Optimal market making strategies under inventory constraints

Etienne CHEVALIER Université d'Evrv

6th AMaMeF and Banach Center Conference June 10-15, 2013

Joint work with : M'hamed Gaigi, ENIT, Tunis Vathana Ly Vath, ENSIIE & Université d'Evry Mohamed Mnif, ENIT, Tunis

< D > < P > < E > < E</p>

Model and problem formulation Analytical properties and dynamic programming principle Viscosity characterization of the objective function Numerical illustrations

Motivations : Market making under constraints

• Liquidity takers :

- \rightarrow trade only through market order
- \rightarrow pay liquidity costs
- Liquidity takers and providers :
 - \rightarrow trade in a limit order book through market and limit order
 - \rightarrow pay less liquidity costs but have some inventory risk.
- Market makers :
 - \rightarrow trade in a dealer market as a single or representative market maker
 - \rightarrow face liquidity and inventory constraints.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Model and problem formulation Analytical properties and dynamic programming principle Viscosity characterization of the objective function Numerical illustrations

Motivations : Liquidity costs for price takers

- Liquidity costs for price takers
 - Transaction costs due to bid-ask spread :

 \rightarrow Shreve and Soner (1994) ; Korn (1998) ; Framstad, Oksendal and Sulem (2001),...

• Price impact for large trades : Almgren and Chriss (2001)

 \rightarrow Supply curves : Cetin, Jarrow, Protter (2004) ; Alfonsi, Fruth and Schied (2010),...

 \rightarrow Impact functions : Bank and Baum (2004) ; Ly Vath, Mnif and Pham (2007) ; Kharroubi, Pham (2010) ; Roch (2011)...

< ロ > < 同 > < 回 > < 回 > < 回 > <

Model and problem formulation Analytical properties and dynamic programming principle Viscosity characterization of the objective function Numerical illustrations

Motivations : Liquidity in limit order book market

- ► Use limit orders instead of market orders.
 - Liquidation problems :

 \rightarrow Guéant, Lehalle and Tapia (2011) ; Bayraktar and Ludkovski (2012) ; Bouchard, Lehalle and Dang (2011)

• Market making/Portfolio management problems :

 \rightarrow Avellaneda and Stoikov (2008) ; Guilbaud and Pham (2013)

< ロ > < 同 > < 回 > < 回 >

Model and problem formulation Analytical properties and dynamic programming principle Viscosity characterization of the objective function Numerical illustrations

Motivations : Market making under constraints

- A market maker in a dealer market faces some constraints
 - Provide liquidity
 - Set "reasonable" prices and spread
 - Cash and stock holdings constraints

► Ho, Stoll (1981); Huang, Simchi-Levi and Song (2012); Guéant, Lehalle, and Tapia (2012)

< ロ > < 同 > < 回 > < 回 >

Model and problem formulation Analytical properties and dynamic programming principle Viscosity characterization of the objective function Numerical illustrations

Model and problem formulation

- Model
- An optimal control problem with regime switching

Analytical properties and dynamic programming principle

- Properties of the value functions
- Dynamic programming principle

Viscosity characterization of the objective function

Numerical illustrations

Model An optimal control problem with regime switching

< ロ > < 同 > < 回 > < 回 > :

Market making strategies

► We consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration $\mathcal{F} = (\mathcal{F}_t)_{t \ge 0}$ satisfying the usual conditions.

Introduction

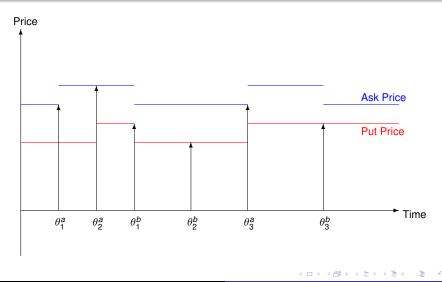
- ▶ When the *i*th buying (resp. selling) order arrives at the \mathbb{F} -stopping time θ_i^a (resp. θ_i^b) :
 - **Provide liquidity** : The market maker has to sell (resp. buy) an asset at the ask (resp. bid) price denoted by *P^a* (resp. *P^b*).
 - Set Bid and Ask prices : The market maker may either keep the bid and ask prices constant or increase (resp. decrease) one or both of them by one tick (δ).

► We consider a control $\alpha := (\epsilon_t^a, \epsilon_t^b, \eta_t^a, \eta_t^b)_{0 \le t \le T} \mathbb{F}$ -predictable process where the random variables $\epsilon_t^a, \epsilon_t^b, \eta_t^a, \eta_t^b$ are valued in $\{0, 1\}$.

Model and problem formulation

Analytical properties and dynamic programming principle Viscosity characterization of the objective function Numerical illustrations Model An optimal control problem with regime switching

Representation of a market making strategies



Model An optimal control problem with regime switching

< ロ > < 同 > < 回 > < 回 > < 回 > <

Prices and spread dynamics

ł

 Bid and Ask processes : For c ∈ {a, b}, the dynamics of P^c evolves according to the following equations

for
$$i \in \mathbb{N}^*$$
,
$$\begin{cases} dP_t^c = 0 & \text{for } \xi_i < t < \xi_{i+1} \\ P_{\theta_i^b}^c = P_{\theta_i^{b--}}^c - \delta \epsilon_{\theta_i^b}^c \\ P_{\theta_i^a}^c = P_{\theta_i^{a--}}^c + \delta \eta_{\theta_i^a}^c, \end{cases}$$

where $(\xi_i)_{i\geq 0}$ is the sequence of transaction times.

Mid price and spread processes : We set P := ^{p^a+P^b}/₂ and S := P^a − P^b. For all i ∈ N*, the dynamics of the process (P, S) is given by

$$\left\{ \begin{array}{l} dP_t = 0, \quad \text{for } \xi_i < t < \xi_{i+1} \\ P_{\theta_i^b} = P_{\theta_i^{b-}} - \frac{\delta}{2} (\epsilon_{\theta_b^b}^a + \epsilon_{\theta_i^b}^b) \\ P_{\theta_i^a} = P_{\theta_i^{a-}} + \frac{\delta}{2} (\eta_{\theta_i^a}^a + \eta_{\theta_i^a}^b). \end{array} \right. \text{ and } \left\{ \begin{array}{l} dS_t = 0, \quad \text{for } \xi_i < t < \xi_{i+1} \\ S_{\theta_i^b} = S_{\theta_i^{b-}} - \delta(\epsilon_{\theta_i^b}^a - \epsilon_{\theta_i^b}^b) \\ S_{\theta_i^a} = S_{\theta_i^{a-}} + \delta(\eta_{\theta_i^a}^a - \eta_{\theta_i^a}^b). \end{array} \right.$$

Model An optimal control problem with regime switching

< D > < P > < E > < E</p>

Cash and stock holdings dynamics

• **Cash holdings** : We denote by *r* > 0 the instantaneous interest rate. The bank account evolves according to the following equations

Introduction

$$\text{for } i \in \mathbb{N}^*, \qquad \left\{ \begin{array}{ll} dX_t &= rX_t dt, & \text{for } \xi_i < t < \xi_{i+1}, \\ X_{\theta_i^b} &= X_{\theta_i^{b-}} - P_{\theta_i^{b-}}^b \\ X_{\theta_i^a} &= X_{\theta_i^{a-}} + P_{\theta_i^{a-}}^a, \end{array} \right.$$

• Stock holdings : The number of shares held by the market maker at time $t \in [0, T]$ is denoted by Y_t , and evolves according to the following equations

for
$$i \in \mathbb{N}^*$$
,
$$\begin{cases} dY_t &= 0, & \text{for } \xi_i < t < \xi_{i+1} \\ Y_{\theta_i^b} &= Y_{\theta_i^{b-}} + 1 \\ Y_{\theta_i^a} &= Y_{\theta_i^{a-}} - 1 \end{cases}$$

Introduction Model and problem formulation

Analytical properties and dynamic programming principle Viscosity characterization of the objective function Numerical illustrations

Regime switching

Model An optimal control problem with regime switching

Liquidity regimes :

Let ${\it I}$ be a continuous time, time homogeneous, irreductible Markov chain with ${\it m}$ states.

The generator of the chain *I* under \mathbb{P} is denoted by $A = (\vartheta_{i,j})_{i,j=1,...m}$. Here $\vartheta_{i,j}$ is the constant intensity of transition of the chain *L* from state *i* to state *j*.

• Market orders arrivals : Let two Cox processes N^a and N^b . The intensity processes associated with N^a and N^b are defined, for $t \ge 0$, by $\lambda^a(I_t, P_t, S_t)$ and $\lambda^b(I_t, P_t, S_t)$ where λ^a and λ^b are positive deterministic functions, bounded and defined on $\{1, ..., m\} \times \frac{\delta}{2} \mathbb{N} \times \delta \mathbb{N}$.

We define θ_k^a (resp. θ_k^b) as the k^{th} jump time of N^a (resp. N^b), which corresponds to the k^{th} buy (resp. sell) market order.

< ロ > < 同 > < 回 > < 回 >

Model An optimal control problem with regime switching

Admissible strategies

• Liquidity constraints : Let K > 0, the market maker has to use controls such that

Introduction

$$P_t - S_t/2 > 0$$
 and $0 < S_t \le K \times \delta$, for $0 \le t \le T$.

 Inventory and cash constraints : Let x_{min} < 0 and y_{min} ≤ y_{max}. We introduce the following notations :

$$S = (x_{\min}, +\infty) \times \{y_{\min}, ..., y_{\max}\} \times \frac{\delta}{2} \mathbb{N} \times \delta\{1, ..., K\},$$

$$S = \{(t, x, y, p, s) \in [0, T] \times S : p - \frac{s}{2} \ge \delta\}.$$

For a control α , we define the liquidation time :

$$\tau^{t,i,z,\alpha} := \inf\{u \ge t : X_u^{t,i,x,\alpha} \le x_{\min} \text{ or } Y_u^{t,i,y,\alpha} \in \{y_{\min} - 1, y_{\max} + 1\}\}$$

• Admissible strategies : Let $(t, z) := (t, x, y, p, s) \in S$, the strategy $\alpha = (\epsilon_u^a, \epsilon_u^b, \eta_u^a, \eta_u^b)_{t \le u \le T}$ is admissible, if the processes $\epsilon^a, \epsilon^b, \eta^a, \eta^b$ are valued in $\{0, 1\}$ and for all $u \in [t, T], (u, Z_{u^-}^{t,i,z,\alpha}) \in S$. We denote by $\mathcal{A}(t, z)$ the set of all these admissible policies.

Model An optimal control problem with regime switching

Objective function

 Portfolio liquidation : If the market maker decides (or has) to liquidate her portfolio, then she actually gets

Introduction

$$Q(t, y, p, s) = (p - \operatorname{sign}(y)\frac{s}{2})f(t, y),$$

where $f : [0, T] \times \mathbb{R} \to \mathbb{R}_+$, non-linear in *y* and such that

$$f(t,y) \leq f(t,y') \text{ if } y' \leq y \quad \text{and} \quad yf(t',y) \leq yf(t,y) \text{ if } t' \leq t.$$

• Utility and penalty functions : Let $\gamma > 0$ and $U(x) = 1 - e^{-\gamma x}$ on \mathbb{R} . We set

$$U_L = U_0 L$$
 where $L(t, x, y, p, s) = x + yQ(t, y, p, s)$.

Let *g* a bounded positive function defined on $\{y_{min}, ..., y_{max}\}$.

• **Objective function** : We consider the functions $(v_i)_{i \in \{1,...,m\}}$ defined on S by

$$v_i(t,z) := \sup_{\alpha \in \mathcal{A}(t,z)} J_i^{\alpha}(t,z)$$

where we have set

$$J_{i}^{\alpha}(t,z) := \mathbb{E}\left[U_{L}(T \wedge \tau^{t,i,z,\alpha}, Z^{t,i,z,\alpha}_{(T \wedge \tau^{t,i,z,\alpha})^{-}}) - \int_{t}^{T \wedge \tau^{t,i,z,\alpha}} g(Y_{s}^{t,i,y,\alpha}) ds\right].$$

Properties of the value functions Dynamic programming principle

Analytical properties and dynamic programming principle

- Model and problem formulation
- Analytical properties and dynamic programming principle
- Viscosity characterization of the objective function
- Numerical illustrations

< ロ > < 同 > < 回 > < 回 >

Properties of the value functions Dynamic programming principle

Objective functions bounds

▶ Let $(t, z) := (t, x, y, p, s) \in S$. From monotonicity of f,

$$L(t,z) \geq x_{min} + y_{min}f(0,y_{min})(p-\frac{K\delta}{2}).$$

Proposition

There exist C_1 , C_2 and C_3 positive constants such that

 $1-C_1-C_2e^{C_3p}\leq v_i(t,z)\leq 1,\quad \forall (i,t,z):=(i,t,x,y,p,s)\in\{1,...,m\}\times\mathcal{S},$

イロト イポト イヨト イヨト 二日

Properties of the value functions Dynamic programming principle

Uniform continuity of the objective functions

Hölder continuity of the criteria functions

Let $i \in \{1, ..., m\}$, $(t, z) := (t, x, y, p, s) \in \overline{S}$ and (t', x') in $[0, T] \times (x_{min}, +\infty)$. For all $\alpha \in \mathcal{A}(t \land t', z)$ such that $\alpha_{\parallel [t \land t', t \lor t']} = 0$, we have $\alpha \in \mathcal{A}(t, z) \cap \mathcal{A}(t', z')$ with z' = (x', y, p, s) and, if (t^{prime}, x') is close enough to (t, x), then

$$|J_i^{\alpha}(t,z) - J_i^{\alpha}(t',z')| \leq K_2(p) \left(\psi(\mathit{re^{rT}} \mid x'(t-t') \mid) + \psi(x'-x) + \mid t'-t \mid \right).$$

where $K_2(p) > 0$ and ψ an Hölder continuous function on \mathbb{R} .

Uniform continuity of the objective functions

Let
$$(i, y, p, s) \in \{1, ..., m\} \times \{y_{min}, ..., y_{max}\} \times \frac{\delta}{2} \mathbb{N}^* \times \delta\{1, ..K\}$$
 such that $p - \frac{s}{2} > 0$.

The function $(t, x) \rightarrow v_i(t, x, y, p, s)$ is uniformly continuous on $[0, T] \times [x_{min}, +\infty)$.

< ロ > < 同 > < 回 > < 回 > .

Properties of the value functions Dynamic programming principle

Dynamic programming principle

Dynamic programming principle

Let $(i, t, z) := (i, t, x, y, p, s) \in \{1, ..., m\} \times S$. Let ν be a stopping time in $\mathcal{T}_{t, T}$, we have

$$\begin{split} v_{i}(t,z) &= \sup_{\alpha \in \mathcal{A}(t,z)} \mathbb{E}\Big[v_{l_{\nu \wedge \hat{\theta}}} \left(\nu \wedge \hat{\theta}, \ Z_{\nu \wedge \hat{\theta}}^{t,i,z,\alpha} \right) \mathbf{1}_{\{\nu \wedge \hat{\theta} < \hat{\tau}^{\alpha}\}} \\ &+ U_{L} \left(\hat{\tau}^{\alpha}, x e^{r(\hat{\tau}^{\alpha} - t)}, y, p, s \right) \mathbf{1}_{\{\hat{\tau}^{\alpha} \leq \nu \wedge \hat{\theta}\}} - g(y) \left(\nu \wedge \hat{\theta} \wedge \hat{\tau}^{\alpha} - t \right) \Big], \end{split}$$

with $\hat{\tau}^{\alpha} = \tau^{t,i,z,\alpha} \wedge T$ and

$$\hat{\theta} = \inf\{u \ge t: \ N_u > N_{u^-} \text{ or } N_u^{a,i,t,z} > N_{u^-}^{a,i,t,z} \text{ or } N_u^{b,i,t,z} > N_{u^-}^{b,i,t,z} \}.$$

イロト イポト イヨト イヨト

э

Analytical properties of the objective function and dynamic programming principle

- Model and problem formulation
- Analytical properties and dynamic programming principle
- Viscosity characterization of the objective function
- Numerical illustrations

< D > < P > < E > < E</p>

HJB equation (1)

• Set of admissible controls : We define the following set :

$$\begin{aligned} \mathsf{A}(t,z) &:= \quad \{\alpha = (\varepsilon^a, \varepsilon^b, \eta^a, \eta^b) \in \{0,1\}^4 : \delta \varepsilon^b$$

• Transactions operators : For all $(i, t, x, y, p, s) := (i, t, z) \in \{1, ..., m\} \times S$ and $\alpha := \{\varepsilon^a, \varepsilon^b, \eta^a, \eta^b\} \in A(t, z)$, we introduce the two operators :

$$\mathcal{A}v_{i}(t, z, \alpha) = \begin{cases} U_{L}(t, x, y_{min}, p, s) & \text{if } y = y_{min}, \\ v_{i}(t, x + p + \frac{s}{2}, y - 1, p + \frac{\delta}{2}(\eta^{a} + \eta^{b}), s + \delta(\eta^{a} - \eta^{b})) & \text{else.} \end{cases}$$
$$\mathcal{B}v_{i}(t, z, \alpha) = \begin{cases} U_{L}(t, x, y_{max}, p, s), & \text{if } y = y_{max} \\ U_{L}(t, z) & \text{if } x < x_{min} + p - \frac{s}{2} \text{ or } x = x_{min} + p - \frac{s}{2} < 0 \\ v_{i}(t, x - p + \frac{s}{2}, y + 1, p - \frac{\delta}{2}(\varepsilon^{a} + \varepsilon^{b}), s - \delta(\varepsilon^{a} - \varepsilon^{b})) & \text{else.} \end{cases}$$

HJB equation (2)

Let $(\varphi_i)_{1 \leq i \leq m}$ a family of smooth functions defined on S. We introduce the following operator associated with state $i \in \{1, ..., m\}$:

$$\begin{aligned} \mathcal{H}_{i}(t,z,\varphi_{i},\frac{\partial\varphi_{i}}{\partial x}) &= rx\frac{\partial\varphi_{i}}{\partial x} + \sum_{j\neq i}\gamma_{ij}\left(\varphi_{j}(t,x,y,p,s) - \varphi_{i}(t,x,y,p,s)\right) - g(y) \\ &+ \sup_{\alpha\in\mathcal{A}(t,z)}\left[\lambda_{i}^{a}(p,s)\left(\mathcal{A}\varphi_{i}(t,x,y,p,s,\alpha) - \varphi_{i}(t,x,y,p,s)\right) \right. \\ &+ \lambda_{i}^{b}(p,s)\left(\mathcal{B}\varphi_{i}(t,x,y,p,s,\alpha) - \varphi_{i}(t,x,y,p,s)\right)\right] = 0. \end{aligned}$$

We consider the HJB equation :

$$-\frac{\partial\varphi_i}{\partial t} - \mathcal{H}_i(t, z, \varphi_i, \frac{\partial\varphi_i}{\partial x}) = 0, \quad \text{for } (t, z) \in \mathcal{S},$$
(1)

with the following boundary and terminal conditions :

$$v_i(t, x_{\min}, y, \rho, s) = U_L(t, x_{\min}, y, \rho, s)$$
(2)

$$v_i(T, x, y, p, s) = U_L(T, x, y, p, s)$$

$$(3)$$

Viscosity characterization of the objective function

Theorem :

The family of objective functions $(v_i)_{1 \le i \le m}$ is the unique family of functions such that

- i) Continuity condition : For all $(i, y, p, s) \in \{1, ..., m\} \times \{y_{min}, ..., y_{max}\} \times \frac{\delta}{2} \mathbb{N} \times \delta\{1, ..., K\}, (t, x) \rightarrow v_i(t, x, y, p, s)$ is continuous on $\{(t, x) \in [0, T) \times [x_{min}, +\infty) : (t, x, y, p, s) \in \mathcal{S}\}.$
- ii) Growth condition : There exists C_1 , C_2 and C_3 positive constants such that

$$1 - C_1 - C_2 e^{C_3 p} \le v_i(t, x, y, p, s) \le 1$$
, on $\{1, ..., m\} \times S$.

iii) Boundary conditions :

 $v_i(t, x_{min}, y, p, s) = U_L(t, x_{min}, y, p, s) \text{ and } v_i(T, x, y, p, s) = U_L(T, x, y, p, s).$

iv) Viscosity solution : $(v_i)_{1 \le i \le m}$ is a viscosity solution of the system of variational inequalities (1) on $\{1, ..., m\} \times S$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Numerical illustrations

- Model and problem formulation
- Analytical properties and dynamic programming principle
- Viscosity characterization of the objective function
- Numerical illustrations

< ロ > < 同 > < 回 > < 回 > < 回 > <

Numerical values

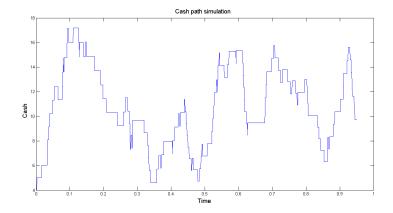
- Market values :
 - \rightarrow Initial conditions : x = 5, y = 2, p = 1, s = 0.02.
 - ightarrow *r* = 0.05, δ = 0.02, λ = 20.
 - \rightarrow Impact function : $f(t, y) = \exp(0.09y(T t))$.
 - \rightarrow Intensity functions :

$$\lambda_i^a(\rho,s) = \frac{\psi_i^a}{\rho} \exp\left(-s - 0.01(\rho - 1)\right) \quad \text{and} \quad \lambda_i^b(\rho,s) = \psi_i^b \rho \exp\left(-s + 0.01(\rho - 1)\right),$$

with $\psi_1^a = 120$, $\psi_2^a = 80$, $\psi_1^b = 80$, $\psi_2^b = 120$.

- Constraints :
 - $\rightarrow x_{min} = -20$, $y_{min} = -10$, $y_{max} = 10$, K = 5, T = 1. \rightarrow Penalty function : $g(\gamma) = \gamma^2 \times 10^{-3}$.
 - \rightarrow Perially function : $g(y) = y^2 \times 10^{-5}$.
 - \rightarrow Utility function : $U(I) = 1 e^{-0.01/1}$ i.e. $\gamma = 0.01$.
- Numerical values :
 - \rightarrow Localisation : $x_{max} = 20$, $p_{min} = 1 20 \times \frac{\delta}{2}$, $p_{max} = 1 + 20 \times \frac{\delta}{2}$
 - \rightarrow Discretization : $n_x = 40$ and $n_t = 20$.

A cash holdings path



<ロ> <同> <同> <同> < 同> < 同>

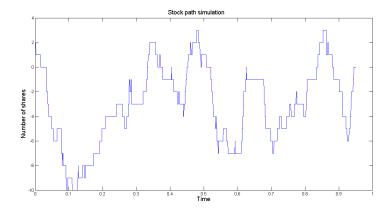
э

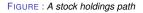
Model and problem formulation

Analytical properties and dynamic programming principle Viscosity characterization of the objective function

Numerical illustrations

A stock holdings path

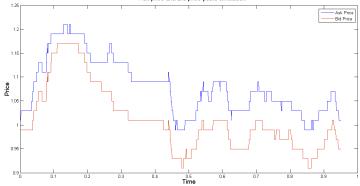




(日)

ъ

Bid and ask price paths



Ask price and Bid price paths simulation

FIGURE : Bid and ask price paths

э

→ Ξ →

< < >> < <</>

Model and problem formulation

Analytical properties and dynamic programming principle Viscosity characterization of the objective function

Numerical illustrations

Liquidation value

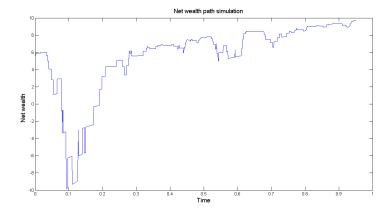


FIGURE : A path of $L(t, Z_t)$

< < >> < <</>

ъ