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Tranasaction costs and frictionless markets

Maximization expected utility under transaction costs

bid S and ask S prices
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S ≤ S̃ ≤ S

Problem: existence of shadow price
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Shadow price in different models

On a finite probability spaces with functional

E
∞∑

n=0

gn(cn)

shadow price always exists. [Kallsen J., Muhle-Karbe J., (2011)]

However, in infinite probability spaces it can fail to exist. [Czichowsky Ch.,
Muhle-Karbe J., Schachermayer W. (2012)]
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Introduction

Assume on a filtrated probability space (Ω,F , (Fn)N
n=0,P) we are given:

strictly positive adapted processes S = (Sn)N
n=0 and S = (Sn)N

n=0 such that
Sn > Sn and

suppE[(SN−k , . . . ,SN)|FN−k ] = {SN−k} × [0,∞)k ,

suppE[(SN−k , . . . ,SN)|FN−k ] = {SN−k} × [0,∞)k
(1)
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Introduction

MarketM with safe bank account (r = 0) and a risky stock account. We can
buy or sell stocks paying Sn or getting Sn respectively.

Our position (x , y), where x is the amount on the bank account and y is the
number of assets in our portfolio.
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Introduction

Our aim is to maximize the value:

JN
(x,y,s,s)(u) := E(

N∑
n=0

γng(cn)), (2)

where g is a strictly increasing and concave utility function, e.g. g(c) = ln c or
g(c) = cα with α ∈ (0, 1).

Tomasz Rogala Construction of discrete time shadow price



Introduction

Our aim is to maximize the value:

JN
(x,y,s,s)(u) := E(

N∑
n=0

γng(cn)), (2)

where g is a strictly increasing and concave utility function, e.g. g(c) = ln c or
g(c) = cα with α ∈ (0, 1).

Tomasz Rogala Construction of discrete time shadow price



Introduction

Our aim is to maximize the value:

JN
(x,y,s,s)(u) := E(

N∑
n=0

γng(cn)), (2)

where g is a strictly increasing and concave utility function, e.g. g(c) = ln c or
g(c) = cα with α ∈ (0, 1).

Tomasz Rogala Construction of discrete time shadow price



Properties of the set of constraints

Conditionally full support condition (1) =⇒ after possible transaction we
should have nonnegative position.

For (x , y) ∈ R2
+ and s, s ∈ R+ such that s ≥ s ≥ 0 let

A(x , y , s, s) := {(c, l,m) ∈ [0, x + sy ]× R2
+ :

∀s∈[0,∞) x − c + sm − sl + s(y −m + l) ≥ 0}.

Proposition

Let (x , y) ∈ R2
+ and s, s ∈ R+ such that s ≥ s ≥ 0. Then we have

(i) A(ρx , ρy , s, s) = ρA(x , y , s, s), for ρ ≥ 0,

(ii) the set A(x , y , s, s) is convex,

(iii) for s > s > 0 the set A(x , y , s, s) is compact.
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Set of constraints and Hausdorff metric

Theorem

Let (xn, yn, sn, sn)∞n=1 be a sequence from R4
+ such that for all n ∈ N we have

sn > sn > 0, which converges to (x , y , s, s) ∈ R4
+ such that s > s > 0. Then

h(A(x , y , s, s),A(xn, yn, sn, sn))
n→∞−−−→ 0,

where h : H(R3
+)×H(R3

+)→ R+ is a Hausdorff metric, i.e.

h(A,B) := max{d(A,B), d(B,A)}

for all A,B ∈ H(R3
+).
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Bellman equations

wN(x , y , s, s) := g(x + sy)

and inductively

wN−k (x , y , s, s) := sup
(c,l,m)∈A(x,y,s,s)

E[

g(c) + γwN−k+1(x − c + sm − sl, y −m + l,SN−k+1,SN−k+1)|FN−k ]

for k = 1, 2, . . . ,N.

Tomasz Rogala Construction of discrete time shadow price



Bellman equations

wN(x , y , s, s) := g(x + sy)

and inductively

wN−k (x , y , s, s) := sup
(c,l,m)∈A(x,y,s,s)

E[

g(c) + γwN−k+1(x − c + sm − sl, y −m + l,SN−k+1,SN−k+1)|FN−k ]

for k = 1, 2, . . . ,N.

Tomasz Rogala Construction of discrete time shadow price



Bellman equations and original problem

Proposition

E[w0(x , y , s, s)] = sup JN
(x,y,s,s)(u).

with S0 = s and S0 = s.
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Strict concavity and its consequences

Theorem

The random mapping

(x , y) 7−→ E[wN−k+1(x , y ,SN−k+1,SN−k+1)|FN−k ]

is strictly concave for k = 1, 2, . . . ,N.

Furthermore, for each (x , y) ∈ R2
+ and

s, s ∈ R+ such that s > s > 0 there exists only one FN−k -measurable random
variable (ĉ, l̂, m̂) which takes values in the set A(x , y , s, s) and such that

wN−k (x , y , s, s) =

E[g(ĉ) + γwN−k+1(x − ĉ + sm̂ − sl̂, y − m̂ + l̂,SN−k+1,SN−k+1)|FN−k ].

Moreover, the random mapping

(x , y , s, s) 7→ (ĉ(x , y , s, s), l̂(x , y , s, s), m̂(x , y , s, s))

is continuous on the set {(x , y , s, s) ∈ R4
+ : s > s > 0}.
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(x , y , s, s) 7→ (ĉ(x , y , s, s), l̂(x , y , s, s), m̂(x , y , s, s))

is continuous on the set {(x , y , s, s) ∈ R4
+ : s > s > 0}.

Tomasz Rogala Construction of discrete time shadow price



Strict concavity and its consequences

Theorem

The random mapping

(x , y) 7−→ E[wN−k+1(x , y ,SN−k+1,SN−k+1)|FN−k ]

is strictly concave for k = 1, 2, . . . ,N. Furthermore, for each (x , y) ∈ R2
+ and

s, s ∈ R+ such that s > s > 0 there exists only one FN−k -measurable random
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Properties of the set of optimal strategies

For k = 1, 2, ...,N

NTN−k (s, s) := {(x , y) ∈ R2
+ : wN−k (x , y , s, s) = sup

c∈[0,x ]
E[g(c) +

γwN−k+1(x − c, y ,SN−k+1,SN−k+1)|FN−k ]},

SN−k (s, s) := {(x , y) ∈ R2
+ : wN−k (x , y , s, s) = sup

(c,0,m)∈A(x,y,s,s)
E[g(c) +

γwN−k+1(x − c + sm, y −m,SN−k+1,SN−k+1)|FN−k ]}

and

BN−k (s, s) := {(x , y) ∈ R2
+ : wN−k (x , y , s, s) = sup

(c,l,0)∈A(x,y,s,s)
E[g(c) +

γwN−k+1(x − c − sl, y + l,SN−k+1,SN−k+1)|FN−k ]}.
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Local shadow price

At time moment N − k one price s̃.

B(x , y , s̃) := {(c,K ) :∈ [0, x + s̃y ]× R : x − c + s̃K ≥ 0, y − K ≥ 0}

for (x , y) ∈ R2
+ and s̃ > 0. Define

vN−k (x , y , s̃) :=

sup
(c,K )∈B(x,y,s̃)

E[g(c) + γwN−k+1(x − c + s̃K , y − K ,SN−k+1,SN−k+1)|FN−k ].
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Optimal strategies on shadow market

Proposition

There exists a unique FN−k -measurable random variable
(c̃(x , y , s̃), K̃ (x , y , s̃)), which takes values in the set B(x , y , s̃) which is an
optimal one step strategy, i.e. for which

vN−k (x , y , s̃) =

E[g(c̃) + γwN−k+1(x − c̃ + s̃K̃ , y − K̃ ,SN−k+1,SN−k+1)|FN−k ].
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Local shadow price - optimal strategies

For s̃ > 0 and for k = 1, ...,N

ÑTN−k (s̃) := {(x , y) ∈ R2
+ : vN−k (x , y , s̃) =

= sup
c∈[0,x ]

E[g(c) + γwN−k+1(x − c, y ,SN−k+1,SN−k+1)|FN−k ]},

S̃N−k (s̃) := {(x , y) ∈ R2
+ : vN−k (x , y , s̃) = sup

(c,K )∈B(x,y,s̃)∩R2
+

E[g(c) +

γwN−k+1(x − c̃ + s̃K̃ , y − K̃ ,SN−k+1,SN−k+1)|FN−k ]}

and

B̃N−k (s̃) := {(x , y) ∈ R2
+ : vN−k (x , y , s̃) = sup

(c,K )∈B(x,y,s̃)∩R+×R−

E[g(c) +

γwN−k+1(x − c̃ + s̃K̃ , y − K̃ ,SN−k+1,SN−k+1)|FN−k ]}.
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Local shadow price - definition

Definition

The family of FN−k -measurable random functions

S̃N−k =
{

S̃N−k (x , y , s, s)
}

(x,y)∈R2
+\{(0,0)},s>s>0

is called local shadow price at time moment N − k

if for all
(x , y) ∈ R2

+ \ {(0, 0)} and s, s ∈ R+ such that s > s > 0 we have

s ≤ S̃N−k (x , y , s, s) ≤ s

and
vN−k (x , y , S̃N−k (x , y , s, s)) = wN−k (x , y , s, s).
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Applications of shadow price

Proposition

For s, s ∈ R+ such that s > s > 0 and all ω ∈ Ω we have

S̃N−k (s)(ω) = SN−k (s, s)(ω). (3)

Lemma

Let s, s ∈ R+ be such that s > s > 0. Then for every ω ∈ Ω we have

S̃N−k (s)(ω) ∩ BN−k (s, s)(ω) = ∅. (4)

Proposition

Let s, s ∈ R+ be such that s > s > 0. Then all ω ∈ Ω

B̃N−k (s)(ω) = BN−k (s, s)(ω). (5)
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Construction of local shadow price

Lemma

Let s1, s2 ∈ R+ be such that 0 < s1 ≤ s2. Then

S̃N−k (s1) ⊆ S̃N−k (s2) (6)

and
B̃N−k (s2) ⊆ B̃N−k (s1). (7)
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Construction of local shadow price

Proposition

For (x , y) ∈ R2
+ \ {(0, 0)} let

s∗N−k (x , y) := inf{s ∈ [0,∞) : (x , y) ∈ S̃N−k (s)} (8)

and
s∗N−k (x , y) := sup{s ∈ [0,∞) : (x , y) ∈ B̃N−k (s)}. (9)

Then s∗N−k (x , y) and s∗N−k (x , y) are well defined FN−k−measurable random
variables. Furthermore,

s∗N−k (x , y) = s∗N−k (x , y) =: s̃N−k (x , y) (10)

and the random mapping (x , y) 7→ s̃N−k (x , y) is continuous. In addition,

∀(x,y)∈R2
+\{(0,0)}

(x , y) ∈ ÑTN−k (s̃N−k (x , y)). (11)

Tomasz Rogala Construction of discrete time shadow price



Construction of local shadow price

Proposition

For (x , y) ∈ R2
+ \ {(0, 0)} let

s∗N−k (x , y) := inf{s ∈ [0,∞) : (x , y) ∈ S̃N−k (s)} (8)

and
s∗N−k (x , y) := sup{s ∈ [0,∞) : (x , y) ∈ B̃N−k (s)}. (9)

Then s∗N−k (x , y) and s∗N−k (x , y) are well defined FN−k−measurable random
variables. Furthermore,

s∗N−k (x , y) = s∗N−k (x , y) =: s̃N−k (x , y) (10)

and the random mapping (x , y) 7→ s̃N−k (x , y) is continuous. In addition,

∀(x,y)∈R2
+\{(0,0)}
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s∗N−k (x , y) = s∗N−k (x , y) =: s̃N−k (x , y) (10)

and the random mapping (x , y) 7→ s̃N−k (x , y) is continuous. In addition,

∀(x,y)∈R2
+\{(0,0)}

(x , y) ∈ ÑTN−k (s̃N−k (x , y)). (11)
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Construction of local shadow price

Theorem

For all (x , y) ∈ R2
+ \ {(0, 0)} and s, s ∈ R+ such that s > s > 0 let

S̃N−k (x , y , s, s) :=


s on {(x , y) ∈ SN−k (s, s)}

s̃N−k (x , y) on {(x , y) ∈ NTN−k (s, s)}

s on {(x , y) ∈ BN−k (s, s)}

, (12)

where the random mapping s̃N−k is defined by (10). Then

(x , y , s, s) 7→ S̃N−k (x , y , s, s)

is FN−k -measurable and is a local shadow price at time moment N − k.
Furthermore, the optimal strategies at time moment N − k are the same in
both markets.
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Global shadow price

Definition

The family

S̃ = {S̃n(xn, yn,Sn,Sn)}n=0,...,N,(x0,y0),...,(xN ,yN )∈R2
+\{(0,0)}

,

where (x , y) ∈ R2
+ \ {(0, 0)} is called global shadow price, if the mapping

(x , y) 7→ S̃n(x , y ,Sn,Sn) is Fn - measurable and for every
(x , y) ∈ R+ \ {(0, 0)} we have Sn ≤ S̃n(x , y ,Sn,Sn) ≤ Sn for n = 0, 1, ...,N
and the expected value of the discounted utility in the market with price
process S̃ and in the market with bid and ask price processes S and S
respectively coincide.

Theorem

Let the family of processes S̃ be defined as in (12). Then S̃ is a global
shadow price. Furthermore, the optimal strategies in the market with shadow
price are the same as in the original market with bid and ask prices.
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Why shadow price is an important thing?

Markets with transaction costs in which we have a small investor are in fact
illiquid markets, i.e. these are markets on which the price of an asset
depends on the current position of investor.
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The end
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