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Set Up

Underlying: single asset, time spreads, inter asset spreads, basket of
assets

When a position is entered a fixed number of contracts N is
bought/sold

When a position is exited all the outstanding N contracts are
sold/bought back
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Optimal Stops with Constant P&L Drift

[Imkeller and Rogers] model the P&L of a position as a Brownian
motion with constant drift

Xt = σWt + µt (1)

and assume that the cost of exiting the position at the random
(stopping) time T is equal to c

Consider the simple stopping strategy

T ≡ inf {t : Xt = −a or Xt = b} (2)

One approach to the exit problem is to maximise the expected utility
of the P&L, i.e.

φ = E [e−ρTU(XT − c)] (3)

for some increasing and concave utility function U(x)
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Optimal Stops with Constant P&L Drift

If f (x) is in C2, the process Mt = e−ρt f (Xt) is a (Local) Martingale
and the following equalities hold

f (x) = E x [e−ρTU(XT − c)] (4)

1

2
σ2f

′′
(x) + µf

′
(x)− ρf (x) = 0 (5)

It is thus sufficient to solve the ODE above with the appropriate
boundary conditions in the interval [−a, b] to obtain an explicit
function for φ = f (0; a, b)

The optimal stop loss and target profit thresholds are obtained by
maximising f (0; a, b) as a function of the parameters a and b.
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Example: CARA Utility

If we choose the utility function to be

U(x) = 1− exp(−γx) (6)

we can find an explicit solution for the objective function φ

The objective function can be written as

φ ≡ f (0; a, b) = E [e−ρT ]− e−γcE [e−ρT−γXT ] (7)

= L(ρ, 0)− eγcL(ρ, γ) (8)

where
L(ρ, γ) = E [e−ρT−γXT ] (9)

Solving the ODE, we obtain

L(ρ, γ) =
eγa(eβb − eαb) + e−γb(eαa − e−βa)

eαa+βb − e−αb−βa
(10)
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Example: CARA Utility

. . . where α and β are equal to

α = − µ

σ2
+

1

σ

√
µ2

σ2
− 2ρ (11)

and

β = − µ

σ2
− 1

σ

√
µ2

σ2
− 2ρ (12)
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Optimal Stops with Unknown P&L Drift

However, when the drift is deterministic and positive, it is not optimal
to place stop losses. If the drift is deterministic and negative, it does
not make sense to trade in the first place.

[Imkeller and Rogers] suggest to let µ be a random variable with
known distribution.

The optimisation problem thus becomes

φ(µ; a, b) =

∫
E (µ)[e−ρTU(XT − c)]ψ(µ)dµ (13)

As before we can solve for the stops a and b which maximise the
function above.
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Optimal Stops with Stochastic Drift

Assume now that the drift of the P&L changes over time in a
stochastic fashion.

For example, the drift may be high and positive when the trade is
entered and weaken over time (or even become negative) as other
market participants spot the same opportunity or other exogenous
factors start affecting the price of the asset.

In order to capture such a behaviour, we can model the P&L as a
Markov-modulated diffusion (MMD)

dXt = µ(yt)dt + σ(yt)dWt (14)

where yt is a continuous time Markov chain with infinitesimal
generator Q, independent from Wt

For example yt ∈ {1, 2} and µ(1) = µ̄ > 0 and µ(2) = 0, i.e. the P&L
has an initial positive drift which dies out at the random time when
the chain changes state. In this case yt = 2 is an absorbing state.
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Simulated P&L
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Optimal Stops with Stochastic Drift

Expected P&L E [X (t)]
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Optimal Stops with Stochastic Drift

In order to solve the optimisation problem

φ = E x [e−ρTU(XT − c)] (15)

when Xt is a MMD, consider the function f (x , y) ∈ C2,0.

Applying Ito’s formula to the function f̃ ≡ e−ρt f (Xt , yt) we obtain

d(e−ρt f (Xt , yt)) = e−ρt(µ(yt)fx(Xt , yt) +
1

2
σ2(yt)fxx(Xt , yt)

+ (Qf )(Xt , yt)− ρf (Xt , yt))dt + dM f
t

where M f
t is a local Martingale.
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Optimal Stops with Stochastic Drift

Since yt can only take a finite number of values, with a slight abuse
of notation we can think of f (Xt) as a vector valued function with
element i equal to fi (Xt) ≡ f (Xt , i)

For f̃ to be a local Martingale we require that

1

2
Σf

′′
(x) + Mf

′
(x) + (Q − R)f (x) = 0

Here Σ, M and R are diagonal matrices whose ith diagonal entry is
equal to σ(i), µ(i) and ρ(i) respectively. Q is the infinitesimal
generator of the chain.
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Optimal Stops with Stochastic Drift

Since f (x) is bounded in the interval [−a, b], it follows from the
optional stopping theorem that

fi (x) = E x ,i [e−ρTU(XT − c)]

where y0 = i is the initial state of the chain and we have used the
boundary conditions{
fi (−a) = U(−a− c) i ∈ {1, . . . , n}
fi (b) = U(b − c) i ∈ {1, . . . , n}
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Optimal Stops with Stochastic Drift

The system of ODEs above admits solutions of the form

f (x) = ve−λx (16)

where v is a n dimensional vector

Substituting (16) into the system (13) and re-arranging we obtain

λ2v − 2λΣ−1Mv + 2Σ−1(Q − R)v = 0

The quadratic eigenvalue problem (15) can be reduced to a canonical
eigenvalue problem 2Σ−1M −2Σ−1(Q − R)

I 0

( h
v

)
= λ

(
h
v

)
where

h = λv
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Optimal Stops with Stochastic Drift

This is a standard eigenvalue problem which admits n solutions in the
positive half plane and n in the negative half plane

The solution to our ODE system will thus take the form

f (x) =
2n∑
i=1

wivie
−λix

The 2n coefficients wi can be derived by solving the system{∑2n
i=1 wivie

−λib = Ū(b − c)∑2n
i=1 wivie

λia = Ū(−a− c)

Here Ū(z) is an n dimensional vector with ith entry equal to U(z).
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Numerical Examples

Constant drift - µ = 0.15, σ = 0.25, c = 0.01
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Numerical Examples

Signal with slow decay - µ(1) = 0.15, µ(2) = 0, q = 0.5, c = 0.01
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Numerical Examples

Signal with fast decay - µ(1) = 0.15, µ(2) = 0, σ = 0.25, q = 2,
c = 0.01
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Numerical Examples

Illiquid Security - µ(1) = 0.15, µ(2) = 0, σ = 0.25, q = 0.5, c = 0.15
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Numerical Examples

Low risk aversion - µ(1) = 0.15, µ(2) = 0, σ = 0.25, q = 0.5, c = 0.15,
γ = 0.05

Giuseppe Di Graziano (Deutsche Bank-KCL) AMaMeF Warsaw June 15, 2013 21 / 22



References

Imkeller and Rogers (2011)

Trading to Stop Working Paper, University of Cambridge

Di Graziano and Rogers (2005)

Barrier option pricing for assets with Markov-modulated dividends Journal of
Computational Finance, 9, 75-87

Giuseppe Di Graziano (Deutsche Bank-KCL) AMaMeF Warsaw June 15, 2013 22 / 22


	Set Up
	Optimal Stops with Constant P&L Drift
	Optimal Stops with Unknown P&L Drift
	Optimal Stops with Stochastic Drift
	Numerical Examples

