Construction of discrete time shadow price

Tomasz Rogala

Institute of Mathematics, Polish Academy of Sciences, Warsaw
June 2013

Tranasaction costs and frictionless markets

Maximization expected utility under transaction costs

$$
\text { bid } \underline{S} \text { and ask } \bar{S} \text { prices }
$$

Tranasaction costs and frictionless markets

Maximization expected utility under transaction costs

$$
\text { bid } \underline{S} \text { and ask } \bar{S} \text { prices }
$$

Shadow price:

$$
\underline{S} \leq \tilde{S} \leq \bar{S}
$$

Tranasaction costs and frictionless markets

Maximization expected utility under transaction costs

$$
\text { bid } \underline{S} \text { and ask } \bar{S} \text { prices }
$$

Shadow price:

$$
\underline{S} \leq \tilde{S} \leq \bar{S}
$$

Problem: existence of shadow price

Tranasaction costs and frictionless markets

Maximization expected utility under transaction costs

$$
\text { bid } \underline{S} \text { and ask } \bar{S} \text { prices }
$$

Shadow price:

$$
\underline{S} \leq \tilde{S} \leq \bar{S}
$$

Problem: existence of shadow price
Based on joint paper with $Ł$. Stettner

Recent papers on shadow price

Kallsen J., Muhle-Karbe J. [2010]
Kallsen J., Muhle-Karbe J. [2011]
Gerhold S., Muhle-Karbe J., Schachermayer W. [2011]
Gerhold S., Muhle-Karbe J., Schachermayer W. [2011]
Czichowsky Ch., Muhle-Karbe J., Schachermayer W. [2012]

Shadow price in different models

On a finite probability spaces with functional

$$
\mathbf{E} \sum_{n=0}^{\infty} g_{n}\left(c_{n}\right)
$$

shadow price always exists. [Kallsen J., Muhle-Karbe J., (2011)]

Shadow price in different models

On a finite probability spaces with functional

$$
\mathbf{E} \sum_{n=0}^{\infty} g_{n}\left(c_{n}\right)
$$

shadow price always exists. [Kallsen J., Muhle-Karbe J., (2011)]
However, in infinite probability spaces it can fail to exist. [Czichowsky Ch., Muhle-Karbe J., Schachermayer W. (2012)]

Introduction

Assume on a filtrated probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{n}\right)_{n=0}^{N}, \mathbf{P}\right)$ we are given: strictly positive adapted processes $\underline{S}=\left(\underline{S}_{n}\right)_{n=0}^{N}$ and $\bar{S}=\left(\bar{S}_{n}\right)_{n=0}^{N}$ such that $\bar{S}_{n}>\underline{S}_{n}$ and

Introduction

Assume on a filtrated probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{n}\right)_{n=0}^{N}, \mathbf{P}\right)$ we are given: strictly positive adapted processes $\underline{S}=\left(\underline{S}_{n}\right)_{n=0}^{N}$ and $\bar{S}=\left(\bar{S}_{n}\right)_{n=0}^{N}$ such that $\bar{S}_{n}>\underline{S}_{n}$ and

$$
\begin{gather*}
\operatorname{supp} \mathrm{E}\left[\left(\underline{S}_{N-k}, \ldots, \underline{S}_{N}\right) \mid \mathcal{F}_{N-k}\right]=\left\{\underline{S}_{N-k}\right\} \times[0, \infty)^{k}, \\
\operatorname{supp} \mathrm{E}\left[\left(\bar{S}_{N-k}, \ldots, \bar{S}_{N}\right) \mid \mathcal{F}_{N-k}\right]=\left\{\bar{S}_{N-k}\right\} \times[0, \infty)^{k} \tag{1}
\end{gather*}
$$

Introduction

Market \mathcal{M} with safe bank account $(r=0)$ and a risky stock account. We can buy or sell stocks paying \bar{S}_{n} or getting \underline{S}_{n} respectively.

Introduction

Market \mathcal{M} with safe bank account $(r=0)$ and a risky stock account. We can buy or sell stocks paying \bar{S}_{n} or getting \underline{S}_{n} respectively.
Our position (x, y), where x is the amount on the bank account and y is the number of assets in our portfolio.

Introduction

Our aim is to maximize the value:

Introduction

Our aim is to maximize the value:

$$
\begin{equation*}
\mathbf{J}_{(x, y, s, s)}^{N}(u):=\mathbf{E}\left(\sum_{n=0}^{N} \gamma^{n} g\left(c_{n}\right)\right), \tag{2}
\end{equation*}
$$

Introduction

Our aim is to maximize the value:

$$
\begin{equation*}
\mathbf{J}_{(x, y, \bar{s}, \bar{s})}^{N}(u):=\mathbf{E}\left(\sum_{n=0}^{N} \gamma^{n} g\left(c_{n}\right)\right), \tag{2}
\end{equation*}
$$

where g is a strictly increasing and concave utility function, e.g. $g(c)=\ln c$ or $g(c)=c^{\alpha}$ with $\alpha \in(0,1)$.

Properties of the set of constraints

Conditionally full support condition $(1) \Longrightarrow$ after possible transaction we should have nonnegative position.

Properties of the set of constraints

Conditionally full support condition (1) \Longrightarrow after possible transaction we should have nonnegative position.
For $(x, y) \in \mathbf{R}_{+}^{2}$ and $\underline{s}, \bar{s} \in \mathbf{R}_{+}$such that $\bar{s} \geq \underline{s} \geq 0$ let

$$
\begin{aligned}
& \mathbf{A}(x, y, \underline{s}, \bar{s}):=\left\{(c, l, m) \in[0, x+\underline{s} y] \times \mathbf{R}_{+}^{2}:\right. \\
&\left.\forall_{s \in[0, \infty)} x-c+\underline{s} m-\bar{s} l+s(y-m+I) \geq 0\right\} .
\end{aligned}
$$

Properties of the set of constraints

Conditionally full support condition (1) \Longrightarrow after possible transaction we should have nonnegative position.
For $(x, y) \in \mathbf{R}_{+}^{2}$ and $\underline{s}, \bar{s} \in \mathbf{R}_{+}$such that $\bar{s} \geq \underline{s} \geq 0$ let

$$
\begin{aligned}
\mathbf{A}(x, y, \underline{s}, \bar{s}):=\left\{(c, l, m) \in[0, x+\underline{s} y] \times \mathbf{R}_{+}^{2}:\right. \\
\left.\forall_{s \in[0, \infty)} x-c+\underline{s} m-\bar{s} l+s(y-m+I) \geq 0\right\} .
\end{aligned}
$$

Proposition

Let $(x, y) \in \mathbf{R}_{+}^{2}$ and $\underline{s}, \bar{s} \in \mathbf{R}_{+}$such that $\bar{s} \geq \underline{s} \geq 0$. Then we have
(i) $\mathbf{A}(\rho x, \rho y, \underline{s}, \bar{s})=\rho \mathbf{A}(x, y, \underline{s}, \bar{s})$, for $\rho \geq 0$,
(ii) the set $\mathbf{A}(x, y, \underline{s}, \bar{s})$ is convex,
(iii) for $\bar{s}>\underline{s}>0$ the $\operatorname{set} \mathbf{A}(x, y, \underline{s}, \bar{s})$ is compact.

Set of constraints and Hausdorff metric

Theorem

Let $\left(x_{n}, y_{n}, \underline{s}_{n}, \bar{s}_{n}\right)_{n=1}^{\infty}$ be a sequence from \mathbf{R}_{+}^{4} such that for all $n \in \mathbf{N}$ we have $\bar{s}_{n}>\underline{s}_{n}>0$, which converges to $(x, y, \underline{s}, \bar{s}) \in \mathbf{R}_{+}^{4}$ such that $\bar{s}>\underline{s}>0$. Then

$$
h\left(\mathbf{A}(x, y, \underline{s}, \bar{s}), \mathbf{A}\left(x_{n}, y_{n}, \underline{s}_{n}, \bar{s}_{n}\right)\right) \xrightarrow{n \rightarrow \infty} 0
$$

where $h: \mathcal{H}\left(\mathbf{R}_{+}^{3}\right) \times \mathcal{H}\left(\mathbf{R}_{+}^{3}\right) \rightarrow \mathbf{R}_{+}$is a Hausdorff metric, i.e.

$$
h(A, B):=\max \{d(A, B), d(B, A)\}
$$

for all $A, B \in \mathcal{H}\left(\mathbf{R}_{+}^{3}\right)$.

Bellman equations

$$
w_{N}(x, y, \underline{s}, \bar{s}):=g(x+\underline{s} y)
$$

Bellman equations

$$
w_{N}(x, y, \underline{s}, \bar{s}):=g(x+\underline{s y})
$$

and inductively

$$
\begin{aligned}
& w_{N-k}(x, y, \underline{s}, \bar{s}):=\sup _{(c, l, m) \in \mathbf{A}(x, y, \bar{s}, \bar{s})} \mathbf{E}[\\
& \left.\quad g(c)+\gamma w_{N-k+1}\left(x-c+\underline{s} m-\bar{s} l, y-m+I, \underline{S}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right]
\end{aligned}
$$

$$
\text { for } k=1,2, \ldots, N \text {. }
$$

Bellman equations and original problem

Proposition

$$
\mathrm{E}\left[w_{0}(x, y, \underline{s}, \bar{s})\right]=\sup \mathbf{J}_{(x, y, \underline{s}, \bar{s})}^{N}(u)
$$

with $\underline{S}_{0}=\underline{s}$ and $\bar{S}_{0}=\bar{s}$.

Strict concavity and its consequences

Theorem

The random mapping

$$
(x, y) \longmapsto \mathrm{E}\left[w_{N-k+1}\left(x, y, \underline{S}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right]
$$

is strictly concave for $k=1,2, \ldots, N$.

Strict concavity and its consequences

Theorem

The random mapping

$$
(x, y) \longmapsto \mathrm{E}\left[w_{N-k+1}\left(x, y, \underline{S}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right]
$$

is strictly concave for $k=1,2, \ldots, N$. Furthermore, for each $(x, y) \in \mathbf{R}_{+}^{2}$ and $\underline{s}, \bar{s} \in \mathbf{R}_{+}$such that $\bar{s}>\underline{s}>0$ there exists only one \mathcal{F}_{N-k}-measurable random variable ($\hat{c}, \hat{l}, \hat{m})$ which takes values in the set $\mathbf{A}(x, y, \underline{s}, \bar{s})$ and such that

Strict concavity and its consequences

Theorem

The random mapping

$$
(x, y) \longmapsto \mathbf{E}\left[w_{N-k+1}\left(x, y, \underline{S}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right]
$$

is strictly concave for $k=1,2, \ldots, N$. Furthermore, for each $(x, y) \in \mathbf{R}_{+}^{2}$ and $\underline{s}, \bar{s} \in \mathbf{R}_{+}$such that $\bar{s}>\underline{s}>0$ there exists only one \mathcal{F}_{N-k}-measurable random variable ($\hat{c}, \hat{l}, \hat{m})$ which takes values in the set $\mathbf{A}(x, y, \underline{s}, \bar{s})$ and such that

$$
\begin{aligned}
& w_{N-k}(x, y, \underline{s}, \bar{s})= \\
& \quad \mathrm{E}\left[g(\hat{c})+\gamma w_{N-k+1}\left(x-\hat{c}+\underline{s} \hat{m}-\hat{s} \hat{l}, y-\hat{m}+\hat{l}, \underline{s}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right] .
\end{aligned}
$$

Strict concavity and its consequences

Theorem

The random mapping

$$
(x, y) \longmapsto \mathbf{E}\left[w_{N-k+1}\left(x, y, \underline{S}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right]
$$

is strictly concave for $k=1,2, \ldots, N$. Furthermore, for each $(x, y) \in \mathbf{R}_{+}^{2}$ and $\underline{s}, \bar{s} \in \mathbf{R}_{+}$such that $\bar{s}>\underline{s}>0$ there exists only one \mathcal{F}_{N-k}-measurable random variable ($\hat{c}, \hat{l}, \hat{m})$ which takes values in the set $\mathbf{A}(x, y, \underline{s}, \bar{s})$ and such that

$$
\begin{aligned}
& w_{N-k}(x, y, \underline{s}, \bar{s})= \\
& \quad \mathbf{E}\left[g(\hat{c})+\gamma w_{N-k+1}\left(x-\hat{c}+\underline{s} \hat{m}-\hat{s} \hat{l}, y-\hat{m}+\hat{l}, \underline{s}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right] .
\end{aligned}
$$

Moreover, the random mapping

$$
(x, y, \underline{s}, \bar{s}) \mapsto(\hat{c}(x, y, \underline{s}, \bar{s}), \hat{l}(x, y, \underline{s}, \bar{s}), \hat{m}(x, y, \underline{s}, \bar{s}))
$$

is continuous on the set $\left\{(x, y, \underline{s}, \bar{s}) \in \mathbf{R}_{+}^{4}: \bar{s}>\underline{s}>0\right\}$.

Properties of the set of optimal strategies

For $k=1,2, \ldots, N$

$$
\begin{aligned}
& \mathbf{N T}_{N-k}(\underline{s}, \bar{s}):=\left\{(x, y) \in \mathbf{R}_{+}^{2}: w_{N-k}(x, y, \underline{s}, \bar{s})=\sup _{c \in[0, x]} \mathrm{E}[g(c)+\right. \\
& \left.\left.\gamma w_{N-k+1}\left(x-c, y, \underline{s}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right]\right\}
\end{aligned}
$$

Properties of the set of optimal strategies

For $k=1,2, \ldots, N$

$$
\begin{aligned}
& \mathbf{N T}_{N-k}(\underline{s}, \bar{s}):=\left\{(x, y) \in \mathbf{R}_{+}^{2}: w_{N-k}(x, y, \underline{s}, \bar{s})=\sup _{c \in[0, x]} \mathrm{E}[g(c)+\right. \\
& \left.\left.\gamma w_{N-k+1}\left(x-c, y, \underline{S}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right]\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{S}_{N-k}(\underline{s}, \bar{s}):=\left\{(x, y) \in \mathbf{R}_{+}^{2}: w_{N-k}(x, y, \underline{s}, \bar{s})=\sup _{(c, 0, m) \in \mathbf{A}(x, y, \underline{s}, \bar{s})} \mathbf{E}[g(c)+\right. \\
& \left.\left.\gamma w_{N-k+1}\left(x-c+\underline{s} m, y-m, \underline{S}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right]\right\}
\end{aligned}
$$

Properties of the set of optimal strategies

For $k=1,2, \ldots, N$

$$
\begin{aligned}
& \mathbf{N T}_{N-k}(\underline{s}, \bar{s}):=\left\{(x, y) \in \mathbf{R}_{+}^{2}: w_{N-k}(x, y, \underline{s}, \bar{s})=\sup _{c \in[0, x]} \mathbf{E}[g(c)+\right. \\
& \left.\left.\gamma w_{N-k+1}\left(x-c, y, \underline{S}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right]\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{S}_{N-k}(\underline{s}, \bar{s}):=\left\{(x, y) \in \mathbf{R}_{+}^{2}: w_{N-k}(x, y, \underline{s}, \bar{s})=\sup _{(c, 0, m) \in \mathbf{A}(x, y, \bar{s}, \bar{s})} \mathrm{E}[g(c)+\right. \\
& \left.\left.\gamma w_{N-k+1}\left(x-c+\underline{s} m, y-m, \underline{S}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right]\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbf{B}_{N-k}(\underline{s}, \bar{s}):=\left\{(x, y) \in \mathbf{R}_{+}^{2}: w_{N-k}(x, y, \underline{s}, \bar{s})=\sup _{(c, l, 0) \in \mathbf{A}(x, y, s, \bar{s})} \mathrm{E}[g(c)+\right. \\
& \left.\left.\gamma w_{N-k+1}\left(x-c-\bar{s} l, y+l, \underline{S}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right]\right\} .
\end{aligned}
$$

Local shadow price

At time moment $N-k$ one price \tilde{s}.

Local shadow price

At time moment $N-k$ one price \tilde{s}.

$$
\overline{\mathbf{B}}(x, y, \tilde{s}):=\{(c, K): \in[0, x+\tilde{s} y] \times \mathbf{R}: x-c+\tilde{s} K \geq 0, y-K \geq 0\}
$$

for $(x, y) \in \mathbf{R}_{+}^{2}$ and $\tilde{s}>0$.

Local shadow price

At time moment $N-k$ one price \tilde{s}.

$$
\begin{aligned}
& \quad \overline{\mathbf{B}}(x, y, \tilde{s}):=\{(c, K): \in[0, x+\tilde{s} y] \times \mathbf{R}: x-c+\tilde{s} K \geq 0, y-K \geq 0\} \\
& \text { for }(x, y) \in \mathbf{R}_{+}^{2} \text { and } \tilde{s}>0 \text {. Define } \\
& v_{N-k}(x, y, \tilde{s}):= \\
& \sup _{(c, K) \in \overline{\mathbf{B}}(x, y, \tilde{s})} \mathrm{E}\left[g(c)+\gamma w_{N-k+1}\left(x-c+\tilde{s} K, y-K, \underline{S}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right] .
\end{aligned}
$$

Optimal strategies on shadow market

Proposition

There exists a unique \mathcal{F}_{N-k}-measurable random variable $(\tilde{c}(x, y, \tilde{s}), \tilde{K}(x, y, \tilde{s}))$, which takes values in the set $\overline{\mathbf{B}}(x, y, \tilde{s})$ which is an optimal one step strategy, i.e. for which

$$
\begin{aligned}
& v_{N-k}(x, y, \tilde{s})= \\
& \quad \mathrm{E}\left[g(\tilde{c})+\gamma w_{N-k+1}\left(x-\tilde{c}+\tilde{s} \tilde{K}, y-\tilde{K}, \underline{S}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right] .
\end{aligned}
$$

Local shadow price - optimal strategies

For $\tilde{s}>0$ and for $k=1, \ldots, N$

$$
\begin{aligned}
& \tilde{\mathbf{N}}_{N-k}(\tilde{s}):=\left\{(x, y) \in \mathbf{R}_{+}^{2}: v_{N-k}(x, y, \tilde{s})=\right. \\
& \left.=\sup _{c \in[0, x]} \mathrm{E}\left[g(c)+\gamma w_{N-k+1}\left(x-c, y, \underline{S}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right]\right\}, \\
& \tilde{\mathbf{S}}_{N-k}(\tilde{s}):=\left\{(x, y) \in \mathbf{R}_{+}^{2}: v_{N-k}(x, y, \tilde{s})=\sup _{(c, K) \in \mathbf{B}(x, y, \tilde{s}) \cap \mathbf{R}_{+}^{2}} \mathrm{E}[g(c)+\right. \\
& \left.\left.\gamma w_{N-k+1}\left(x-\tilde{c}+\tilde{s} \tilde{K}, y-\tilde{K}, \underline{S}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right]\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \tilde{\mathbf{B}}_{N-k}(\tilde{\boldsymbol{s}}):=\left\{(x, y) \in \mathbf{R}_{+}^{2}: v_{N-k}(x, y, \tilde{s})=\sup _{(c, K) \in \overline{\mathbf{B}}(x, y, \tilde{s}) \cap \mathbf{R}_{+} \times \mathbf{R}_{-}} \mathrm{E}[g(c)+\right. \\
& \left.\left.\gamma w_{N-k+1}\left(x-\tilde{c}+\tilde{s} \tilde{K}, y-\tilde{K}, \underline{S}_{N-k+1}, \bar{S}_{N-k+1}\right) \mid \mathcal{F}_{N-k}\right]\right\} .
\end{aligned}
$$

Local shadow price - definition

Definition

The family of $\mathcal{F}_{N-k}-$ measurable random functions

$$
\tilde{S}_{N-k}=\left\{\tilde{S}_{N-k}(x, y, \underline{s}, \bar{s})\right\}_{(x, y) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}, \bar{s}>\underline{s}>0}
$$

is called local shadow price at time moment $N-k$

Local shadow price - definition

Definition

The family of $\mathcal{F}_{N-k}-$ measurable random functions

$$
\tilde{S}_{N-k}=\left\{\tilde{S}_{N-k}(x, y, \underline{s}, \bar{s})\right\}_{(x, y) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}, \bar{s}>\underline{s}>0}
$$

is called local shadow price at time moment $N-k$ if for all $(x, y) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}$ and $\underline{s}, \bar{s} \in \mathbf{R}_{+}$such that $\bar{s}>\underline{s}>0$ we have

$$
\underline{s} \leq \tilde{S}_{N-k}(x, y, \underline{s}, \bar{s}) \leq \bar{s}
$$

and

$$
v_{N-k}\left(x, y, \tilde{S}_{N-k}(x, y, \underline{s}, \bar{s})\right)=w_{N-k}(x, y, \underline{s}, \bar{s})
$$

Applications of shadow price

Proposition

For $\underline{s}, \bar{s} \in \mathbf{R}_{+}$such that $\bar{s}>\underline{s}>0$ and all $\omega \in \Omega$ we have

$$
\begin{equation*}
\tilde{\boldsymbol{S}}_{N-k}(\underline{s})(\omega)=\boldsymbol{S}_{N-k}(\underline{s}, \bar{s})(\omega) . \tag{3}
\end{equation*}
$$

Applications of shadow price

Proposition

For $\underline{s}, \bar{s} \in \mathbf{R}_{+}$such that $\bar{s}>\underline{s}>0$ and all $\omega \in \Omega$ we have

$$
\begin{equation*}
\tilde{\boldsymbol{S}}_{N-k}(\underline{s})(\omega)=\boldsymbol{S}_{N-k}(\underline{s}, \bar{s})(\omega) . \tag{3}
\end{equation*}
$$

Lemma

Let $\underline{s}, \bar{s} \in \mathbf{R}_{+}$be such that $\bar{s}>\underline{s}>0$. Then for every $\omega \in \Omega$ we have

$$
\begin{equation*}
\tilde{\mathbf{S}}_{N-k}(\bar{s})(\omega) \cap \mathbf{B}_{N-k}(\underline{s}, \bar{s})(\omega)=\emptyset . \tag{4}
\end{equation*}
$$

Applications of shadow price

Proposition

For $\underline{s}, \bar{s} \in \mathbf{R}_{+}$such that $\bar{s}>\underline{s}>0$ and all $\omega \in \Omega$ we have

$$
\begin{equation*}
\tilde{\boldsymbol{S}}_{N-k}(\underline{s})(\omega)=\boldsymbol{S}_{N-k}(\underline{s}, \bar{s})(\omega) . \tag{3}
\end{equation*}
$$

Lemma

Let $\underline{s}, \bar{s} \in \mathbf{R}_{+}$be such that $\bar{s}>\underline{s}>0$. Then for every $\omega \in \Omega$ we have

$$
\begin{equation*}
\tilde{\mathbf{S}}_{N-k}(\bar{s})(\omega) \cap \mathbf{B}_{N-k}(\underline{s}, \bar{s})(\omega)=\emptyset . \tag{4}
\end{equation*}
$$

Proposition

Let $\underline{s}, \bar{s} \in \mathbf{R}_{+}$be such that $\bar{s}>\underline{s}>0$. Then all $\omega \in \Omega$

$$
\begin{equation*}
\tilde{\boldsymbol{B}}_{N-k}(\overline{\boldsymbol{s}})(\omega)=\boldsymbol{B}_{N-k}(\underline{s}, \bar{s})(\omega) . \tag{5}
\end{equation*}
$$

Construction of local shadow price

Lemma

Let $s_{1}, s_{2} \in \mathbf{R}_{+}$be such that $0<s_{1} \leq s_{2}$. Then

$$
\begin{equation*}
\tilde{\boldsymbol{S}}_{N-k}\left(s_{1}\right) \subseteq \tilde{\boldsymbol{S}}_{N-k}\left(s_{2}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\boldsymbol{B}}_{N-k}\left(s_{2}\right) \subseteq \tilde{\boldsymbol{B}}_{N-k}\left(s_{1}\right) . \tag{7}
\end{equation*}
$$

Construction of local shadow price

Proposition

For $(x, y) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}$ let

Construction of local shadow price

Proposition

For $(x, y) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}$ let

$$
\begin{equation*}
\underline{s}_{N-k}^{*}(x, y):=\inf \left\{s \in[0, \infty):(x, y) \in \tilde{\boldsymbol{S}}_{N-k}(s)\right\} \tag{8}
\end{equation*}
$$

Construction of local shadow price

Proposition

For $(x, y) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}$ let

$$
\begin{equation*}
\underline{s}_{N-k}^{*}(x, y):=\inf \left\{s \in[0, \infty):(x, y) \in \tilde{\boldsymbol{S}}_{N-k}(s)\right\} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\boldsymbol{s}}_{N-k}^{*}(x, y):=\sup \left\{s \in[0, \infty):(x, y) \in \tilde{\boldsymbol{B}}_{N-k}(s)\right\} \tag{9}
\end{equation*}
$$

Construction of local shadow price

Proposition

For $(x, y) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}$ let

$$
\begin{equation*}
\underline{s}_{N-k}^{*}(x, y):=\inf \left\{s \in[0, \infty):(x, y) \in \tilde{\boldsymbol{S}}_{N-k}(s)\right\} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{s}_{N-k}^{*}(x, y):=\sup \left\{s \in[0, \infty):(x, y) \in \tilde{\boldsymbol{B}}_{N-k}(s)\right\} \tag{9}
\end{equation*}
$$

Then $\underline{s}_{N-k}^{*}(x, y)$ and $\bar{s}_{N-k}^{*}(x, y)$ are well defined $\mathcal{F}_{N-k}-$ measurable random variables.

Construction of local shadow price

Proposition

For $(x, y) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}$ let

$$
\begin{equation*}
\underline{s}_{N-k}^{*}(x, y):=\inf \left\{s \in[0, \infty):(x, y) \in \tilde{\boldsymbol{S}}_{N-k}(s)\right\} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{s}_{N-k}^{*}(x, y):=\sup \left\{s \in[0, \infty):(x, y) \in \tilde{\boldsymbol{B}}_{N-k}(s)\right\} \tag{9}
\end{equation*}
$$

Then $\underline{s}_{N-k}^{*}(x, y)$ and $\bar{s}_{N-k}^{*}(x, y)$ are well defined $\mathcal{F}_{N-k-\text { measurable random }}$ variables. Furthermore,

$$
\begin{equation*}
\underline{s}_{N-k}^{*}(x, y)=\bar{s}_{N-k}^{*}(x, y)=: \tilde{s}_{N-k}(x, y) \tag{10}
\end{equation*}
$$

and the random mapping $(x, y) \mapsto \tilde{s}_{N-k}(x, y)$ is continuous.

Construction of local shadow price

Proposition

For $(x, y) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}$ let

$$
\begin{equation*}
\underline{s}_{N-k}^{*}(x, y):=\inf \left\{s \in[0, \infty):(x, y) \in \tilde{\boldsymbol{S}}_{N-k}(s)\right\} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{s}_{N-k}^{*}(x, y):=\sup \left\{s \in[0, \infty):(x, y) \in \tilde{B}_{N-k}(s)\right\} \tag{9}
\end{equation*}
$$

Then $\underline{s}_{N-k}^{*}(x, y)$ and $\bar{s}_{N-k}^{*}(x, y)$ are well defined $\mathcal{F}_{N-k}-$ measurable random variables. Furthermore,

$$
\begin{equation*}
\underline{s}_{N-k}^{*}(x, y)=\bar{s}_{N-k}^{*}(x, y)=: \tilde{s}_{N-k}(x, y) \tag{10}
\end{equation*}
$$

and the random mapping $(x, y) \mapsto \tilde{s}_{N-k}(x, y)$ is continuous. In addition,

$$
\begin{equation*}
\forall_{(x, y) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}}(x, y) \in \tilde{\boldsymbol{N}} \boldsymbol{T}_{N-k}\left(\tilde{S}_{N-k}(x, y)\right) \tag{11}
\end{equation*}
$$

Construction of local shadow price

Theorem

For all $(x, y) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}$ and $\underline{s}, \bar{s} \in \mathbf{R}_{+}$such that $\bar{s}>\underline{s}>0$ let

Construction of local shadow price

Theorem

For all $(x, y) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}$ and $\underline{s}, \bar{s} \in \mathbf{R}_{+}$such that $\bar{s}>\underline{s}>0$ let

$$
\tilde{S}_{N-k}(x, y, \underline{s}, \bar{s}):= \begin{cases}\underline{s} & \text { on }\left\{(x, y) \in \boldsymbol{S}_{N-k}(\underline{s}, \bar{s})\right\} \tag{12}\\ \tilde{s}_{N-k}(x, y) & \text { on }\left\{(x, y) \in \boldsymbol{N} \boldsymbol{T}_{N-k}(\underline{s}, \bar{s})\right\} \\ \bar{s} & \text { on }\left\{(x, y) \in \boldsymbol{B}_{N-k}(\underline{s}, \bar{s})\right\}\end{cases}
$$

where the random mapping \tilde{s}_{N-k} is defined by (10).

Construction of local shadow price

Theorem

For all $(x, y) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}$ and $\underline{s}, \bar{s} \in \mathbf{R}_{+}$such that $\bar{s}>\underline{s}>0$ let

$$
\tilde{S}_{N-k}(x, y, \underline{s}, \bar{s}):= \begin{cases}\underline{s} & \text { on }\left\{(x, y) \in \boldsymbol{S}_{N-k}(\underline{s}, \bar{s})\right\} \tag{12}\\ \tilde{s}_{N-k}(x, y) & \text { on }\left\{(x, y) \in \boldsymbol{N} \boldsymbol{T}_{N-k}(\underline{s}, \bar{s})\right\} \\ \bar{s} & \text { on }\left\{(x, y) \in \boldsymbol{B}_{N-k}(\underline{s}, \bar{s})\right\}\end{cases}
$$

where the random mapping \tilde{s}_{N-k} is defined by (10). Then

$$
(x, y, \underline{s}, \bar{s}) \mapsto \tilde{S}_{N-k}(x, y, \underline{s}, \bar{s})
$$

Construction of local shadow price

Theorem

For all $(x, y) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}$ and $\underline{s}, \bar{s} \in \mathbf{R}_{+}$such that $\bar{s}>\underline{s}>0$ let

$$
\tilde{S}_{N-k}(x, y, \underline{s}, \bar{s}):= \begin{cases}\underline{s} & \text { on }\left\{(x, y) \in \boldsymbol{S}_{N-k}(\underline{s}, \bar{s})\right\} \tag{12}\\ \tilde{s}_{N-k}(x, y) & \text { on }\left\{(x, y) \in \boldsymbol{N} \boldsymbol{T}_{N-k}(\underline{s}, \bar{s})\right\} \\ \bar{s} & \text { on }\left\{(x, y) \in \boldsymbol{B}_{N-k}(\underline{s}, \bar{s})\right\}\end{cases}
$$

where the random mapping \tilde{s}_{N-k} is defined by (10). Then

$$
(x, y, \underline{s}, \bar{s}) \mapsto \tilde{S}_{N-k}(x, y, \underline{s}, \bar{s})
$$

is \mathcal{F}_{N-k}-measurable and is a local shadow price at time moment $N-k$. Furthermore, the optimal strategies at time moment $N-k$ are the same in both markets.

Global shadow price

Definition
The family

$$
\tilde{S}=\left\{\tilde{S}_{n}\left(x_{n}, y_{n}, \underline{S}_{n}, \bar{S}_{n}\right)\right\}_{n=0, \ldots, N,\left(x_{0}, y_{0}\right), \ldots,\left(x_{N}, y_{N}\right) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}},
$$

Global shadow price

Definition

The family

$$
\tilde{S}=\left\{\tilde{S}_{n}\left(x_{n}, y_{n}, \underline{S}_{n}, \bar{S}_{n}\right)\right\}_{n=0, \ldots, N,\left(x_{0}, y_{0}\right), \ldots,\left(x_{N}, y_{N}\right) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}},
$$

where $(x, y) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}$ is called global shadow price, if the mapping $(x, y) \mapsto \tilde{S}_{n}\left(x, y, \underline{S}_{n}, \bar{S}_{n}\right)$ is \mathcal{F}_{n} - measurable and for every
$(x, y) \in \mathbf{R}_{+} \backslash\{(0,0)\}$ we have $\underline{S}_{n} \leq \tilde{S}_{n}\left(x, y, \underline{S}_{n}, \bar{S}_{n}\right) \leq \bar{S}_{n}$ for $n=0,1, \ldots, N$ and the expected value of the discounted utility in the market with price process \tilde{S} and in the market with bid and ask price processes \underline{S} and \bar{S} respectively coincide.

Global shadow price

Definition

The family

$$
\tilde{S}=\left\{\tilde{S}_{n}\left(x_{n}, y_{n}, \underline{S}_{n}, \bar{S}_{n}\right)\right\}_{n=0, \ldots, N,\left(x_{0}, y_{0}\right), \ldots,\left(x_{N}, y_{N}\right) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}},
$$

where $(x, y) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}$ is called global shadow price, if the mapping $(x, y) \mapsto \tilde{S}_{n}\left(x, y, \underline{S}_{n}, \bar{S}_{n}\right)$ is \mathcal{F}_{n} - measurable and for every
$(x, y) \in \mathbf{R}_{+} \backslash\{(0,0)\}$ we have $\underline{S}_{n} \leq \tilde{S}_{n}\left(x, y, \underline{S}_{n}, \bar{S}_{n}\right) \leq \bar{S}_{n}$ for $n=0,1, \ldots, N$ and the expected value of the discounted utility in the market with price process \tilde{S} and in the market with bid and ask price processes \underline{S} and \bar{S} respectively coincide.

Theorem

Let the family of processes \tilde{S} be defined as in (12).

Global shadow price

Definition

The family

$$
\tilde{S}=\left\{\tilde{S}_{n}\left(x_{n}, y_{n}, \underline{S}_{n}, \bar{S}_{n}\right)\right\}_{n=0, \ldots, N,\left(x_{0}, y_{0}\right), \ldots,\left(x_{N}, y_{N}\right) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}},
$$

where $(x, y) \in \mathbf{R}_{+}^{2} \backslash\{(0,0)\}$ is called global shadow price, if the mapping $(x, y) \mapsto \tilde{S}_{n}\left(x, y, \underline{S}_{n}, \bar{S}_{n}\right)$ is \mathcal{F}_{n} - measurable and for every
$(x, y) \in \mathbf{R}_{+} \backslash\{(0,0)\}$ we have $\underline{S}_{n} \leq \tilde{S}_{n}\left(x, y, \underline{S}_{n}, \bar{S}_{n}\right) \leq \bar{S}_{n}$ for $n=0,1, \ldots, N$ and the expected value of the discounted utility in the market with price process \tilde{S} and in the market with bid and ask price processes \underline{S} and \bar{S} respectively coincide.

Theorem

Let the family of processes \tilde{S} be defined as in (12). Then \tilde{S} is a global shadow price. Furthermore, the optimal strategies in the market with shadow price are the same as in the original market with bid and ask prices.

Why shadow price is an important thing?

Markets with transaction costs in which we have a small investor are in fact illiquid markets, i.e. these are markets on which the price of an asset depends on the current position of investor.

The end

