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A simple Economic model

A firm produces a single good in a stochastic economy on a probability space
(Ω,F ,P) with a filtration {Ft }t≥0

Finite time-horizon [0,T ]

Production rate R(·) depending on a stochastic production capacity {C(t)}t∈[0,T ]

The manager controls C via a control {ν(t)}t∈[0,T ], i.e. C ≡ Cν

Investment and disinvestment are allowed, i.e. ν = (ν+,ν−)

Price of the produced good, cost of investment and benefit from disinvestment
are constant

The manager’s optimisation problem

sup
ν

E

{∫ T

0
e−µF t R(Cν(t))dt

− c+

∫ T

0
e−µF t dν+(t) + c−

∫ T

0
e−µF t dν−(t) + e−µF T G(Cν(T))

}
(1)

with µF > 0 manager’s discount factor, c+ > 0 cost of investment, c− > 0 benefit form
disinvestment, c+ > c− and G a terminal reward.
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Where does the model come from?

Literature on singular stochastic control is huge... this work is mostly inspired by

CH09 M.B. Chiarolla, U.G. Haussmann (2009). On a Stochastic Irreversible Investment
Problem. SIAM J. Control Optim. 48

GP05 X. Guo, H. Pham (2005). Optimal Partially Reversible Investment with Entry
Decision and General Production Function, Stochastic Process. Appl. 115

New features

CH09 have finite horizon but irreversible investment, i.e. ν ≡ ν+ and t 7→ ν+(t ,ω)
monotone increasing P-a.e. ω ∈Ω
GP05 have reversible investment, random entry time but T = +∞

What changes?

Reversible investment is linked to Zero-Sum optimal stopping games (rather
than canonical optimal stopping problems as in CH09)

T <+∞ implies that the inaction region of the manager is delimited by two
curves (rather than two points as in GP05) which are the free-boundaries of the
associated Zero-Sum game
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Main Goals of this work

Existence and uniqueness of an optimal strategy ν∗ = (ν∗+,ν
∗
−) in the class of

bounded variation controls

Study of the associated Zero-Sum optimal stopping game (ZSG): existence of
Nash equilibrium, optimal stopping times (τ∗,σ ∗), free-boundary problem for its
value function

Analysis of the time dependent free-boundaries ŷ+, ŷ− of the ZSG and their
representation as unique solution pair of coupled non-linear, integral equations
of Volterra type (in the spirit of Peskir-Shiryaev 2006)

Characterisation of ν∗ via the solution of a Skorokhod problem in the
time-dependent interval (ŷ+(t), ŷ−(t)), t ∈ [0,T ]
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The control problem

The controlled dynamics

Let (Ω,F ,P) be a complete probability space, {W(t)}t≥0 a 1-dim Brownian motion and
{Ft }t≥0 its natural filtration augmented by P-null sets.

Take µC , σC and fC positive constants, then
dC y ,ν(t) = C y ,ν(t)[−µC dt + σC dW(t)] + fC dν(t), t ≥ 0,

C y ,ν(0) = y > 0,
(2)

where fC dν accounts for the net effect of investment-disinvestment on the production
capacity.

ν ∈ S := {ν : Ω×R+ 7→R+ of B.V., l.c., adapted s.t. ν(0) = 0, P-a.s.}

and ν := ν+ − ν− with ν± ∈ S and increasing (minimal decomposition). It can be proven
that

C y ,ν(t) = C 0(t)[y + ν(t)]

with

C 0(t) := e−(µC + 1
2 σ

2
C )t+σC W(t) and ν(t) :=

∫ t

0

fC

C 0(s)
dν(s)
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The control problem

Production function

Standard Assumptions:

i) C 7→ R(C) is nondecreasing with R(0) = 0 and strictly concave

ii) R is twice continuously differentiable on (0,∞)

iii) Rc (C) := ∂
∂C R(C) satisfies Inada conditions

lim
C→0

Rc (C) =∞ & lim
C→∞

Rc (C) = 0.

A classical example is a Cobb-Douglas type, i.e. R(C) = α−1Cα for α ∈ (0,1)

The scrap value

G : R+ 7→R+ is concave, nondecreasing, continuously differentiable with

c−
fC
≤ Gc (C) ≤

c+

fC
− ηo

for a fixed ηo ∈
(
0, c+−c−

fC

)
.
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The control problem

The manager’s problem

The firm’s future total expected profit at time t ∈ [0,T ] is given by

Jt ,y (ν) = E

{∫ T−t

0
e−µF s R(C y ,ν(s))ds + e−µF (T−t)G(C y ,ν(T − t))

− c+

∫ T−t

0
e−µF s dν+(s) + c−

∫ T−t

0
e−µF s dν−(s)

}
(3)

The value V of the optimal investment-disinvestment problem is

V(t ,y) := sup
ν∈Sy

t ,T

Jt ,y (ν) (4)

with Sy
t ,T :=

{
ν ∈ S restricted to [0,T − t ] and s.t. y + ν(s) ≥ 0 P-a.s for s ∈ [0,T − t ]

}
.

Theorem [Existence and uniqueness of an optimal control]

There exists a unique investment-disinvestment strategy ν∗ ∈ Sy
t ,T optimal for (4).

Proof. Uniqueness by strict concavity of R(·) and hence of V(t , ·); existence by an

application of a version of Komlòs theorem by DeVDK09 (De Vallière-Denis-Kabanov

(2009)).
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The control problem

In what follows we consider a linear scrap value

G(C) = κ+
c−
fC

C

for some κ ≥ 0

We define a probability measure P̃ by

dP̃
dP

∣∣∣∣Ft
:= e−

1
2 σ

2
C t+σC W(t), t ≥ 0

and a new Brownian motion under P̃

W̃(t) := W(t)− σC t , t ≥ 0

by Girsanov theorem
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The zero-sum optimal stopping game

In our setting we can use a result by KW05 (I. Karatzas, H. Wang (2005)) (and a change
of measure) to obtain

Theorem [From the BV control problem to a zero-sum game]

The value function V(t ,y) of the control problem (4) satisfies

∂
∂y

V(t ,y) = v(t ,y), (t ,y) ∈ [0,T ]× (0,∞),

where

v(t ,y) := inf
σ∈[0,T−t]

sup
τ∈[0,T−t]

Ψ (t ,y;σ,τ) = sup
τ∈[0,T−t]

inf
σ∈[0,T−t]

Ψ (t ,y;σ,τ)

with

Ψ (t ,y;σ,τ) := Ẽ

{
c+

fC
e−µ̄σ I{σ≤τ}I{σ<T−t}+

c−
fC

e−µ̄τI{τ<σ }

+ e−µ̄(T−t) c−
fC

I{τ=σ=T−t}+
∫ τ∧σ

0
e−µ̄s Rc (yC 0(s))ds

}
and µ̄ := µC +µF .

Remark: The control has “disappeared” and we deal now with an uncontrolled GBM

{yC 0(t)}t≥0. KW05 characterise Nash equilibrium in terms of the optimal control ν∗
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The zero-sum optimal stopping game

Simple bounds: c−/fC ≤ v(t ,y) ≤ c+/fC for all (t ,y) ∈ [0,T ]× (0,∞).

Theorem: [Continuity]

(t ,y) 7→ v(t ,y) is continuous on [0,T ]× (0,∞).

Proof. Penalisation method adapting arguments by Me80 (J.L. Menaldi (1980)) and
St11 (L. Stettner (2011)).

Byproduct No. 1 of the proof of continuity:

Theorem [Optimal stopping times]

The stopping times
σ ∗(t ,y) := inf{s ∈ [0,T − t) : v(t + s ,yC 0(s)) ≥ c+

fC
} ∧ (T − t),

τ∗(t ,y) := inf{s ∈ [0,T − t) : v(t + s ,yC 0(s)) ≤ c−
fC
} ∧ (T − t),

(5)

are a saddle point for the ZSG.
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The zero-sum optimal stopping game

Byproduct No. 2 of the proof of continuity:

Proposition [Semi-harmonic characterisation]

For (t ,y) ∈ [0,T ]× (0,∞) arbitrary but fixed and ρ ∈ [0,T − t ] any stopping time, v
satisfies

[SUB ] v(t ,y) ≤ Ẽ

{
e−µ̄(ρ∧τ∗)v(t + ρ∧ τ∗,yC 0(ρ∧ τ∗)) +

∫ ρ∧τ∗

0
e−µ̄s Rc (yC 0(s))ds

}
[SUP ] v(t ,y) ≥ Ẽ

{
e−µ̄(σ ∗∧ρ)v(t + σ ∗ ∧ ρ,yC 0(σ ∗ ∧ ρ)) +

∫ σ ∗∧ρ

0
e−µ̄s Rc (yC 0(s))ds

}
[MG ] v(t ,y) = Ẽ

{
e−µ̄(ρ∧σ ∗∧τ∗)v(t + ρ∧ σ ∗ ∧ τ∗,yC 0(ρ∧ σ ∗ ∧ τ∗))

+

∫ ρ∧σ ∗∧τ∗

0
e−µ̄s Rc (yC 0(s))ds

}

cf. for instance Pe09 (G. Peskir (2009)) for more details on semi-harmonic

characterisation of ZSGs
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Free-boundary problem

Continuation and stopping regions

The continuation region is the open set

C :=
{
(t ,y) ∈ [0,T ]× (0,∞) :

c−
fC

< v(t ,y) <
c+

fC

}
The two stopping regions are the closed sets

S+ :=
{
(t ,y) ∈ [0,T ]× (0,∞) : v(t ,y) =

c+

fC

}
S− :=

{
(t ,y) ∈ [0,T ]× (0,∞) : v(t ,y) =

c−
fC

}

Proposition [Existence of the free-boundaries]

For any t ∈ [0,T ], there exist ŷ+(t) < ŷ−(t) such that

Ct = (ŷ+(t), ŷ−(t)) ⊂ [0,∞]

S+,t = [0, ŷ+(t)] & S−,t = [ŷ−(t),∞]

Proof. Follows from y 7→ v(t ,y) monotone.

Remark: optimal stopping times (σ ∗, τ∗) are first entry times of (t ,yC 0(t))t≥0 to S+

and S−, respectively.
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Free-boundary problem

The free-boundary problem for v

Properties above + standard arguments (cf. G. Peskir, A. Shiryaev (2006)) imply that
v ∈ C 1,2 inside the continuation region C and it solves

[MG ]
(
∂t +L− µ̄

)
v(t ,y) = −Rc (y) for ŷ+(t) < y < ŷ−(t), t ∈ [0,T)

[SUP ]
(
∂t +L− µ̄

)
v(t ,y) ≤ −Rc (y) for y > ŷ+(t), t ∈ [0,T)

[SUB ]
(
∂t +L− µ̄

)
v(t ,y) ≥ −Rc (y) for y < ŷ−(t), t ∈ [0,T)

c−
fC
≤ v(t ,y) ≤ c+

fC
in [0,T ]× (0,∞)

v(t , ŷ±(t)) =
c±
fC

t ∈ [0,T) (continuous-pasting)

v(T ,y) = c−
fC

y > 0

with

Lf :=
1
2
σ2

C y2f ′′ +
(
µ̂C + σ2

C /2
)
yf ′ for f ∈ C 2

b ((0,∞))

the infinitesimal generator of {C 0(t)}t≥0 under P̃.

We expect that the smooth-pasting holds at the two boundaries. It will be proved later.

There is a close link to HJB equation!
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Free-boundary problem

It follows by semi-harmonic characterisation that

t 7→ v(t ,y) decreasing for each y ∈ (0,∞)

Proposition [Some properties of (ŷ+, ŷ−)]

i) ŷ+(t) and ŷ−(t) are decreasing;

ii) ŷ+(t) is left-continuous and ŷ−(t) is right-continuous;

iii) 0 < ŷ+(t) < R−1
c (

µ̄c+
fC

), for t ∈ [0,T);

iv) limt↑T ŷ+(t) =: ŷ+(T) = 0;

v) 0 < R−1
c (

µ̄c−
fC

) < ŷ−(t) <+∞, for t ∈ [0,T);

vi) limt↑T ŷ−(t) =: ŷ−(T−) = R−1
c (

µ̄c−
fC

).

Theorem [Continuity of the free-boundaries]

t 7→ ŷ+(t) and t 7→ ŷ−(t) are continuous on [0,T ].

Proof. Follows from PDE + probabilistic arguments (cf. DeA13)
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Free-boundary problem

A technical Assumption [Needed to prove smooth-pasting at ŷ−]

For any yo > R−1
c (µ̄c−/fC ) there exists δo := δo (yo ) such that

Ẽ

{∫ T

0
e−µ̄s inf

{y:|y−yo |≤δo }
Rcc (yC 0(s))ds

}
> −∞. (6)

Since Rcc is continuous away from zero and C 0 is a GBM, it works for most of the
examples. Benchmark example R(C) = α−1Cα , α ∈ (0,1).

Theorem [Smooth-pasting]

It holds

vy (t , ŷ−(t)−) = 0, t ∈ [0,T) (7)

vy (t , ŷ+(t)+) = 0, t ∈ [0,T) (8)

Proof. (7) follows from standard arguments + (6).

(8) requires ad hoc arguments inspired by Pe07 (G. Peskir (2007)).
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Integral equations for the free-boundaries

From an application of the so-called local time-space calculus Pe05 (G. Peskir (2005))
we obtain the following

Theorem [Integral equations for v , ŷ+ and ŷ−]

Pt.1. The value function v has the following representation

v(t ,y) =e−µ̄(T−t) c−
fC

+

∫ T−t

0
e−µ̄s

Ẽ

{
Rc (yC 0(s))I{ŷ+(t+s)<yC 0(s)<ŷ−(t+s)}

}
ds

+
µ̄

fC

∫ T−t

0
e−µ̄s

[
c+P̃

(
yC 0(s) < ŷ+(t + s)

)
+ c−P̃

(
yC 0(s) > ŷ−(t + s)

)]
ds

1. Set y := ŷ±(t)

2. Use v(t , ŷ±(t)) = c±/fC

to find equations for the free-boundaries.
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Integral equations for the free-boundaries

Theorem [Integral equations for v , ŷ+ and ŷ−]

Pt.2. ŷ+ and ŷ− are continuous, decreasing curves solving

c−
fC

= F1(t , ŷ−(t), ŷ−(t + ·), ŷ+(t + ·)) (9)

c+

fC
= F2(t , ŷ+(t), ŷ−(t + ·), ŷ+(t + ·)) (10)

for suitable functionals F1, F2 and given boundary conditions.

The good news is we can find numerical solutions to (9) and (10). Another good news
is...

Theorem [Uniqueness]

The couple (ŷ+(t), ŷ−(t)) is the unique solution of the integral equations above in the
class of continuous and decreasing functions.
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Integral equations for the free-boundaries

  

1

2

3

4

0.2 0.4 0.6 0.8 10

Figure: A computer drawing of the free-boundaries obtained by numerical solution of
integral equations with Rc (y) = 1/

√
y , µ̄= 0.8, µC = 0.2, σC = 1, fC = 1, c+ = 1,

c− = 0.8 and T = 1. The lower line represents ŷ+ and the upper line represents ŷ−.
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Back to the control problem

The next two results are based on BKR09 (K. Burdzy, W. Kang, K. Ramanan (2009).

We solve the problem of finding ν s.t. C y ,ν is constrained between the two boundaries
with a minimal effort

Theorem Pt.1 [The Skorokhod problem - Existence & Uniqueness]

Let t ∈ [0,T ] and y > 0 be arbitrary but fixed. Given ŷ+ and ŷ− there exists a unique
left-continuous adapted process of bounded variation ν∗ = ν∗+ − ν

∗
− ∈ S such that

C y ,ν∗ (s) = C 0(s)[y + ν∗+(s)− ν∗−(s)], s ∈ [0,T − t)

C y ,ν∗ (0) = y ,

ŷ+(t + s) ≤ C y ,ν∗ (s) ≤ ŷ−(t + s), a.e. s ∈ [0,T − t ],∫ T−t
0 I{C y ,ν∗ (s)<ŷ−(t+s)}dν

∗
−(s) = 0,

∫ T−t
0 I{C y ,ν∗ (s)>ŷ+(t+s)}dν

∗
+(s) = 0

hold P̃-a.s.

Moreover, if y ∈ [ŷ+(t), ŷ−(t)] then ν∗+(ω, ·) and ν∗−(ω, ·) are continuous. When

y < ŷ+(t), then ν∗+(ω,0+) = ŷ+(t)− y , ν∗−(ω,0+) = 0 and C y ,ν∗ (ω,0+) = ŷ+(t);

when y > ŷ−(t), then ν∗−(ω,0+) = y − ŷ−(t), ν∗+(ω,0+) = 0 and C y ,ν∗ (ω,0+) = ŷ−(t).
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Back to the control problem

Theorem Pt.2 [The Skorokhod problem - Characterisation]

The solution ν∗ is

ν∗(s+) = −max
{[(

y − ŷ−(t)
)+
∧ inf

u∈[0,s]

yC 0(u)− ŷ+(t + u)

C 0(u)

],
sup

r∈[0,s]

[(yC 0(r)− ŷ−(t + r)

C 0(r)

)
∧ inf

u∈[r ,s]

yC 0(u)− ŷ+(t + u)

C 0(u)

]}
for every s ∈ [0,T − t).
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Back to the control problem

A verification theorem

Applying Itô’s formula for general semi-martingales to

e−µF s V(t + s ,C y ,ν∗ (s)) s ∈ [0,T − t ]

under P, using HJB equation and above results on Skorokhod problem... we finally
prove optimality of ν∗.
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Conclusions

1. Started off a firm’s manager investment-disinvestment problem on a finite
time-horizon

2. Formulated a singular stochastic control problem

3. Proved existence and uniqueness of an optimal policy

4. Established a link with a Zero-Sum game

5. Studied the associated free-boundaries

6. Characterised the manager’s optimal policy in terms of the free-boundaries
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Theorem [Integral equations for v , ŷ+ and ŷ−]

Pt.2. ŷ+ and ŷ− are continuous, decreasing curves solving the coupled integral
equations

c−
fC

=e−µ̄(T−t) c−
fC

+

∫ T−t

0
e−µ̄s

Ẽ

{
Rc (ŷ−(t)C 0(s))I{ŷ+(t+s)<ŷ−(t)C 0(s)<ŷ−(t+s)}

}
ds

+
µ̄

fC

∫ T−t

0
e−µ̄s

[
c+P̃

(
ŷ−(t)C 0(s) < ŷ+(t + s)

)
+ c−P̃

(
ŷ−(t)C 0(s) > ŷ−(t + s)

)]
ds

and

c+

fC
=e−µ̄(T−t) c−

fC
+

∫ T−t

0
e−µ̄s

Ẽ

{
Rc (ŷ+(t)C 0(s))I{ŷ+(t+s)<ŷ+(t)C 0(s)<ŷ−(t+s)}

}
ds

+
µ̄

fC

∫ T−t

0
e−µ̄s

[
c+P̃

(
ŷ+(t)C 0(s) < ŷ+(t + s)

)
+ c−P̃

(
ŷ+(t)C 0(s) > ŷ−(t + s)

)]
ds

for t ∈ [0,T), with boundary conditions

ŷ−(T) = R−1
c

( µ̄c−
fC

)
& ŷ+(T) = 0 (11)

and such that

R−1
c

( µ̄c−
fC

)
< ŷ−(t) <+∞ & 0 < ŷ+(t) < R−1

c

( µ̄c+

fC

)
for all t ∈ [0,T). (12)
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The HJB equation

From the dynamic programming principle one has

min
{
−R +µF V −DV −Vt , c+/fC −Vy , Vy − c−/fC

}
= 0 (t ,y) ∈ [0,T ]×R+ (13)

V(T ,y) =
c−
fC

y +κ y ∈R+ (14)

with
DV := σ2

C /2y2Vyy −µC yVy

if V is regular enough for (13) to be well defined.

Inside C we have

c+/fC −Vy > 0, Vy − c−/fC > 0 and Vt +DV −µF V = −R

From properties of v we have

Vt , Vy , Vyy ∈ L∞([0,T ]×R+)

therefore

1. (13) may be interpreted in a weak sense

2. the optimal strategy should be: “keep (t ,Cνt )t≥0 inside C in a minimal way”
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