Optimal Trading Stops

Giuseppe Di Graziano

giuseppe.di-graziano@db.com
June 15, 2013

Overview

(1) Set Up
(2) Optimal Stops with Constant P\&L Drift
(3) Optimal Stops with Unknown P\&L Drift
(4) Optimal Stops with Stochastic Drift
(5) Numerical Examples

Set Up

- Underlying: single asset, time spreads, inter asset spreads, basket of assets
- When a position is entered a fixed number of contracts N is bought/sold
- When a position is exited all the outstanding N contracts are sold/bought back

Optimal Stops with Constant P\&L Drift

- [Imkeller and Rogers] model the P\&L of a position as a Brownian motion with constant drift

$$
\begin{equation*}
X_{t}=\sigma W_{t}+\mu t \tag{1}
\end{equation*}
$$

and assume that the cost of exiting the position at the random (stopping) time T is equal to c

- Consider the simple stopping strategy

$$
\begin{equation*}
T \equiv \inf \left\{t: X_{t}=-a \quad \text { or } \quad X_{t}=b\right\} \tag{2}
\end{equation*}
$$

- One approach to the exit problem is to maximise the expected utility of the P\&L, i.e.

$$
\begin{equation*}
\phi=E\left[e^{-\rho T} U\left(X_{T}-c\right)\right] \tag{3}
\end{equation*}
$$

for some increasing and concave utility function $U(x)$

Optimal Stops with Constant P\&L Drift

- If $f(x)$ is in \mathcal{C}^{2}, the process $M_{t}=e^{-\rho t} f\left(X_{t}\right)$ is a (Local) Martingale and the following equalities hold

$$
\begin{gather*}
f(x)=E^{x}\left[e^{-\rho T} U\left(X_{T}-c\right)\right] \tag{4}\\
\frac{1}{2} \sigma^{2} f^{\prime \prime}(x)+\mu f^{\prime}(x)-\rho f(x)=0 \tag{5}
\end{gather*}
$$

- It is thus sufficient to solve the ODE above with the appropriate boundary conditions in the interval $[-a, b]$ to obtain an explicit function for $\phi=f(0 ; a, b)$
- The optimal stop loss and target profit thresholds are obtained by maximising $f(0 ; a, b)$ as a function of the parameters a and b.

Example: CARA Utility

- If we choose the utility function to be

$$
\begin{equation*}
U(x)=1-\exp (-\gamma x) \tag{6}
\end{equation*}
$$

we can find an explicit solution for the objective function ϕ

- The objective function can be written as

$$
\begin{align*}
\phi \equiv f(0 ; a, b) & =E\left[e^{-\rho T}\right]-e^{-\gamma c} E\left[e^{-\rho T-\gamma X_{T}}\right] \tag{7}\\
& =L(\rho, 0)-e^{\gamma c} L(\rho, \gamma) \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
L(\rho, \gamma)=E\left[e^{-\rho T-\gamma X_{T}}\right] \tag{9}
\end{equation*}
$$

- Solving the ODE, we obtain

$$
\begin{equation*}
L(\rho, \gamma)=\frac{e^{\gamma a}\left(e^{\beta b}-e^{\alpha b}\right)+e^{-\gamma b}\left(e^{\alpha a}-e^{-\beta a}\right)}{e^{\alpha a+\beta b}-e^{-\alpha b-\beta a}} \tag{10}
\end{equation*}
$$

Example: CARA Utility

- ... where α and β are equal to

$$
\begin{equation*}
\alpha=-\frac{\mu}{\sigma^{2}}+\frac{1}{\sigma} \sqrt{\frac{\mu^{2}}{\sigma^{2}}-2 \rho} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=-\frac{\mu}{\sigma^{2}}-\frac{1}{\sigma} \sqrt{\frac{\mu^{2}}{\sigma^{2}}-2 \rho} \tag{12}
\end{equation*}
$$

Optimal Stops with Unknown P\&L Drift

- However, when the drift is deterministic and positive, it is not optimal to place stop losses. If the drift is deterministic and negative, it does not make sense to trade in the first place.
- [Imkeller and Rogers] suggest to let μ be a random variable with known distribution.
- The optimisation problem thus becomes

$$
\begin{equation*}
\phi(\mu ; a, b)=\int E^{(\mu)}\left[e^{-\rho T} U\left(X_{T}-c\right)\right] \psi(\mu) d \mu \tag{13}
\end{equation*}
$$

- As before we can solve for the stops a and b which maximise the function above.

Optimal Stops with Stochastic Drift

- Assume now that the drift of the P\&L changes over time in a stochastic fashion.
- For example, the drift may be high and positive when the trade is entered and weaken over time (or even become negative) as other market participants spot the same opportunity or other exogenous factors start affecting the price of the asset.
- In order to capture such a behaviour, we can model the P\&L as a Markov-modulated diffusion (MMD)

$$
\begin{equation*}
d X_{t}=\mu\left(y_{t}\right) d t+\sigma\left(y_{t}\right) d W_{t} \tag{14}
\end{equation*}
$$

where y_{t} is a continuous time Markov chain with infinitesimal generator Q, independent from W_{t}

- For example $y_{t} \in\{1,2\}$ and $\mu(1)=\bar{\mu}>0$ and $\mu(2)=0$, i.e. the $\mathrm{P} \& \mathrm{~L}$ has an initial positive drift which dies out at the random time when the chain changes state. In this case $y_{t}=2$ is an absorbing state.

Simulated P\&L

Optimal Stops with Stochastic Drift

Expected P\&L $E[X(t)]$

Optimal Stops with Stochastic Drift

- In order to solve the optimisation problem

$$
\begin{equation*}
\phi=E^{x}\left[e^{-\rho T} U\left(X_{T}-c\right)\right] \tag{15}
\end{equation*}
$$

when X_{t} is a MMD, consider the function $f(x, y) \in \mathcal{C}^{2,0}$.

- Applying Ito's formula to the function $\tilde{f} \equiv e^{-\rho t} f\left(X_{t}, y_{t}\right)$ we obtain

$$
\begin{aligned}
d\left(e^{-\rho t} f\left(X_{t}, y_{t}\right)\right) & =e^{-\rho t}\left(\mu\left(y_{t}\right) f_{x}\left(X_{t}, y_{t}\right)+\frac{1}{2} \sigma^{2}\left(y_{t}\right) f_{x x}\left(X_{t}, y_{t}\right)\right. \\
& \left.+(Q f)\left(X_{t}, y_{t}\right)-\rho f\left(X_{t}, y_{t}\right)\right) d t+d M_{t}^{f}
\end{aligned}
$$

where M_{t}^{f} is a local Martingale.

Optimal Stops with Stochastic Drift

- Since y_{t} can only take a finite number of values, with a slight abuse of notation we can think of $f\left(X_{t}\right)$ as a vector valued function with element i equal to $f_{i}\left(X_{t}\right) \equiv f\left(X_{t}, i\right)$
- For \tilde{f} to be a local Martingale we require that

$$
\frac{1}{2} \Sigma f^{\prime \prime}(x)+M f^{\prime}(x)+(Q-R) f(x)=0
$$

- Here Σ, M and R are diagonal matrices whose $i^{\text {th }}$ diagonal entry is equal to $\sigma(i), \mu(i)$ and $\rho(i)$ respectively. Q is the infinitesimal generator of the chain.

Optimal Stops with Stochastic Drift

- Since $f(x)$ is bounded in the interval $[-a, b]$, it follows from the optional stopping theorem that

$$
f_{i}(x)=E^{x, i}\left[e^{-\rho T} U\left(X_{T}-c\right)\right]
$$

where $y_{0}=i$ is the initial state of the chain and we have used the boundary conditions

$$
\left\{\begin{array}{l}
f_{i}(-a)=U(-a-c) \quad i \in\{1, \ldots, n\} \\
f_{i}(b)=U(b-c) \quad i \in\{1, \ldots, n\}
\end{array}\right.
$$

Optimal Stops with Stochastic Drift

- The system of ODEs above admits solutions of the form

$$
\begin{equation*}
f(x)=v e^{-\lambda x} \tag{16}
\end{equation*}
$$

where v is a n dimensional vector

- Substituting (16) into the system (13) and re-arranging we obtain

$$
\lambda^{2} v-2 \lambda \Sigma^{-1} M v+2 \Sigma^{-1}(Q-R) v=0
$$

- The quadratic eigenvalue problem (15) can be reduced to a canonical eigenvalue problem

$$
\left(\begin{array}{cc}
2 \Sigma^{-1} M & -2 \Sigma^{-1}(Q-R) \\
I & 0
\end{array}\right)\binom{h}{v}=\lambda\binom{h}{v}
$$

where

$$
h=\lambda v
$$

Optimal Stops with Stochastic Drift

- This is a standard eigenvalue problem which admits n solutions in the positive half plane and n in the negative half plane
- The solution to our ODE system will thus take the form

$$
f(x)=\sum_{i=1}^{2 n} w_{i} v_{i} e^{-\lambda_{i} x}
$$

- The $2 n$ coefficients w_{i} can be derived by solving the system

$$
\left\{\begin{array}{l}
\sum_{i=1}^{2 n} w_{i} v_{i} e^{-\lambda_{i} b}=\bar{U}(b-c) \\
\sum_{i=1}^{2 n} w_{i} v_{i} e^{\lambda_{i} a}=\bar{U}(-a-c)
\end{array}\right.
$$

- Here $\bar{U}(z)$ is an n dimensional vector with $i^{\text {th }}$ entry equal to $U(z)$.

Numerical Examples

Constant drift $-\mu=0.15, \sigma=0.25, c=0.01$

Numerical Examples

Signal with slow decay $-\mu(1)=0.15, \mu(2)=0, q=0.5, c=0.01$

Numerical Examples

Signal with fast decay $-\mu(1)=0.15, \mu(2)=0, \sigma=0.25, q=2$, $c=0.01$

Optimal Stop Surface

Numerical Examples

Illiquid Security $-\mu(1)=0.15, \mu(2)=0, \sigma=0.25, q=0.5, c=0.15$

Target Profit

Numerical Examples

Low risk aversion $-\mu(1)=0.15, \mu(2)=0, \sigma=0.25, q=0.5, c=0.15$, $\gamma=0.05$

Giuseppe Di Graziano (Deutsche Bank-KCL) AMaMeF Warsaw June 15, 2013 $21 / 22$

References

R
Imkeller and Rogers (2011)
Trading to Stop Working Paper, University of Cambridge
Di Graziano and Rogers (2005)
Barrier option pricing for assets with Markov-modulated dividends Journal of Computational Finance, 9, 75-87

