A moment matching market implied calibration

Florence Guillaume, Wim Schoutens

6th General AMaMeF and Banach Center Conference, Warsaw

June 14th, 2013
Motivation

“A derivative pricing model is said to be calibrated to a set of benchmark instruments if the value of these instruments, computed in the model, correspond to their market prices.” (Encyclopedia of Quantitative Finance)
Motivation II

- Standard calibration problem: minimize distance f between market $\{P_i, \ i = 1, \ldots, M\}$ and model prices $\{\hat{P}_i, \ i = 1, \ldots, M\}$ of liquid derivatives
- typically perfect match not possible
- **optimal match:**

$$p^*: f(\{P_i\}, \{\hat{P}_i\}, p^*) \leq f(\{P_i\}, \{\hat{P}_i\}, p'), \quad p^*, p' \in p; \quad (1)$$

where $p = \text{model parameter set}$
- common choice of f:

$$f(\{P_i\}, \{\hat{P}_i\}, p) = \text{RMSE}(\{P_i\}, \{\hat{P}_i\}, p) = \sqrt{\sum_{i=1}^{M} \frac{(P_i - \hat{P}_i(p))^2}{M}}$$
Motivation III

- use p^* to price exotic (illiquid) derivatives
- different p^* \Rightarrow different prices for exotics and different hedge ratios

Sources of calibration risk:

- Which error function f?

 ‘For complex products [...] banks must explicitly assess the need for valuation adjustments to reflect two forms of model risk: the model risk associated with using a possibly incorrect valuation methodology; and the risk associated with using unobservable (and possibly incorrect) calibration parameters in the valuation model.” (Basel Committee on Banking Supervision)
Motivation IV

- inverse problem (1)
 - ill-posed
 - instable solution for small changes in $\{P_i, \ i = 1, \ldots, M\} \Rightarrow$ significant impact on price of exotics/structured products
 - typically RMSE = non-convex function of $p \Rightarrow$ solution of (1) depends on initial values of p
 - computation time significant (need for numerical methods to compute model prices)

- potential solutions: relative entropy with respect to a prior model as
 - selection criterion
 - regularization of (1)

But solution still depends on choice of the prior and on starting values of p

\Rightarrow alternative methodology: **moment matching market implied calibration**
Moment matching market implied calibration: concept I

\[\mathbb{E}[g(S_T)] = g(\kappa) + g'(\kappa)(\exp((r - q)T)S_0 - \kappa) + \exp(rT) \left(\int_0^K g''(K)P(K,T)dK \right) + \int_\kappa^\infty g''(K)C(K,T)dK \]

\{ variance, skewness, kurtosis, ...\}
Moment matching market implied calibration: concept II

- $p^* = p$ compatible with market implied moments at one T
- market implied moments: vanilla option payoffs spanning formula (VIX, SKEW methodology)
- generalize CBOE methodology to extract 2nd to $(N + 1)$th moments from option surface ($N =$ size of p)
- match 2nd to $(N + 1)$th model and market implied moments
- \Rightarrow moment matching calibration problem \equiv system of N algebraic equations which gives directly p^* in terms of the moments observed in the market

Applications:
- calibration on one maturity
- deriving starting values for standard calibration problem
- deriving prior model
any twice differentiable payoff can be expanded as a weighted sum of vanilla option payoffs:

\[
\mathbb{E}[g(S_T)] = g(\kappa) + g'(\kappa) \exp(rT)(C(\kappa, T) - P(\kappa, T)) + \exp(rT) \left(\int_0^\kappa g''(K)P(K, T)dK + \int_\kappa^\infty g''(K)C(K, T)dK \right),
\]

where \(C(K, T)\) and \(P(K, T)\) are prices of European call and put options with maturity \(T\) and strike \(K\)

\(\kappa\) is some strike level

\(\Rightarrow\) closed-form expression for \(N\)th moment of \(X_T = \log\left(\frac{S_T}{S_0}\right)\):

\[
g(S_T) = \left(\log\left(\frac{S_T}{S_0}\right)\right)^N
\]
For $N \geq 2$

$$
\mathbb{E} \left[\left(\log \frac{S_T}{S_0} \right)^N \right] = \left(\log \frac{K_0}{S_0} \right)^N + N \left(\log \frac{K_0}{S_0} \right)^{N-1} \left(\frac{F_0}{K_0} - 1 \right) + \exp(rT) \left(\int_0^{K_0} \frac{N}{K^2} \left((N - 1) \left(\log \frac{K}{S_0} \right)^{N-2} - \left(\log \frac{K}{S_0} \right)^{N-1} \right) P(K, T) dK \right. \\
+ \left. \int_{K_0}^{\infty} \frac{N}{K^2} \left((N - 1) \left(\log \frac{K}{S_0} \right)^{N-2} - \left(\log \frac{K}{S_0} \right)^{N-1} \right) C(K, T) dK \right)
$$

Vanilla options only traded for a discrete set of strikes

$$
\mathbb{E} \left[\left(\log \frac{S_T}{S_0} \right)^N \right] = \left(\log \frac{K_0}{S_0} \right)^N + N \left(\log \frac{K_0}{S_0} \right)^{N-1} \left(\frac{F_0}{K_0} - 1 \right) + \exp(rT)N \\
\sum_{i=1}^{M} \frac{\Delta K_i}{K_i^2} \left((N - 1) \left(\log \frac{K_i}{S_0} \right)^{N-2} - \left(\log \frac{K_i}{S_0} \right)^{N-1} \right) Q(K_i), \quad (3)
$$
Matching of standardized moments I

- Market implied variance v, skewness s and kurtosis k:

\[
\begin{align*}
v &= \mathbb{E}\left[X_T^2\right] - (\mathbb{E}[X_T])^2 \\
s &= \frac{\mathbb{E}\left[X_T^3\right] - 3\mathbb{E}[X_T]\mathbb{E}[X_T^2] + 2(\mathbb{E}[X_T])^3}{(\text{Var}(X_T))^{3/2}} \\
k &= \frac{\mathbb{E}\left[X_T^4\right] - 4\mathbb{E}[X_T]\mathbb{E}[X_T^3] + 6(\mathbb{E}[X_T])^2\mathbb{E}[X_T^2] - 3(\mathbb{E}[X_T])^4}{(\text{Var}(X_T))^2},
\end{align*}
\]

- Closed-form formula for the model moments if characteristic function of $X_T = \log\left(\frac{S_T}{S_0}\right)$ known in closed-form:

\[
\mathbb{E}\left[X_T^N\right] = i^{-N} \frac{d^N}{du^N} \phi_{X_T}(u)|_{u=0} \quad (4)
\]

- $\phi_{X_T}(u)$ available for a wide range of asset pricing models
Matching of standardized moments II

- infer p^* by matching 2nd to $(N + 1)$th model and market implied moments/standardized moments
- mean of S_T adjusted beforehand
Examples: Lévy driven models

Stock price model

\[S_t = \frac{S_0 \exp((r - q)t + X_t)}{\mathbb{E}_Q[\exp(X_t)]]} = S_0 \exp((r - q + \omega)t + X_t) \quad (5) \]

where \(X = \{X_t, t \geq 0\} \) is a Lévy process

\(\omega = -\log(\phi_X(-i)) \) (convexity correction)

characteristic function of \(X_T \) known in closed-form for many popular Lévy processes

Numerical study for Meixner model (VG and NIG models: see paper)
Moment calibration problem

- Exponential VG, NIG and Meixner models: 3 parameters calibrated by solving

\[
\begin{align*}
\text{Var}^{\text{Market}}(X_T) &= \text{Var}^{\text{Model}}(X_T) \\
\text{Skewness}^{\text{Market}}(X_T) &= \text{Skewness}^{\text{Model}}(X_T) \\
\text{Kurtosis}^{\text{Market}}(X_T) &= \text{Kurtosis}^{\text{Model}}(X_T)
\end{align*}
\]

if (6) admits a solution which satisfies the domain conditions of the model parameter set \(p \)

- If (6) admits no solution \(\Rightarrow \) modified moment calibration problem (adjust market implied skewness and kurtosis)
Meixner model I

Characteristic function of the Meixner distribution $\text{Meixner}(\alpha, \beta, \delta)$ with parameters $\alpha > 0, \beta \in]-\pi, \pi[\text{ and } \delta > 0$

$$\phi_{\text{Meixner}}(u; \alpha, \beta, \delta) = \left(\frac{\cos \left(\frac{\beta}{2} \right)}{\cosh \left(\frac{\alpha u - i \beta}{2} \right)} \right)^{2\delta}$$

<table>
<thead>
<tr>
<th></th>
<th>$X_1 \sim \text{Meixner}(\alpha, \beta, \delta)$</th>
<th>$X_T \sim \text{Meixner}(\alpha, \beta, \delta T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>$\alpha \delta \tan \left(\frac{\beta}{2} \right)$</td>
<td>$\alpha \delta T \tan \left(\frac{\beta}{2} \right)$</td>
</tr>
<tr>
<td>variance</td>
<td>$\frac{\alpha^2 \delta}{2 \cos^2 \left(\frac{\beta}{2} \right)}$</td>
<td>$\frac{\alpha^2 \delta T}{2 \cos^2 \left(\frac{\beta}{2} \right)}$</td>
</tr>
<tr>
<td>skewness</td>
<td>$\sin \left(\frac{\beta}{2} \right) \sqrt{\frac{2}{\delta}}$</td>
<td>$\sin \left(\frac{\beta}{2} \right) \sqrt{\frac{2}{\delta T}}$</td>
</tr>
<tr>
<td>kurtosis</td>
<td>$3 + \frac{2-\cos(\beta)}{\delta}$</td>
<td>$3 + \frac{2-\cos(\beta)}{\delta T}$</td>
</tr>
</tbody>
</table>
Meixner model II

system (6) reduces to

\[
\begin{align*}
\beta &= 2 \arctan \left(\text{sign}(s) \sqrt{\frac{s^2}{2(k-3)-3s^2}} \right) \\
\alpha &= \sqrt{vs} \cot \left(\frac{\beta}{2} \right) \\
\delta &= \frac{2-\cos(\beta)}{T(k-3)}.
\end{align*}
\]

Meixner system (7) admits a solution \(\{\alpha > 0, \beta \in]-\pi, \pi[, \delta > 0\}\) iff

\[6 + 3s^2 - 2k < 0.\]

existence domain of the Meixner moment calibration problem independent of the market implied variance

only depends on the market implied skewness and kurtosis
Moment calibration problem: existence domain

\[6 + 3s^2 - 2k < 0 \quad \supset \quad 9 + 5s^2 - 3k < 0 \]

Figure: Existence domain for the moment calibration problem (6) under the VG and Meixner exponential models (left) and under the NIG exponential model (right).
Modified moment calibration problem I

Method 1: least squares moment calibration problem

- replace \((s^M, k^M)\) by \((s^A_1, k^A_1 + \epsilon)\)
- minimize distance between adjusted and market implied couples skewness-kurtosis
- \(\equiv\) allocating same importance to skewness and kurtosis matching in a standard calibration optimizer

Figure: Calibration methods.
Modified moment calibration problem II

Method 2: matching the skew
- replace \((s^M, k^M)\) by
 \((s^A_2 = s^M, k^A_2 + \epsilon)\)
- match market implied skewness
- adjust kurtosis

Figure: Calibration methods.
Bootstrapping market implied moment matching calibration I

- Calibration of Markov models with piecewise constant parameters between successive quoted option maturities
- Exploit additive property of cumulants of independent random variables
- Solve M independent moment matching systems of N equations, where M is the number of maturities
- Examples: Lévy models with piecewise constant parameters
Stock price model:

\[S_t = S_{T_{i-1}} \exp \left((r - q + \omega_i)(t - T_{i-1}) + X_{t-T_{i-1}}^{(i)} \right), \quad t \in [T_{i-1}, T_i) \]

where \(X^{(i)} = \{X_t^{(i)}, t \geq 0\}, \ i = 1, \ldots, M \) are independent Lévy processes

- \(T_0 \equiv 0 \)
- \(\omega_i = -\log \left(\phi_{X_1^{(i)}}(-i) \right), \ i = 1, \ldots M \) (convexity corrections)

\[S_t = S_0 \prod_{j=1}^{i-1} \exp \left((r - q + \omega_j)(T_j - T_{j-1}) + X_{T_{j-1}-T_j}^{(j)} \right) \]
\[\times \exp \left((r - q + \omega_i)(t - T_{i-1}) + X_{t-T_{i-1}}^{(i)} \right), \quad t \in [T_{i-1}, T_i]. \]
Matching of the subprocesses standardized moments I

- match market implied and model moments of the subprocesses $X_t^{(i)}$, $t \in [T_{i-1}, T_i), i = 1, 2, \ldots, M$
- market implied formula (3): approximation of the moments of X_t over the periods $[0, T_i]$
- need for similar approximations for the moments of X_t over the subperiods $[T_{i-1}, T_i], i = 1, \ldots, M$
- \Rightarrow consider cumulants as latent variables
- compute recursively the cumulants of $X^{(i)}$, $i = 1, \ldots, M$:

$$
\kappa_n \left(X_{T_i-T_{i-1}} \right) = \kappa_n \left(X_{T_i} \right) - \sum_{j=1}^{i-1} \kappa_n \left(X_{T_j-T_{j-1}} \right), \quad n = 2, \ldots, N + 1
$$
Matching of the subprocesses standardized moments II

- Market implied variance v_i, skewness s_i and kurtosis k_i, $i = 1, \ldots, M$:

\[
\begin{align*}
V_i &= \kappa_2 \left(X_{T_i - T_{i-1}}^{(i)} \right) \\
S_i &= \frac{\kappa_3 \left(X_{T_i - T_{i-1}}^{(i)} \right)}{v_i^{3/2}} \\
k_i &= \frac{\kappa_4 \left(X_{T_i - T_{i-1}}^{(i)} \right)}{v_i^2} + 3,
\end{align*}
\]
Matching of the subprocesses standardized moments III

- solve successively the moment system

\[
\begin{align*}
\text{Var}^{\text{Model}}\left(X_{T_i-T_{i-1}}^{(i)}\right) &= v_i \\
\text{Skewness}^{\text{Model}}\left(X_{T_i-T_{i-1}}^{(i)}\right) &= s_i \\
\text{Kurtosis}^{\text{Model}}\left(X_{T_i-T_{i-1}}^{(i)}\right) &= k_i
\end{align*}
\]

(9)

if (9) admits a solution which satisfies the domain conditions of the parameter set \(p_i\) of the subprocess \(X^{(i)}\)

- if (9) admits no solution \(\Rightarrow\) modified moment calibration problem (i.e. replace \(s_i\) by \(s_i^{A_1}\) (or \(s_i^{A_2}\)) and \(k_i\) by \(k_i^{A_1}\) (or \(k_i^{A_2}\)))
Numerical study: calibration on one maturity

- Comparison with standard calibration problem: Carr-Madan formula

\[\hat{C}(K, T) = \frac{\exp(-\alpha \log(K))}{\pi} \int_{0}^{+\infty} \exp(-iv \log(K)) \varrho(v) dv, \]

where

\[\varrho(v) = \exp(-rT) \mathbb{E}[\exp(i(v - (\alpha + 1)i) \log(S_T))] \frac{\alpha^2 + \alpha - v^2 + i(2\alpha + 1)v}{\alpha^2 + \alpha - v^2 + i(2\alpha + 1)v} \]

- Calibration of VG, NIG and Meixner models on each T-set of S&P 500 options quoted on 30/10/09
Numerical study: calibration on one maturity II

Table: Standardized moments - Meixner exponential model (30/10/2009)

<table>
<thead>
<tr>
<th>T</th>
<th>Market Var</th>
<th>Market Skew</th>
<th>Market Kurt</th>
<th>Moment matching (1) Var</th>
<th>Moment matching (1) Skew</th>
<th>Moment matching (1) Kurt</th>
<th>Moment matching (2) Var</th>
<th>Moment matching (2) Skew</th>
<th>Moment matching (2) Kurt</th>
<th>Carr-Madan Var</th>
<th>Carr-Madan Skew</th>
<th>Carr-Madan Kurt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01918</td>
<td>0.002520</td>
<td>-1.6507</td>
<td>7.4833</td>
<td>0.002520</td>
<td>-1.6507</td>
<td>7.4833</td>
<td>0.002520</td>
<td>-1.6507</td>
<td>7.4833</td>
<td>0.002405</td>
<td>-1.6803</td>
<td>9.2223</td>
</tr>
<tr>
<td>0.06027</td>
<td>0.006019</td>
<td>-2.1681</td>
<td>11.1906</td>
<td>0.006019</td>
<td>-2.1681</td>
<td>11.1906</td>
<td>0.006019</td>
<td>-2.1681</td>
<td>11.1906</td>
<td>0.005911</td>
<td>-2.0472</td>
<td>11.5531</td>
</tr>
<tr>
<td>0.13699</td>
<td>0.012751</td>
<td>-2.0766</td>
<td>11.2002</td>
<td>0.012751</td>
<td>-2.0766</td>
<td>11.2002</td>
<td>0.012751</td>
<td>-2.0766</td>
<td>11.2002</td>
<td>0.012356</td>
<td>-1.8071</td>
<td>9.3359</td>
</tr>
<tr>
<td>0.16986</td>
<td>0.015881</td>
<td>-1.7732</td>
<td>8.4249</td>
<td>0.015881</td>
<td>-1.7732</td>
<td>8.4249</td>
<td>0.015881</td>
<td>-1.7732</td>
<td>8.4249</td>
<td>0.015455</td>
<td>-1.7920</td>
<td>9.1876</td>
</tr>
<tr>
<td>0.21370</td>
<td>0.019710</td>
<td>-2.1268</td>
<td>11.7858</td>
<td>0.019710</td>
<td>-2.1268</td>
<td>11.7858</td>
<td>0.019710</td>
<td>-2.1268</td>
<td>11.7858</td>
<td>0.018796</td>
<td>-1.7759</td>
<td>8.9225</td>
</tr>
<tr>
<td>0.30959</td>
<td>0.027764</td>
<td>-1.6737</td>
<td>7.2763</td>
<td>0.027764</td>
<td>-1.6737</td>
<td>7.2763</td>
<td>0.027764</td>
<td>-1.6737</td>
<td>7.3020</td>
<td>0.027713</td>
<td>-1.7469</td>
<td>8.5468</td>
</tr>
<tr>
<td>0.38630</td>
<td>0.037422</td>
<td>-2.1225</td>
<td>11.5692</td>
<td>0.037422</td>
<td>-2.1225</td>
<td>11.5692</td>
<td>0.037422</td>
<td>-2.1225</td>
<td>11.5692</td>
<td>0.035498</td>
<td>-1.7840</td>
<td>8.7435</td>
</tr>
<tr>
<td>0.41644</td>
<td>0.039691</td>
<td>-1.7508</td>
<td>7.7691</td>
<td>0.039691</td>
<td>-1.7508</td>
<td>7.7691</td>
<td>0.039691</td>
<td>-1.7508</td>
<td>7.7691</td>
<td>0.038818</td>
<td>-1.8079</td>
<td>8.8607</td>
</tr>
<tr>
<td>0.63562</td>
<td>0.064212</td>
<td>-1.9973</td>
<td>9.8895</td>
<td>0.064212</td>
<td>-1.9973</td>
<td>9.8895</td>
<td>0.064212</td>
<td>-1.9973</td>
<td>9.8895</td>
<td>0.061368</td>
<td>-1.7922</td>
<td>8.6016</td>
</tr>
<tr>
<td>0.66575</td>
<td>0.065620</td>
<td>-1.6770</td>
<td>6.9391</td>
<td>0.065620</td>
<td>-1.6228</td>
<td>7.0502</td>
<td>0.065620</td>
<td>-1.6770</td>
<td>7.3183</td>
<td>0.065325</td>
<td>-1.8128</td>
<td>8.6972</td>
</tr>
<tr>
<td>0.88493</td>
<td>0.092286</td>
<td>-1.9473</td>
<td>9.2353</td>
<td>0.092286</td>
<td>-1.9473</td>
<td>9.2353</td>
<td>0.092286</td>
<td>-1.9473</td>
<td>9.2353</td>
<td>0.089373</td>
<td>-1.8171</td>
<td>8.6485</td>
</tr>
<tr>
<td>0.91781</td>
<td>0.085001</td>
<td>-1.2456</td>
<td>4.2732</td>
<td>0.085001</td>
<td>-0.9570</td>
<td>4.4737</td>
<td>0.085001</td>
<td>-1.2456</td>
<td>5.4275</td>
<td>0.093292</td>
<td>-1.8115</td>
<td>8.5731</td>
</tr>
<tr>
<td>1.13425</td>
<td>0.115564</td>
<td>-1.6214</td>
<td>6.6959</td>
<td>0.115564</td>
<td>-1.5719</td>
<td>6.8064</td>
<td>0.115564</td>
<td>-1.6214</td>
<td>7.0433</td>
<td>0.118806</td>
<td>-1.8296</td>
<td>8.6449</td>
</tr>
<tr>
<td>1.63288</td>
<td>0.172688</td>
<td>-1.6207</td>
<td>6.6222</td>
<td>0.172688</td>
<td>-1.5569</td>
<td>6.7358</td>
<td>0.172688</td>
<td>-1.6207</td>
<td>7.0398</td>
<td>0.177114</td>
<td>-1.8041</td>
<td>8.4365</td>
</tr>
<tr>
<td>2.13151</td>
<td>0.249946</td>
<td>-2.1216</td>
<td>11.7481</td>
<td>0.249946</td>
<td>-2.1216</td>
<td>11.7481</td>
<td>0.249946</td>
<td>-2.1216</td>
<td>11.7481</td>
<td>0.239557</td>
<td>-1.7952</td>
<td>8.3330</td>
</tr>
</tbody>
</table>
Numerical study: calibration on one maturity III

Table: Optimal parameter set - Meixner exponential model (30/10/2009)

<table>
<thead>
<tr>
<th>T</th>
<th>α</th>
<th>β</th>
<th>δ</th>
<th>RMSE</th>
<th>α</th>
<th>β</th>
<th>δ</th>
<th>RMSE</th>
<th>α</th>
<th>β</th>
<th>δ</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01918</td>
<td>0.0447</td>
<td>-2.1523</td>
<td>29.6489</td>
<td>0.7277</td>
<td>0.0447</td>
<td>-2.1523</td>
<td>29.6489</td>
<td>0.7277</td>
<td>0.0978</td>
<td>-1.4006</td>
<td>15.3403</td>
<td>0.3260</td>
</tr>
<tr>
<td>0.06027</td>
<td>0.1171</td>
<td>-1.9251</td>
<td>4.7539</td>
<td>0.6017</td>
<td>0.1171</td>
<td>-1.9251</td>
<td>4.7539</td>
<td>0.6017</td>
<td>0.1637</td>
<td>-1.5316</td>
<td>3.8035</td>
<td>0.3432</td>
</tr>
<tr>
<td>0.13699</td>
<td>0.2102</td>
<td>-1.6801</td>
<td>1.8775</td>
<td>0.5381</td>
<td>0.2102</td>
<td>-1.6801</td>
<td>1.8775</td>
<td>0.5381</td>
<td>0.1885</td>
<td>-1.6345</td>
<td>2.3777</td>
<td>0.2808</td>
</tr>
<tr>
<td>0.16986</td>
<td>0.1500</td>
<td>-1.9593</td>
<td>2.5814</td>
<td>0.8985</td>
<td>0.1500</td>
<td>-1.9593</td>
<td>2.5814</td>
<td>0.8985</td>
<td>0.2058</td>
<td>-1.6499</td>
<td>1.9780</td>
<td>0.2694</td>
</tr>
<tr>
<td>0.21370</td>
<td>0.2809</td>
<td>-1.6319</td>
<td>1.0978</td>
<td>0.7772</td>
<td>0.2809</td>
<td>-1.6319</td>
<td>1.0978</td>
<td>0.7772</td>
<td>0.2117</td>
<td>-1.7103</td>
<td>1.6901</td>
<td>0.3269</td>
</tr>
<tr>
<td>0.30959</td>
<td>0.0745</td>
<td>-2.6236</td>
<td>2.1188</td>
<td>1.2492</td>
<td>0.0745</td>
<td>-2.6194</td>
<td>2.1524</td>
<td>1.2647</td>
<td>0.2318</td>
<td>-1.7959</td>
<td>1.2947</td>
<td>0.2859</td>
</tr>
<tr>
<td>0.38630</td>
<td>0.3682</td>
<td>-1.6795</td>
<td>0.6370</td>
<td>1.0458</td>
<td>0.3682</td>
<td>-1.6795</td>
<td>0.6370</td>
<td>1.0458</td>
<td>0.2624</td>
<td>-1.8160</td>
<td>1.0108</td>
<td>0.3174</td>
</tr>
<tr>
<td>0.41644</td>
<td>0.1166</td>
<td>-2.4964</td>
<td>1.4093</td>
<td>1.5078</td>
<td>0.1166</td>
<td>-2.4964</td>
<td>1.4093</td>
<td>1.5078</td>
<td>0.2727</td>
<td>-1.8349</td>
<td>0.9264</td>
<td>0.3255</td>
</tr>
<tr>
<td>0.63562</td>
<td>0.3410</td>
<td>-1.9557</td>
<td>0.5425</td>
<td>0.8997</td>
<td>0.3410</td>
<td>-1.9557</td>
<td>0.5425</td>
<td>0.8997</td>
<td>0.3101</td>
<td>-1.9222</td>
<td>0.6584</td>
<td>0.3617</td>
</tr>
<tr>
<td>0.66575</td>
<td>0.1146</td>
<td>-2.6038</td>
<td>1.0602</td>
<td>2.0610</td>
<td>0.1146</td>
<td>-2.6204</td>
<td>0.9973</td>
<td>1.8868</td>
<td>0.3167</td>
<td>-1.9423</td>
<td>0.6230</td>
<td>0.4185</td>
</tr>
<tr>
<td>0.88493</td>
<td>0.3178</td>
<td>-2.1556</td>
<td>0.4625</td>
<td>1.1760</td>
<td>0.3178</td>
<td>-2.1556</td>
<td>0.4625</td>
<td>1.1760</td>
<td>0.3526</td>
<td>-1.9902</td>
<td>0.4816</td>
<td>0.3684</td>
</tr>
<tr>
<td>0.91781</td>
<td>0.1304</td>
<td>-2.2673</td>
<td>1.9529</td>
<td>6.5955</td>
<td>0.1304</td>
<td>-2.4522</td>
<td>1.2440</td>
<td>3.4699</td>
<td>0.3485</td>
<td>-2.0174</td>
<td>0.4754</td>
<td>0.4654</td>
</tr>
<tr>
<td>1.13425</td>
<td>0.1520</td>
<td>-2.5872</td>
<td>0.6602</td>
<td>2.2549</td>
<td>0.1520</td>
<td>-2.6033</td>
<td>0.6233</td>
<td>1.9455</td>
<td>0.3850</td>
<td>-2.0455</td>
<td>0.3838</td>
<td>0.3490</td>
</tr>
<tr>
<td>1.63288</td>
<td>0.1858</td>
<td>-2.5822</td>
<td>0.4668</td>
<td>2.8691</td>
<td>0.1858</td>
<td>-2.6031</td>
<td>0.4333</td>
<td>2.2391</td>
<td>0.4430</td>
<td>-2.0852</td>
<td>0.2807</td>
<td>0.5603</td>
</tr>
<tr>
<td>2.13151</td>
<td>0.9989</td>
<td>-1.6308</td>
<td>0.1105</td>
<td>4.7591</td>
<td>0.9989</td>
<td>-1.6308</td>
<td>0.1105</td>
<td>4.7591</td>
<td>0.4889</td>
<td>-2.1260</td>
<td>0.2223</td>
<td>0.5409</td>
</tr>
</tbody>
</table>
Numerical study: calibration on one maturity IV

- v can always be reproduced under moment calibration problem (existence domain independent of v)
- standard calibration: difference between model and market implied var per annum of up to $> 15 \%$ ($\max \frac{\Delta \sigma}{\sigma} = 0.07336$)
- v, s and k can be matched for a wider set of T’s under VG and Meixner models
- if $(s, k) \notin$ existence domain, s and k still fitted relatively well
- standard calibration: significant discrepancies between model and market implied moments
- if $\not\exists$ solution for moment calibration problem (6), method 2 for the modified moment calibration problem gives a better fit of the volatility curve than method 1
- moment calibration procedure: more than 5000 x faster
Numerical results: term structure Lévy models I

Table: Optimal parameter set - Meixner term structure model

<table>
<thead>
<tr>
<th>Moment matching (1)</th>
<th>Moment matching (2)</th>
<th>Carr-Madan</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_i</td>
<td>α_i</td>
<td>β_i</td>
</tr>
<tr>
<td>0.02192</td>
<td>0.0477</td>
<td>0.8889</td>
</tr>
<tr>
<td>0.11781</td>
<td>0.0950</td>
<td>-2.3265</td>
</tr>
<tr>
<td>0.19452</td>
<td>0.0529</td>
<td>-2.9396</td>
</tr>
<tr>
<td>0.22466</td>
<td>0.0210</td>
<td>-3.0698</td>
</tr>
<tr>
<td>0.27123</td>
<td>0.0261</td>
<td>-3.0503</td>
</tr>
<tr>
<td>0.44384</td>
<td>0.5148</td>
<td>-0.9929</td>
</tr>
<tr>
<td>0.47123</td>
<td>0.4138</td>
<td>-1.5291</td>
</tr>
<tr>
<td>0.69315</td>
<td>0.5182</td>
<td>-1.2038</td>
</tr>
<tr>
<td>0.72055</td>
<td>0.0242</td>
<td>-3.0392</td>
</tr>
<tr>
<td>0.94247</td>
<td>0.0688</td>
<td>-2.8534</td>
</tr>
<tr>
<td>0.97260</td>
<td>0.0253</td>
<td>-3.0351</td>
</tr>
<tr>
<td>1.19178</td>
<td>0.2454</td>
<td>-2.1509</td>
</tr>
<tr>
<td>1.69041</td>
<td>0.7415</td>
<td>-0.7305</td>
</tr>
<tr>
<td>2.18904</td>
<td>0.8963</td>
<td>-0.2863</td>
</tr>
</tbody>
</table>
Numerical results: term structure Lévy models II

Table: Optimal parameter set - Meixner term structure model

(30/10/2009)

<table>
<thead>
<tr>
<th>T_i</th>
<th>α_i</th>
<th>β_i</th>
<th>δ_i</th>
<th>RMSE(T_i)</th>
<th>α_i</th>
<th>β_i</th>
<th>δ_i</th>
<th>RMSE(T_i)</th>
<th>α_i</th>
<th>β_i</th>
<th>δ_i</th>
<th>RMSE(T_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01918</td>
<td>0.0447</td>
<td>-2.1523</td>
<td>29.6489</td>
<td>0.7277</td>
<td>0.0447</td>
<td>-2.1523</td>
<td>29.6489</td>
<td>0.7277</td>
<td>0.0978</td>
<td>-1.4006</td>
<td>15.3403</td>
<td>0.3260</td>
</tr>
<tr>
<td>0.06027</td>
<td>0.0265</td>
<td>-2.9087</td>
<td>3.2854</td>
<td>0.7523</td>
<td>0.0265</td>
<td>-2.9123</td>
<td>3.1855</td>
<td>0.7398</td>
<td>0.2225</td>
<td>-1.7623</td>
<td>1.4978</td>
<td>0.2306</td>
</tr>
<tr>
<td>0.13699</td>
<td>0.2215</td>
<td>-1.8492</td>
<td>1.2966</td>
<td>0.4741</td>
<td>0.2215</td>
<td>-1.8492</td>
<td>1.2966</td>
<td>0.4781</td>
<td>0.1983</td>
<td>-1.7627</td>
<td>1.7163</td>
<td>0.1936</td>
</tr>
<tr>
<td>0.16986</td>
<td>0.0250</td>
<td>-2.6005</td>
<td>21.7287</td>
<td>1.4148</td>
<td>0.0250</td>
<td>-2.8632</td>
<td>5.8566</td>
<td>1.0197</td>
<td>0.2742</td>
<td>-1.8224</td>
<td>0.9737</td>
<td>0.1716</td>
</tr>
<tr>
<td>0.21370</td>
<td>0.0277</td>
<td>-3.0489</td>
<td>0.4895</td>
<td>0.6365</td>
<td>0.0277</td>
<td>-3.0510</td>
<td>0.4682</td>
<td>0.5748</td>
<td>0.2389</td>
<td>-1.9855</td>
<td>0.8130</td>
<td>0.2270</td>
</tr>
<tr>
<td>0.30959</td>
<td>1.0124</td>
<td>-0.4481</td>
<td>0.1558</td>
<td>1.8192</td>
<td>1.0124</td>
<td>-0.4481</td>
<td>0.1558</td>
<td>1.6482</td>
<td>0.2481</td>
<td>-2.0804</td>
<td>0.7869</td>
<td>0.1848</td>
</tr>
<tr>
<td>0.38630</td>
<td>0.0439</td>
<td>-2.9711</td>
<td>0.9447</td>
<td>1.4873</td>
<td>0.0439</td>
<td>-3.0303</td>
<td>0.4030</td>
<td>1.3052</td>
<td>0.3605</td>
<td>-2.0493</td>
<td>0.4455</td>
<td>0.2074</td>
</tr>
<tr>
<td>0.41644</td>
<td>0.0213</td>
<td>-3.0924</td>
<td>0.2004</td>
<td>1.3591</td>
<td>0.0213</td>
<td>-3.0990</td>
<td>0.1504</td>
<td>1.8268</td>
<td>0.3774</td>
<td>-2.1533</td>
<td>0.3762</td>
<td>0.2077</td>
</tr>
<tr>
<td>0.63562</td>
<td>0.1655</td>
<td>-2.6087</td>
<td>0.5668</td>
<td>1.2822</td>
<td>0.1655</td>
<td>-2.6087</td>
<td>0.5668</td>
<td>0.7638</td>
<td>0.3400</td>
<td>-2.1966</td>
<td>0.3815</td>
<td>0.2714</td>
</tr>
<tr>
<td>0.66675</td>
<td>0.0168</td>
<td>-3.1177</td>
<td>0.0472</td>
<td>1.0700</td>
<td>0.0168</td>
<td>-3.1262</td>
<td>0.0196</td>
<td>1.6041</td>
<td>0.4212</td>
<td>-2.3171</td>
<td>0.2614</td>
<td>0.2838</td>
</tr>
<tr>
<td>0.88493</td>
<td>0.1135</td>
<td>-2.8259</td>
<td>0.4664</td>
<td>1.4475</td>
<td>0.1135</td>
<td>-2.8259</td>
<td>0.4664</td>
<td>0.5182</td>
<td>0.3907</td>
<td>-2.2903</td>
<td>0.2552</td>
<td>0.3055</td>
</tr>
<tr>
<td>0.91781</td>
<td>1.0154</td>
<td>-0.7865</td>
<td>0.1554</td>
<td>1.7364</td>
<td>1.0154</td>
<td>-0.7865</td>
<td>0.1554</td>
<td>0.9917</td>
<td>0.2987</td>
<td>-2.4977</td>
<td>0.2868</td>
<td>0.3507</td>
</tr>
<tr>
<td>1.13425</td>
<td>1.0612</td>
<td>-0.6984</td>
<td>0.1463</td>
<td>4.0894</td>
<td>1.0612</td>
<td>-0.6984</td>
<td>0.1463</td>
<td>3.4946</td>
<td>0.4263</td>
<td>-2.3457</td>
<td>0.1991</td>
<td>0.4186</td>
</tr>
<tr>
<td>1.63288</td>
<td>0.1069</td>
<td>-2.8193</td>
<td>0.5163</td>
<td>6.4989</td>
<td>0.1069</td>
<td>-2.9105</td>
<td>0.2666</td>
<td>3.1357</td>
<td>0.5124</td>
<td>-2.2961</td>
<td>0.1546</td>
<td>0.6294</td>
</tr>
<tr>
<td>2.13151</td>
<td>0.4695</td>
<td>-2.6635</td>
<td>0.0788</td>
<td>4.0452</td>
<td>0.4695</td>
<td>-2.6635</td>
<td>0.0788</td>
<td>1.6533</td>
<td>0.5002</td>
<td>-2.4426</td>
<td>0.1227</td>
<td>0.6334</td>
</tr>
</tbody>
</table>
Numerical results: term structure Lévy models III

- Variance fit − Meixner (10/10/08)
- Skewness fit − Meixner (10/10/08)
- Kurtosis fit − Meixner (10/10/08)
- Variance fit − Meixner (30/10/09)
- Skewness fit − Meixner (30/10/09)
- Kurtosis fit − Meixner (30/10/09)
Numerical results: term structure Lévy models IV

Table: Average precision and computation time for the different calibration methodologies.

<table>
<thead>
<tr>
<th></th>
<th>Meixner</th>
<th>Carr-Madan</th>
<th>moment matching (1)</th>
<th>moment matching (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE</td>
<td>0.4209</td>
<td>3.9842</td>
<td>2.3644</td>
<td></td>
</tr>
<tr>
<td>variance RMSE</td>
<td>0.0869</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>skewness RMSE</td>
<td>1.1108</td>
<td>0.1876</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>kurtosis RMSE</td>
<td>22.3479</td>
<td>0.0563</td>
<td>2.3616</td>
<td></td>
</tr>
<tr>
<td>cpu (sec)</td>
<td>77.7178</td>
<td>0.000425</td>
<td>0.000098</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- market implied calibration based on moment matching
- extracting moments from option surface
- calibration in terms of closed-form formulae only \Rightarrow
 - no need of starting value for the model parameters
 - avoids to be stuck in local minima
 - almost instantaneous calibration
- applications
 - calibration on one maturity curve
 - calibration on whole set of maturities: bootstrapping calibration
 - providing starting values/prior model for standard calibration problems

CONTACT:
Florence GUILLAUME
Email: florence.guillaume@wis.kuleuven.be