theorem 3

Let r, 1, ¢, 6 be as defined in Lemma 1. Then there exists a
symmetric, atom-free Nash equilibrium for the problem for which
XT",- has distribution F where F(x) =0 for x <0, F(x) =1 for
x > r and otherwise

{9(¢—1(x))ni1 if 0 < x < xo,

P(x)n1 ifxo<x<r.



SEIE

Graph of G*(x) with Xy = landn=3
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Stopping too soon

i\ — . P X
M= I\/I[T,.,H(,;] = SUP i< X

Theorem 4
There exists a symmetric, atom-free Nash equilibrium for the
problem for which X'; has law F(x), where for x > 0

with N=n+ K(n—1).



Failure to stop at the best time

M= M;-I(’J = supOStSH(,; th'

Theorem 5
There exists a symmetric, atom-free Nash equilibrium for the

problem for which XT",- has law F(x), where for x > 0

Fx) =min{ 3/ 21



Thank Youl



