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Option pricing and hedging

S: stock price process

T : time of maturity

r: risk-free interest rate

Φ: payoff function

• European option

PEu(t, St) = e−r(T−t)E[Φ(ST )|St] ,

∆Eu(t, St) =
∂

∂St
PEu(t, St) ,

• American option pricing and hedging
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Conditional expectations E[f (St)|Ss = α], α ∈ R+, s < t

• Bayes rule

E[f (St)|Ss = α] =
E[f (St)δ0(Ss − α)]

E[δ0(Ss − α)]

• For continuous stock price processes S:

E[f (St)|Ss = α] =
E[f (St)H(Ss − α)π]

E[H(Ss − α)π]
,

H(x) = 1{x>0} + c, c ∈ R

See Fournié et al. (1999) ,Fournié et al. (2001).
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Methods

• For discontinuous stock price processes:

E[f (St)|Ss = α] =
E[f (St)H(Ss − α)π]

E[H(Ss − α)π]
, s < t ,

H(x) = 1{x>0} + c, based on two methods:

– Conditional density method

– Malliavin approach
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Outline

I- Conditional density method
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1.Representations
Conditional density method for E[f (F )|G = α]

F and G are two random variables such that

F = g1(X,Y ) and G = g2(U, V ),

• (X,U) independent of (Y, V )

• X and U allowed to be dependent, joint density p(X,U)

Under the necessary assumptions

E[f (F )|G = α] =
E[f (F )H(G− α)π(X,U)]

E[H(G− α)π(X,U)]
,

where H = 1{x>0} + c and

π(X,U) = − ∂

∂u
log p(X,U)(X,U).

See Benth et al. (2010).
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CDM applied to an exponential Lévy process

Observe S = S0e
L, where L is a Lévy process with decomposition

Lt = at + bWt + Ñt, t ∈ [0, T ]

W is a standard Brownian motion,

Ñ is a compound Poisson process, independent of W

(X,U) = (bWt, bWs)

For any Borel measurable function f and positive number α,

E[f (St)|Ss = α] =
E[f (St)H(Ss − α)π]

E[H(Ss − α)π]
,

where

π =
tWs − sWt

bs(t− s)
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Examples of stock price processes

E[f (St)|Ss = α], s < t

• Geometric Brownian motion → regular density method

• Additive model S = A + B, where A is an Ornstein-Uhlenbeck process

• Approximation of jump process by replacing the small jumps by a scaled Brownian
motion, e.g. NIG process

See Asmussen and Rosinski (2001).
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2.Optimal weights

• For any π in W :=
{
π : E[π|σ(F,G)] = π(X,U)

}
it is clear

E[f (F )H(G− α)π] = E[f (F )H(G− α)π(X,U)]

• In this set W , the variance

Var
(
f (F )H(G− α)π

)
= E

[
(f (F )H(G− α)π)2

]
− E

[
f (F )H(G− α)π

]2
is minimized for π = π(X,U)

• Different weight denominator

E[δ0(G− α)] = E[H(G− α)π(X,U)] = E[H(G− α)πU ],

where πU = − ∂

∂u
log pU(U)
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3.Delta

E[f (F )|G = α] =
E[f (F )H(G− α)π(X,U)]

E[H(G− α)π(X,U)]
=:

AF,G[f ](α)

AF,G[1](α)

∂

∂α
E[f (F )|G = α] =

BF,G[f ](α)AF,G[1](α)− AF,G[f ](α)BF,G[1](α)

A2
F,G[1](α)

where AF,G[·](α) = E[·(F )H(G− α)π(X,U)]

BF,G[·](α) =
∂

∂α
AF,G[·](α)

= E[·(F )H(G− α)
{
π∗(X,U) − π2

(X,U)

}
]h′(α)

π(X,U) = − ∂

∂u
log p(X,U)(X,U)

π∗(X,U) = − ∂2

∂u2
log p(X,U)(X,U)
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Outline

II- Malliavin approach
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1. Malliavin calculus

• Standard Brownian motion W , pure jump process J , then Lévy process
L = Γ(W,J)

• The Malliavin derivative Dr,0, r ∈ [0, T ] of a Lévy process is essentially a derivative
with respect to the Brownian part

e.g. Dr,0(Wt + Jt) = 1r≤t

• Skorohod integral of an adapted process u:

δ(u) =

∫ T

0

urdWr

• Chain rule, Integration by parts, Duality formula

See Nualart (1995) and solé et al. (2007).
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2.Representations
First representation

F and G two random variables such that

F = g1(Xc, Xd) and G = g2(U c, Ud) (1)

Theorem
Assume f differentiable and F and G as described in (1).
For a Skorohod integrable process u satisfying

E
[ ∫ T

0

Dt,0Gutdt|σ(F,G)
]

= 1,

it holds

E[f (F )|G = α] =
E
[
f (F )H(G− α)δ(u)− f ′(F )H(G− α)

∫ T
0 Dt,0Futdt

]
E
[
H(G− α)δ(u)

]
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Representation 2

Theorem
Assume again the setting of Theorem 1 and in addition that u is a Skorohod integrable
process, satisfying

E
[ ∫ T

0

Dt,0Futdt|σ(F,G)
]

= 0.

Then we have the following representation

E[f (F )|G = α] =
E[f (F )H(G− α)δ(u)]

E[H(G− α)δ(u)]
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Malliavin method applied to linear SDE

Stock price process modeled by the linear SDE{
dSt = αSt−dt + βSt−dWt +

∫
R0

(ez − 1)St−Ñ(dt, dz),

S0 = x

In Benth et al. (2001), it is shown St = Scte
Sd

t

E[f (St)|Ss = α] =
E
[
f (St)H(Ss − α) 1

Ss

(
Ws

sβ + 1
)
− f ′(St)H(Ss − α)St

Ss

]
E
[
H(Ss − α) 1

Ss

(
Ws

sβ + 1
)]

E[f (St)|Ss = α] =
E
[
f (St)H(Ss − α) 1

Ss

(
tWs−sWt

s(t−s)β + 1
)]

E
[
H(Ss − α) 1

Ss

(
tWs−sWt

s(t−s)β + 1
)]
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Examples of stock price processes

• Geometric Brownian motion, see Bally et al. (2005)

• Jump-diffusion model

• Stochastic differential equations, in particular:

– Linear SDE

– Stochastic volatilty model
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3. Delta

Theorem
Consider the same setting as in Theorem 2 and that the Skorohod integral δ(u) is
σ(F,G)-measurable. Then

∂

∂α
E[f (F )|G = α] =

BF,G[f ](α)AF,G[1](α)− AF,G[f ](α)BF,G[1](α)

A2
F,G[1](α)

,

where

AF,G[·](α) = E[·(F )H(G− α)δ(u)],

BF,G[·](α) = E
[
· (F )H(G− α)

{
− δ2(u) +

∫ T

0

urDr,0δ(u)dr
}]
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Outline

III- Numerical methods and results
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1. American options
Pricing algorithm for American options

• Payoff function Φ, stock price process S with initial value x

• Approximated by Bermudan option, discretization of time interval into n periods
with step size ε = T

n

• Priced iteratively via the Bellman dynamic programming principle:

Pnε(Snε) ≡ Φ(Snε) = Φ(ST ),

Pkε(Skε) = max
{

Φ(Skε), e
−rεE

[
P(k+1)ε(S(k+1)ε)

∣∣Skε]},
k = n− 1, . . . , 1, 0

• Delta of the option ∆0(x) := ∂xP0(x),

∆ε(Sε) =

∂αΦ(α)
∣∣∣
α=Sε

if Pε(α) < Φ(α),

e−rε∂αE
[
P2ε(S2ε)|Sε = α

]∣∣∣
α=Sε

if Pε(α) ≥ Φ(α),

∆0(x) = Ex[∆ε(Sε)]
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2. Monte Carlo estimation

• For the conditional expectations we make use of the representation

E
[
P(k+1)ε(S(k+1)ε)

∣∣Skε = Sqkε
]

=
E
[
P(k+1)ε(S(k+1)ε)H(Skε − Sqkε)πk

]
E
[
H(Skε − Sqkε)πk

]
and the Monte Carlo estimation

E
[
.(S(k+1)ε)H(Skε − α)πk

]
≈ 1

N

N∑
j=1

.(Sj(k+1)ε)H(Sjkε − α)πjk

• Pricing algorithm: backward in time

⇒ backward simulation of the stock price process,

to obtain a better efficiency

Possible for GBM model Bally et al. (2005), Merton model.
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3. Variance reduction

• Localization technique

• Including a control variable
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3. Numerical example

• American put option on a stock price given by the Merton model

St = S0 exp
(

(r − σ2/2)t + σWt +

Nt∑
i=1

Zi

)
W : standard Brownian motion

N : Poisson process with intensity µ

Zi: i.i.d. N(−δ2/2, δ2)

• Weight in the representation

πCDM =
tWs − sWt

σs(t− s)
and πMM =

1

Ss

(tWs − sWt

σs(t− s)
+ 1
)

• Parameter set, see Amin (1993)

T S0 r σ2 µ δ2

0.25 40 0.08 0.05 5 0.05
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Numerical example

Results for n = 10 time periods and N = 10000 simulated paths

strike Eur Opt CDM CDM+L MM MM+L Amin
30 0.681 2.077 1.412 0.520 0.807 0.674
35 1.686 4.579 2.602 1.409 1.830 1.688
40 3.605 7.903 4.562 3.403 3.772 3.630
45 6.660 11.761 7.687 6.491 6.837 6.734
50 10.548 16.502 11.744 10.569 10.772 10.696

Increasing the number of simulated paths to N = 30000

strike Eur Opt CDM CDM+L MM MM+L Amin
35 1.693 1.5120 1.8998 2.120 1.757 1.688
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Conclusion

For discontinuous stock price processes:

E[f (St)|Ss = α] =
E[f (St)H(Ss − α)π]

E[H(Ss − α)π]
, s < t,

based on two methods

– Conditional density method

– Malliavin approach

• Work in progress

– Multidimensional setting

– Path-dependent payoff (Asian options)

– Backward simulation of Lévy processes
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