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Assumptions

We consider a market defined on a complete probability space
(Ω,F ,P) with filtration (Ft)t∈[0,T ], T <∞, satisfying the usual
conditions. We assume:

Bt ≡ 1.

The price X of the underlying asset has a stochastic volatility Y ,
and is given by

dXt = YtXtdWt , (1)

dYt = µ(t,Yt)dt + σ(t,Yt)dZt , (2)

where X0, Y0 are positive constants, the processes W ,Z are
correlated Brownian motions, d〈W ,Z 〉t = ρdt with ρ ∈ (−1, 1),
and µ : R+ × R+ → R, σ : R+ × R+ → R are continuous
functions such that there exists a unique strong solution of (2),

which is positive and
∫ T
0 Y 2

u du <∞ P-a.s.



Under these assumptions the process X has the form

Xt = X0e
∫ t
0 YudWu− 1

2

∫ t
0 Y 2

u du, (3)

and this is a unique strong solution of SDE (1) on [0,T ].

Examples of linear stochastic volatility models;

1) Yt ≡ σ > 0 and ρ = 0 gives the Black-Scholes model.

2) Taking Yt = Y0 exp(σZt − σ2t/2) we have a lognormal
stochastic volatility model.

3) Heston model

dSt =
√
σtStdW ∗

t ,

dσt = κ(ν − σt)dt + η
√
σtdW̃t ,

where W ∗, W̃ are Brownian motions with constant correlation. ρ,
κ, η, ν are constant. If 2κν ≥ 1, then the process is strictly
positive, so using Itô lemma we can write a SDE for Yt =

√
σt .
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Theorem 1
Fix t ∈ [0,T ]. The distribution of Xt has the representation

P(Xt ≤ r) = EΦ

(
ln r

X0
− µZ (t)

σZ (t)

)
, (4)

where r > 0, Φ is the cumulative distribution function of N(0, 1),

µZ (t) = ρ

∫ t

0
YudZu −

1

2

∫ t

0
Y 2
u du, (5)

σ2Z (t) = (1− ρ2)

∫ t

0
Y 2
u du. (6)

Moreover, Xt has density function gXt , which has the
representation

gXt (r) = E
[

1

rσZ (t)
φ

(
ln r

X0
− µZ (t)

σZ (t)

)]
, (7)

where φ is the density function of N(0, 1).



The idea of proof

We can represent W in the form Wt = ρZt +
√

1− ρ2Bt , where
(B,Z ) is the standard two-dimensional Wiener process. For fixed
r > 0

P(Xt ≤ r) = E1{
X0 exp

( ∫ t
0 YudWu− 1

2

∫ t
0 Y 2

u du
)
≤r
}

= EE
[
1{

ρ
∫ t
0 YudZu+

√
1−ρ2

∫ t
0 YudBu− 1

2

∫ t
0 Y 2

u du≤ln r
X0

}∣∣FZ
t

]
.

= EP
(
µZ (t) + σZ (t)g ≤ ln

r

X0

∣∣FZ
t

)
= EΦ

(
ln r

X0
− µZ (t)

σZ (t)

)
.

Remark:
The problem of finding the distribution of Xt , for fixed t, reduces
to deriving the distribution of the vector (

∫ t
0 YudZu,

∫ t
0 Y 2

u du).



Density in Lognormal SV model

Theorem 2
In a log-normal stochastic volatility model the density function of
the price Xt of the underlying asset has the form

gXt (r) =∫ ∞
−∞

∫ ∞
0

[
1

rY0

√
y 1−ρ2

σ2

φ

(
ln r

X0
− f (x , y) + Y 2

0 y 1−ρ2
σ2

Y0

√
y 1−ρ2

σ2

)]
Gtσ2(x , y)dydx ,

where

f (x , y) =
ρ

σ
Y0[ex − 1]− ρ2

2σ2
Y 2
0 y (8)

Gt(x , y) = exp

(
− x

2
− t

8
− 1 + e2x

2y

)
θ

(
ex

y
, t

)
1

y
, (9)



and the function θ is defined, using hyperbolic functions, by the
formula

θ(r , t) =
r√

2π3t
e

π2

2t

∫ ∞
0

e
−ξ2

2t
−r cosh(ξ) sinh(ξ) sin

(
πξ

t

)
dξ.

Theorem 2 follows form Theorem 1 and the distribution of the
vector (

∫ t
0 YudZu,

∫ t
0 Y 2

u du) obtained by Matsumoto and Yor.



Vanilla options in Linear SV

We provide representations for the arbitrage prices of European call
and put options in Linear SV. These formulae generalize the
famous Black-Scholes formulae as well as the result of Hull and
White for a stochastic volatility model with uncorrelated noises.

It is worth mentioning that representations of option prices in
Linear SV were presented earlier in work of Romano and Touzi.
However the formulae were presented in a bit different setting of
correlation structure and under some strong assumptions of
bounded SDE’s coefficients.



Theorem 3
The prices of European call and put options have the following
representations:

E[Xt − K ]+ = X0E
[
eµZ (t)+

σ2
Z (t)

2 Φ(d1(t))
]
− KEΦ(d2(t)),

E[K − Xt ]
+ = KEΦ(−d2(t))− X0E

[
eµZ (t)+

σ2
Z (t)

2 Φ(−d1(t))

]
,

d1(t) =
ln X0

K + µZ (t) + σ2Z (t)

σZ (t)
, d2(t) = d1(t)− σZ (t),

and µZ (t) and σ2Z (t) are given by (5) and (6).



Connection between distribution of the asset price and
prices of put options

The linear stochastic volatility model has conditionally the
structure of Black-Scholes model, so vanilla options prices inherit
some special properties of Black-Scholes that enable us to find a
probabilistic representation for a density function in terms of prices
of put options.

Theorem 4
In a linear stochastic volatility model with X0 = x we have, for
r ≥ 0,

P(Xt ≤ r) =
∂

∂r
E(r − Xt)

+, (10)

gXt (r) =
∂2

∂r2
E(r − Xt)

+. (11)



In the next corollary we find that the Laplace transform of Xt for
λ > 0 is equal to a price of put option with random strike.

Corollary

In a linear stochastic volatility model we have, for any λ > 0,

Ee−λXt = λE(Tλ − Xt)
+, (12)

where Tλ is exponential random variable with parameter λ
independent of X .

Proof.
We have, by (11),

Ee−λXt =

∫ ∞
0

e−λr
∂2

∂r2
E(r − Xt)

+dr = λ

∫ ∞
0

λe−λrE(r − Xt)
+dr ,

(13)

where we in the second equality we have integrated by parts and
fact that ∂

∂rE(r − Xt)
+|r=0 = 0 .



Option prices in Lognormal SV model

Theorem 5
In a lognormal SV model the prices of vanilla options are given by

E[Xt − K ]+

=

∫ ∞
−∞

∫ ∞
0

[
X0ef (x ,y)Φ(d1(x , y))− K Φ(d2(x , y))

]
Gtσ2(x , y)dydx ,

E[K − Xt ]
+

=

∫ ∞
−∞

∫ ∞
0

[
K Φ(−d2(x , y))− X0ef (x ,y)Φ(−d1(x , y))

]
Gtσ2(x , y)dydx ,

where f , G are given by (8) and (9), and

d1(x , y) =
ln X0

K + f (x , y)

Y0

√
y 1−ρ2

σ2

+
Y0

2

√
1− ρ2
σ2

y ,

d2(x , y) = d1(x , y)− Y0

2

√
1− ρ2
σ2

y .



Lognormal SV model

Sin and later Jourdain proved that in the lognormal stochastic
volatility model the price process X is a martingale if and only if
ρ ≤ 0. Using our results we can present a simple proof of this fact.

Theorem 6
In the log-normal stochastic volatility model the price process X is
a martingale if and only if ρ ≤ 0.

Sufficiency

Fix any t ≥ 0.

EXt = xEe
∫ t
0 YudWu− 1

2

∫ t
0 Y 2

u du = xEeρ
∫ t
0 YudZu− ρ2

2

∫ t
0 Y 2

u du.

Since

eρ(Yt−Y0)− ρ2

2

∫ t
0 Y 2

u du ≤ xe−ρY0 ,

the local martingale under the expectation is bounded, so it is a
true martingale.



Necessity

Suppose that ρ > 0, Y0 = 1. Suppose, contrary to our claim, that

X is a martingale. Then dQ
dP |Ft := eρ

∫ t
0 YudZu− ρ2

2

∫ t
0 Y 2

u du is a new

probability measure. The process B̂s = Bs − ρ
∫ s
0 Yudu for s ≤ t is

a standard Brownian motion under Q, by the Girsanov theorem.
As Ys = eBs−s/2, the Itô lemma implies

0 < eB̂t−Bt = 1 +

∫ t

0
eB̂u−Bud(B̂u − Bu) = 1− ρ

∫ t

0
eB̂u−u/2du.

In result,

1 = Q
(

eB̂t−Bt > 0
)

= Q
(

1− ρ
∫ t

0
eB̂u−u/2du > 0

)
.

Contradiction. The process X can not be a martingale.



Lognormal SV - the density approximate formula

The log-normal stochastic volatility model is a special case of
SABR model (parameter β = 1) for which the formula for
Black–Scholes implied volatility is given by

σ(r , x , t) = σ ln (x/r)
(

1 + t(σρy/4 + σ2(2− 3ρ2)/24)
)

×
(

ln
(√

1− 2ρσ ln(x/r)/y + (σ ln(x/r)/y)2 + σ ln(x/r)/y − ρ
)

− ln(1− ρ)
)−1

.

We have

E(r − Xt)
+ = rΦ(−d2)− xΦ(−d1),

where

d1 =
ln(x/r) + tσ2(r , x , t)/2

σ(r , x , t)
√

t
, d2 = d1 − σ(r , x , t)

√
t.



This allows us to obtain, using Theorem 4, the density function of
Xt in the Hull-White stochastic volatility model

f (r) =
∂2

∂r2
E(r − Xt)

+ =
∂2

∂r2

(
rΦ(−d2)− xΦ(−d1)

)
=

e−d
2
2/2

√
2π

(
rd2

(∂d2

∂r

)2
− 2

∂d2

∂r
− r

∂2d2

∂r2

)
+

xe−d
2
1/2

√
2π

(
d1

(∂d1

∂r

)2
+
∂2d1

∂r2

)
. (14)

In result, when we consider the Hull-White stochastic volatility
model with parameter ρ calibrated to market prices of the options,
the formula (14) gives the calibrated distribution of the asset price
process.



Heston and extended Heston SV models

Let us recall that an extended CIR process is a process R given by

dRt = κ(θ(t)− Rt)dt +
√

RtdZt , (15)

where κ is a positive constant, θ : [0,∞) 7→ [0,∞) is a continuous
function and R0 ≥ 0. It is well known that Rt ≥ 0. If
θ(t) ≡ θ > 0, then we have the classical CIR process given by

dRt = κ(θ − Rt)dt +
√

RtdZt . (16)

Taking Y 2
t = Rt , where R is a CIR or an extended CIR process, we

consider the Heston stochastic volatility model and the extended
Heston stochastic volatility model. We have to mention the results
about explosions in Heston model and it’s martingale property due
to works of Leif, Andersen and Piterbarg or the recent work of
Keller-Ressel. We expand considerations to extended Heston model
and give another, new look at classical Heston model.



Theorem 7
In the Heston and extended Heston stochastic volatility models the
process X is a martingale.

Theorem 8
Let ρ ≤ 0. If the natural number k satisfies k ≤ 1

1−ρ2 , then the
k-moment of Xt exists for t ≥ 0 in the Heston and extended
Heston models.

Proof
Fix t ≥ 0. From the fact R = Y 2 and from (16) we have

EX k
t = xkEek

∫ t
0 YudWu− k

2

∫ t
0 Y 2

u du = xkEe
kρ

∫ t
0 YudZu−

(
k
2
− k2(1−ρ2)

2

) ∫ t
0 Y 2

u du
.

By (15) ∫ t

0
YudZu = Rt − R0 − κ

∫ t

0
θ(u)du + κ

∫ t

0
Rudu

and Rt ≥ 0.



Proof
In result

EX k
t = xke−kρR0−kρκ

∫ t
0 θ(u)duEe

kρRt+kρκ
∫ t
0 Rudu−

(
k
2
− k2(1−ρ2)

2

) ∫ t
0 Rudu

(17)

≤ xke−kρR0−kρκ
∫ t
0 θ(u)du,

because Rs ≥ 0, ρ ≤ 0 and k(1− ρ2) ≤ 1. The result follows.

Formula (17) gives a form of the k-moment of X in terms of the

Laplace transform Ee−λRt−γ
∫ t
0 Rudu for λ ≥ 0 and γ > 0. For the

CIR process the form of this transform is well known. In the next
theorem we generalize this result and present an explicite form of
Laplace transform for an extended CIR process. This, in particular,
enables us to use (17) to find an explicite form of the k-moment of
X .



Laplace transform

Theorem 7
Let R be an extended CIR process. For λ ≥ 0, γ > 0, t ≥ 0
λ >

√
κ2 + 2γ − κ we have

Ee−λRt−γ
∫ t
0 Rudu = e−R0f (t)−κ

∫ t
0 θ(s)f (s)ds , (18)

where

f (t) =
κ+

√
κ2 + 2γ + ce

√
κ2+2γt(

√
κ2 + 2γ − κ)

ce
√
κ2+2γt − 1

, (19)

c =
λ+ κ+

√
κ2 + 2γ

λ+ κ−
√
κ2 + 2γ

> 1. (20)



Using Theorem 7 we obtain an alternative proof of the well-known
result for a classical CIR process where θ(t) ≡ θ > 0 .

Corollary

For a classical CIR process R and for λ ≥ 0, γ ≥ 0, t ≥ 0
λ >

√
κ2 + 2γ − κ we have

Ee−λRt−γ
∫ t
0 Rudu = e−R0f (t)+θκt(κ+

√
κ2+2γ)

(
ce
√
κ2+2γt − 1

)−2κθ
,

where f is given by (19) and c is given by (20).



Approximation

We can approximate the price of put option in an extended Heston
model in the case ρ ≤ 0 using last corollary and Theorem 7.
Indeed, for λ > 0 we see from (13) that∫ ∞

0
e−λuE(u − Xt)

+du =
1

λ2
Ee−λXt . (21)

If ρ ≤ 0 and n ≤ 1
1−ρ2 for i ≤ n we can compute EX i

t using (17).
Now, we use the following approximation

Ee−λXt ≈
n∑

i=0

(−λ)i

i !
EX i

t .

In result from (21) we have∫ ∞
0

e−λuE(u − Xt)
+du ≈ 1

λ2

n∑
i=0

(−λ)i

i !
EX i

t =
n∑

i=0

(−λ)i−2

i !
EX i

t .

(22)

Now to find the approximate price of the put option E(u − Xt)
+

we have to find the invert Laplace transform (at least numerically)
of the left hand side of (22).
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Thank you for attention !
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