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A Stochastic Control Problem

A simple Economic model

@ A firm produces a single good in a stochastic economy on a probability space
(Q, F,IP) with a filtration {F;}¢>0

Finite time-horizon [0, T]

Production rate R(-) depending on a stochastic production capacity {C(t)}te[o, 7]
The manager controls C via a control {v(t)}[o,7], i-e. C = CY

Investment and disinvestment are allowed, i.e. v = (v4,v_)

Price of the produced good, cost of investment and benefit from disinvestment
are constant

The manager’s optimisation problem

sspIE{ JOT e PFER(CY(t))dt

T T
—C+L e’”Ftdv_,_(t)—I—c_J(‘) e MFtdy_(t) + e’”FTG(CV(T))} (1)

with g >0 manager’s discount factor, c;. > 0 cost of investment, c_ > 0 benefit form
disinvestment, c; > c_ and G a terminal reward.




A Stochastic Control Problem

Where does the model come from?

Literature on singular stochastic control is huge... this work is mostly inspired by
CHO9 M.B. Chiarolla, U.G. Haussmann (2009). On a Stochastic Irreversible Investment
Problem. SIAM J. Control Optim. 48

GPO5 X. Guo, H. Pham (2005). Optimal Partially Reversible Investment with Entry
Decision and General Production Function, Stochastic Process. Appl. 115

v

@ CHO9 have finite horizon but irreversible investment, i.e. v = v4 and t - v (t, @)
monotone increasing P-a.e. w € Q)

@ GPO5 have reversible investment, random entry time but T = 400

What changes?

@ Reversible investment is linked to Zero-Sum optimal stopping games (rather
than canonical optimal stopping problems as in CH0O9)

@ T < +oo implies that the inaction region of the manager is delimited by two
curves (rather than two points as in GP05) which are the free-boundaries of the
associated Zero-Sum game




A Stochastic Control Problem

Main Goals of this work

@ Existence and uniqueness of an optimal strategy v* = (vl,vi) in the class of
bounded variation controls

@ Study of the associated Zero-Sum optimal stopping game (ZSG): existence of
Nash equilibrium, optimal stopping times (t*,0™*), free-boundary problem for its
value function

@ Analysis of the time dependent free-boundaries 1, §_ of the ZSG and their
representation as unique solution pair of coupled non-linear, integral equations
of Volterra type (in the spirit of Peskir-Shiryaev 2006)

@ Characterisation of v* via the solution of a Skorokhod problem in the
time-dependent interval (9 (t),9-(t)), t € [0, T]
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The control problem

The controlled dynamics

Let (Q, F,IP) be a complete probability space, {W(t)};>0 a 1-dim Brownian motion and
{F}t>0 its natural filtration augmented by IP-null sets.

Take pc, oc and f¢ positive constants, then

dCYV(t) = VY (t)[-pcdt + ocdW(t)] + fcdv(t), t =0,
(2)
CrV(0)=y>0,

where fc dv accounts for the net effect of investment-disinvestment on the production
capacity.

veS:={v:Q xRy — Ry of BV, Lc, adapted s.t. v(0) =0, P-a.s.}

and v := vy —v_ with v, € § and increasing (minimal decomposition). It can be proven
that

() = o)y +7(1)]

with

Co(t) = e_(ﬂc+%0(2:)t+aCW(t) and v(t):= J: Cgis) dv(s)




of the problem

The control problem

Production function

Standard Assumptions:

i) C+ R(C) is nondecreasing with R(0) = 0 and strictly concave
ii) Ristwice continuously differentiable on (0, o)

i) Re(C): R(C) satisfies Inada conditions

=ac
lim R.(C) = & lim R-.(C)=0
coo c(C) =0 oo <(©)

A classical example is a Cobb-Douglas type, i.e. R(C) = a~1 C® for a € (0,1)

The scrap value

G : Ry — Ry is concave, nondecreasing, continuously differentiable with

=6 o

for a fixed 77, € (O, CJrf;C’ )
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The control problem

The manager’s problem

The firm'’s future total expected profit at time t € [0, T] is given by

T-t
Toy(v) = IE{J‘ e MFSR(CYY(s))ds + e FF(T-) G(C¥ (T -1))
0

T-t T-t
—C+J; e”‘Fde_,_(s)-i-c_J; e”‘FSdV_(s)} (3)

The value V of the optimal investment-disinvestment problem is

V(t,y):= sup Jiy(v) (4)

Y
veSt'T

with Sgl’T = {v € Srestrictedto [0, T —t] and s.t. y +V(s) > 0 P-a.s fors € [0, T — t]}

Theorem [Existence and uniqueness of an optimal control]

There exists a unique investment-disinvestment strategy v* € S{T optimal for (4).

Proof. Uniqueness by strict concavity of R(+) and hence of V(t,-); existence by an
application of a version of Komlos theorem by DeVDKO9 (De Valliére-Denis-Kabanov
(2009)).
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The control problem

@ In what follows we consider a linear scrap value
c_
G(C)=x+-—-—-C
fc
for some k¥ >0
@ We define a probability measure P by

dP) - e-3odttocW(t) ;50
4Pl , >

and a new Brownian motion under I
W(t):=W(t)-oct, t=0

by Girsanov theorem
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The zero-sum optimal stopping game

In our setting we can use a result by KWO5 (I. Karatzas, H. Wang (2005)) (and a change
of measure) to obtain

Theorem [From the BV control problem to a zero-sum game]

The value function V(t,y) of the control problem (4) satisfies

V() =t), (63)€0.T]x O),
where

v(t,y) = inf sup Y(ty;o,T)= sup inf  W(ty;o,1)
0€[0,T—t] re[0, T—1] [0, T-t] 0€[0, T—t]

with

~ C+ -7 C— _m
Y(t,y;0,T) = E{ge ’”11{09}]1{0<T4}+§e Fo 7o)

—a(T-t) &= T —jis 0
+el %H{TZU:T—t}+L e #Rc(yC (5))d5}

and fi:= pc + pF-

Remark: The control has “disappeared” and we deal now with an uncontrolled GBM
{yCO(t)}tzo. KWO5 characterise Nash equilibrium in terms of the optimal control v*
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The zero-sum optimal stopping game

Simple bounds: c_/fc < v(t,y) < cy/fc forall (t,y) € [0, T] x (0, ).

Theorem: [Continuity]

(t,y) — v(t,y) is continuous on [0, T] x (0, o).

Proof. Penalisation method adapting arguments by Me80 (J.L. Menaldi (1980)) and
Stl1l (L. Stettner (2011)).

Byproduct No. 1 of the proof of continuity:

Theorem [Optimal stopping times]

The stopping times

o*(t,y) :=inf(s € [0, T—t) : v(t +s,yCO(s)) > C%}/\ (T-1),

T (t,y) :=inf(s € [0, T—t): v(t +s,yCO(s)) < ?—E} A(T=-t),

are a saddle point for the ZSG.
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The zero-sum optimal stopping game

Byproduct No. 2 of the proof of continuity:

Proposition [Semi-harmonic characterisation]

For (t,y) € [0, T] x (0, o) arbitrary but fixed and p € [0, T — t] any stopping time, v

satisfies

*

- gt P _
[SUB] v(t,y) le{e”‘(pM )v(t+pm*,yc0(pm*))+j e’”sRc(yCO(s))ds}
0

o _ator CHADEN
[SuP] v(t,y)z]E{e”‘(a Ap)v(t—i—o*/\p,yCO(U*/\p))—&-j e’”SRC(yCO(s))ds}
0

[MG] v(ty)= Iﬁ{e’ﬁ(p’\"*”*) v(t+pAct AThyCO(p Ac™ ATY))

PACTAT
+fo e*ﬂSRc(yco(s))ds}

4

cf. for instance Pe09 (G. Peskir (2009)) for more details on semi-harmonic

characterisation of ZSGs
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Free-boundary problem

Continuation and stopping regions

@ The continuation region is the open set

c_ c
C:= {(t,y) €[0, T (0,00) : <= < v(t,y) < i}
fc fc
@ The two stopping regions are the closed sets

& ::{(t,y) €0, T]x (0,00) : v(t,y) = C+}

S-i= {(t,y) €[0,7]x(0,00) : v(t.y) = C;}

Proposition [Existence of the free-boundaries]

| A

For any t € [0, T], there exist §4 (t) < §_(t) such that

Ct = (94(1),9-(1)) € [0, 09]

Spi=094()] & S t=[-(t) ]

Proof. Follows from y +— v(t,y) monotone.

Remark: optimal stopping times (0%, T*) are first entry times of (t,yC%(t))»0 to S1
and S_, respectively.
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Free-boundary problem

The free-boundary problem for v

Properties above + standard arguments (cf. G. Peskir, A. Shiryaev (2006)) imply that
v e €12 inside the continuation region C and it solves

[MG] (9¢+L-fi)v(t,y) =-Re(y) foryy(t)<y<y_(t), te[0,T)
[SUP] (9¢+L-fi)v(ty)<—Rc(y) fory>yi(t), te[0,T)
[SUB] (d¢+L-fi)v(ty)2—-Rc(y) fory<y_(t), te[0,T)

msvty) st in [0, T] x (0, c0)
v(t,9+(t)) = % te[0,T) (continuous-pasting)
v(Ty)=7 y>0

with

1 %
Lf:= Ecrgyzf”—i-(yc +Gé/2)yf' forfe Cg((O,oo))

the infinitesimal generator of {CO(t)}tzo under IP.

We expect that the smooth-pasting holds at the two boundaries. It will be proved later.

There is a close link to HJB equation!




Mathematical analysis of the problem
[e]o] le]

Free-boundary problem

It follows by semi-harmonic characterisation that
t — v(t,y) decreasing for each y € (0,0)

Proposition [Some properties of (9,9_)]

i) 94(t)and y_(t) are decreasing;
ii) $4(t)is left-continuous and y_(t) is right-continuous;
o ~1fict .
i) 0<94(t)<RZ (?),for te[0,T);
iv) limepr 94 (t) =: 94.(T) =0;

v) 0<RZ(EE) <9 (1) <+oo, for te[0,T);

i) limep79-(8) = 9-(T-) = R (52).

Theorem [Continuity of the free-boundaries]

t— 4 (t) and t — §_(t) are continuous on [0, T].

Proof. Follows from PDE + probabilistic arguments (cf. DeA13)



Mathematical analysis of the problem
oooe

Free-boundary problem

A technical Assumption [Needed to prove smooth-pasting at §_|

For any y, > Rz1(jic_/fc) there exists 8 := 6o(yo) such that

- T =
IE{J e M inf RCC(yCO(s))ds} > —c0. (6)
0

{y:ly=yol<do}

Since R¢¢ is continuous away from zero and Clisa GBM, it works for most of the
examples. Benchmark example R(C) =a~1C%, a € (0,1).

Theorem [Smooth-pasting]

It holds

vy (t9-(t)-)=0, te[oT) @)

vy(t94+(t)+)=0,  te[0,T) (8)

Proof. (7) follows from standard arguments + (6).

(8) requires ad hoc arguments inspired by Pe07 (G. Peskir (2007)).
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Integral equations for the free-boundaries

From an application of the so-called local time-space calculus Pe05 (G. Peskir (2005))
we obtain the following

Theorem [Integral equations for v, 1 and y_]

Pt.1. The value function v has the following representation

_ T-t .
v(t,y) :e_”(T_t) % +J; e_”S]E{ (yCO(S)) {7+ (t+5)<yCO(s)<y_(t+s)} }

+ % oTit e’ﬁs[6+i’(yco(5) <J4(t +5))+ C‘ﬁ)(yco(s) >9-(t+ S))]ds

1. Sety :=9.(t)
2. Use v(t,9.(t)) = ci/fc

to find equations for the free-boundaries.
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Integral equations for the free-boundaries

Theorem [Integral equations for v, 4 and y_]

Pt.2. ¥, and §_ are continuous, decreasing curves solving

% =F(t9-(1)9-(t+),94(t+°) ©)
= F(6 94 (09454 (t+) (10)

for suitable functionals Fq, F> and given boundary conditions.

The good news is we can find numerical solutions to (9) and (10). Another good news

is...

Theorem [Uniqueness]

The couple (§4(t),y-(t)) is the unique solution of the integral equations above in the
class of continuous and decreasing functions.
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Integral equations for the free-boundaries

t > g (t)

0 0.2 0.4 06 0.8 1

Figure: A computer drawing of the free-boundaries obtained by numerical solution of
integral equations with Rc(y) =1/4/y, i=0.8,uc =0.2,0c =1,fc =1,c; =1,
c_=0.8and T = 1. The lower line represents y and the upper line represents y_.
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Back to the control problem

The next two results are based on BKR09 (K. Burdzy, W. Kang, K. Ramanan (2009).

We solve the problem of finding v s.t. C¥*" is constrained between the two boundaries
with a minimal effort

Theorem Pt.1 [The Skorokhod problem - Existence & Uniqueness]

Let t € [0, T] and y > 0 be arbitrary but fixed. Given y and y_ there exists a unique
left-continuous adapted process of bounded variation v* = 7;_ —V* € S such that

CY7 (s) = CO(s)ly + 7. (s) -7 (s)], s€[0,T—t)

T (0)=y,
Fp(t+s)< T () <9 (t+5), aeseloT-1,

T-t . T-t .
Jo ™ Liey (s)<_(t1s) IV () =0, Jo ™ Mierw (sysg (s V5 (8) = O

hold P-a.s.
Moreover, if y € [y (t),§-(t)] then v (w,-) and V% (w, ) are continuous. When

y <¥4+(t), then v (0,0+) = ¥4 (t) -y, v2 (w,0+) = 0 and YV (w,0+) =94 (t);
wheny >y _(t), then v (w,0+) =y -y_(t), v (w,0+) =0 and YV (w,0+) = 9_(t).

4
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Back to the control problem

Theorem Pt.2 [The Skorokhod problem - Characterisation]

The solution V* is

7 (o) =-max{y-5-0) e |

sup

ref0,s] co(r)

for every s € [0, T —t).

yco(u)fy+(t+u)]],

[(yco(r)fx(ur)

CO(u)

)A - (yco(u)—y+(r+u)
u€lr,s]

CO(u)

Ji
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Back to the control problem

A verification theorem

Applying Itd’s formula for general semi-martingales to
e MFSV(t+5,C¥7(s))  se[0,T-t]

under IP, using HJB equation and above results on Skorokhod problem... we finally
prove optimality of V*.
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Conclusions

1. Started off a firm’s manager investment-disinvestment problem on a finite
time-horizon

Formulated a singular stochastic control problem
Proved existence and uniqueness of an optimal policy
Established a link with a Zero-Sum game

Studied the associated free-boundaries

o u Kk W N

Characterised the manager’s optimal policy in terms of the free-boundaries
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Grazie.
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Theorem [Integral equations for v, § and y_]

Pt.2. ¥, and §_ are continuous, decreasing curves solving the coupled integral

equations
- _ om0 (el r (5 (1)cOs)n d
e et © cO-OC (N, (t46)< (1)CO(s)<3(t+5) {9
= -t = ~ -
+ﬂj e’Vs[c+H)(j/_(t)Co(s)<f/+(t+s))+c_IP(f/_(t)Co(s)>f/_(t+s))]ds
fc Jo
and
S _ im0y [T emoglr O d
o= Ty @B RGO Ny, (et e)<p (9)CO()<s-(e)) |9
I

- & P[4 B(94+(61C%(5) <94 (4 9)) + < B3 ()CO(s) > 5 (e + 5) s
0
for t € [0, T), with boundary conditions
_1( e A
s-M=rMNE=) & 5u(m=
€

(11)
and such that

C_l(ﬂfi)<f/_(t)<+oo & O<j/+(t)<Rc‘1(Mf&) forallte[0,T). (12)
c c




Conclusions & some refe es

The HJB equation

From the dynamic programming principle one has

min{-R+pupV-DV-V;, cy/fc=Vy, Vy—c /fc)=0  (ty)e[0,TIxRy (13)

C_
V(T,y):§y+1< yeRy (14)

with 5 5
DV :=o0g/2y“Vyy —pcyVy
if V is regular enough for (13) to be well defined.

Inside C we have
ci/fc-Vy,>0, V,-c /fc>0 and Vi +DV-purV=-R
From properties of v we have
Vi, Vy, Vi, € L2([0, TI xR 1)
therefore
1. (13) may be interpreted in a weak sense

2. the optimal strategy should be: “keep (t, C}' )0 inside C in a minimal way”
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