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Animal spirits

Following behavioural economics we assume that the dynamics of the market are
affected by the ‘confidence’ of market participants.

Already John Maynard Keynes said:

[A] large proportion of our positive activities depend on spontaneous
optimism rather than on a mathematical expectation, whether moral or
hedonistic or economic. Most, probably, of our decisions to do something
positive, the full consequences of which will be drawn out over many days
to come, can only be taken as a result of animal spirits—of a spontaneous
urge to action rather than inaction, and not as the outcome of a weighted
average of quantitative benefits multiplied by quantitative probabilities.
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Property boom of 1991-2007

The banks lent huge amounts of money to property developers based on—in
retrospect—gross over-estimates of property values, and/or ignoring risks. The
banks collapsed in the 2008/9 credit crunch.

In the context of analysing the property prices and latest crisis:

- How can we measure animal spirits?

- How can we leverage it for testing?
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Measuring animal spirits

There are two varieties of confidence indices, the consumer confidence index and
the purchasing managers’ index (PMI).

Both are based on surveys, and represent respectively the propensity of
consumers to go out and spend, and the propensity of businesses to invest.

In the United States, consumer confidence is measured by the Conference Board
and by the University of Michigan. The main difference between the two surveys
is in the time horizon: while the Conference Board polls households on their
expectations over the next six months, the University of Michigan looks at
expectations over the coming year.

On the other hand, purchasing manager expectations are assessed regionally: the
Chicago PMI is widely regarded as the most representative of nationwide
sentiment.

These indices are quite noisy though, and it is not immediately clear how they
are related to animal spirits.
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Simplest approach to model animal spirits

The simplest way to model agents’ attitude is to introduce:

- finite number of states

- with intuitive interpretation.

The simplest dynamic model is

- finite state Markov Chain

AMaMeF G Andruszkiewicz 2013



Estimating animal spirits - 6 - Warsaw, June 2013

Hidden Markov Models (HMMs)

This family of models assumes two processes:

- Observable process Ot, e.g. log-returns of a property price index

- Hidden (not observable directly) state process qt

The distribution of these processes in discrete time is given by:

- The hidden state process is a finite state Markov chain with transition matrix
A

- Distribution parameters of Ot are functions of the state qt
- The model is time homogeneous.
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For simplicity of exposition we assume:

- Ot are Gaussian given qt, and are conditionally independent of the values Os

and qs for s 6= t

- qt takes values in positive integers

These type of models became very popular in signal processing filed in the
seventies.

In finance they are widely used to model regimes and regime-switching
behaviour.
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Maximum likelihood

The model is parameterized by λ = (π,A, θ) where:

- π is the initial distribution of the hidden state

- A is the transition matrix

- θ consists of distribution parameters of Ot for every hidden state

To estimate the parameters of the model we shall adopt the maximum likelihood
method, so we find parameter values λ̂ that maximise the likelihood function of
the observed series:

L(λ;O) = P [O|λ] =
∑
q

P [O| q, λ]P [q|λ] (1)

where we sum over all possible realizations of the hidden state sequence. Note
that we can express this as an expectation w.r.t the hidden sequence:

P [O|λ] =
∑
q

P [O| q, λ]P [q|λ] = E [P [O|Q, λ]] (2)

Direct maximisation is in this case rather difficult.
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EM algorithm

The algorithm starts from some user-defined initial guess for the parameter
values and then improves them iteratively. A single iteration consists of two
steps:

Expectation First, given the parameter values from previous step λi−1 we
calculate the quantity:

Q(λ, λi−1) = E
[
logP [O,Q|λ]|O, λi−1

]
=
∑
q

logP [O, q|λ]P
[
O, q|λi−1

]
(3)

as a function of λ.

Maximisation Next, we find λi = arg maxλQ(λ, λi−1), which will be used in
the next iteration.

Dempster et.al (1977) proved that the algorithm converges to a local maximum
and the parameter values that maximise (3) also maximise (1), hence the
algorithm gives the required estimate.
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Baum-Welch algorithm

We can write the probabilities P [O, q|λ] as:

P [O, q|λ] = πq1bq1(O1)

T∏
t=2

aqt−1qtbqt(Ot), (4)

where aqt−1qt is the transition probability from the state qt−1 to qt and
bqt(Ot) = f (Ot; qt) is the density of the observable process given that the system
is in the state qt. The Q function (3) becomes:

Q((π,A, θ), λ) =
∑
q∈Q

log πq1P [O, q|λ]

+
∑
q∈Q

T∑
t=2

log aqt−1qtP [O, q|λ]

+
∑
q∈Q

T∑
t=1

log bqt(Ot)P [O, q|λ] ,

(5)

AMaMeF G Andruszkiewicz 2013



Estimating animal spirits - 11 - Warsaw, June 2013

The key observation is to notice that for all three terms above, for every t we
sum over the space of all paths of the hidden state process, whereas we are only
concerned with the value at the given and directly preceding time.

When we consolidate these terms, we end up with a much more
computation-friendly formula:

Q((π,A, θ), λ) =

N∑
i=1

P [O, q1 = i|λ] log πi

+

N∑
i=1

N∑
j=1

T∑
t=2

P [O, qt−1 = i, qt = j|λ] log aij

+

N∑
i=1

T∑
t=1

P [O, qt = i|λ] log bi(Ot),

(6)

where the only dependence on θ is in the bi functions.
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Because of the separability of Q with respect to different parameters, it is easy
to calculate the maximum analytically using the constraints:

N∑
j=1

πj = 1

N∑
j=1

aij = 1, for every i

(7)

and the normal density function for b. The maximised values of parameters are
given by:

π∗i =
P [O, q1 = i|λ]

P [O|λ]

a∗ij =

∑T
t=2 P [O, qt−1 = i, qt = j|λ]∑T

t=2 P [O, qt−1 = i|λ]

m∗(i) =

∑T
t=1 P [O, qt = i|λ]Ot∑T
t=1 P [O, qt = i|λ]

var∗(i) =

∑T
t=1 P [O, qt = i|λ] (Ot −m∗(i))2∑T

t=1 P [O, qt = i|λ]

(8)

AMaMeF G Andruszkiewicz 2013



Estimating animal spirits - 13 - Warsaw, June 2013

Forward-Backward procedure

To be able to use the equations above, we need an efficient way to calculate the
quantities P [O|λ], P [O, qt = i|λ] and P [O, qt−1 = i, qt = j|λ]. To achieve
this, we will use the Forward-Backward procedure. First define the forward
variables:

αt(i) = P [O1O2 . . . Ot, Qt = i|λ] , (9)

which can be calculated dynamically with starting condition:

α1(j) = πjbj(O1) (10)

and the induction:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Ot+1) (11)

for every state j.
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Analogously we define the backward variables:

βt(i) = P [Ot+1Ot+2 . . . OT |Qt = i, λ] . (12)

The final value is defined arbitrarily by:

βT (i) = 1, (13)

and the backward induction is given by:

βt(i) =

N∑
j=1

aijbj(Ot+1)βt+1(j). (14)

We can use these precomputed values to efficiently calculate the quantities of
interest. First, because we might end up in any state at the final time T , we
have:

P [O|λ] =

N∑
i=1

αT (i). (15)
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By looking at the probabilistic definitions of α and β and using the Bayes
formula we get:

γt(i) = P [O| qt = i, λ]

=
P [O1 . . . Ot, qt = i|λ]P [Ot+1 . . . OT |O1 . . . Ot, qt = i, λ]

P [O|λ]

=
P [O1 . . . Ot, qt = i|λ]P [Ot+1 . . . OT | qt = i, λ]∑N

j=1 P [O, qt = j|λ]

=
αt(i)βt(i)∑N
j=1 αt(j)βt(j)

(16)

where in the third line we used the fact that given qt the observable values after
time t, Ot+1 . . . OT are independent of the earlier observations O1 . . . Ot.
Analogously we have the formula for the last missing ingredient:

ξt(i, j) = P [qt = i, qt+1 = j|O, λ]

=
P [O, qt = i, qt+1 = j|λ]

P [O|λ]

=
αt(i)aijbj(Ot+1)βt+1(j)

P [O|λ]
.

(17)
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It is convenient to express the estimates (8) in terms of γ and ξ:

π∗i = γ1(i)

a∗ij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

m∗(i) =

∑T
t=1 γt(i)Ot∑T
t=1 γt(i)

var∗(i) =

∑T
t=1 γt(i)(Ot −m∗(i))2∑T

t=1 γt(i)

(18)
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Scaling

Unfortunately the induction described above is not numerically stable, because
the terms αt go to zero exponentially fast as t increases and get out of the
scope of double-precision numbers used in computer systems. To avoid this we
will introduce scaled versions of these coefficients α̂t(i) = αt(i)∑N

j=1 αt(j)
:

ᾱ1(i) = α1(i)

nt =

N∑
j=1

ᾱt(j)

α̂t(i) =
ᾱt(i)

nt

ᾱt+1(j) =

[
N∑
i=1

α̂t(i)aij

]
bj(Ot+1)

(19)
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It is easy to notice that the scaled values are given by:

α̂t(i) =
αt(i)

Nt
, (20)

where

Nt =

t∏
τ=1

nt (21)

By using the equation above for α̂t(i) and the definition for induction (19) we
can write:

α̂t(i) =

∑N
j=1 αt−1(j)ajibi(Ot)/Nt∑N

k=1

∑N
j=1 αt−1(j)ajkbk(Ot)/Nt

=
αt(i)∑N
k=1 αt(k)

, (22)

which shows that our induction is indeed producing scaled variables as indicated
above.
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We use the same normalisation factors to calculate scaled backward variables:

β̂T (i) =
1

nT

β̂t(i) =
1

nt

N∑
j=1

aijβ̂t+1(j)bj(Ot+1)
(23)

And analogously we get:

β̂t(i) =
βt(i)

Mt
, (24)

where

Mt =

T∏
τ=t

nt (25)
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These can be now directly used to calculate the needed probabilities. First
because α̂ are normalized, the identity holds:

N∑
i=1

α̂T (i) =

∑N
i=1 αT (i)

NT
= 1, (26)

thus by (15) we get P [O|λ] = NT . As already mentioned, this quantity is
outside of the range of double numbers, but we can efficiently calculate the
logarithm (the log-likelihood function):

logP [O|λ] =

T∑
t=1

log nt (27)
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To calculate ξt we will substitute αt for α̂tNt and βt for β̂tMt in (17):

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P [O|λ]

=
α̂t(i)aijbj(Ot+1)β̂t+1(j)NtMt+1

P [O|λ]

=
α̂t(i)aijbj(Ot+1)β̂t+1(j)NT

P [O|λ]

= α̂t(i)aijbj(Ot+1)β̂t+1(j),

(28)

where we used the fact that NtMt+1 = NT and that P [O|λ] = NT . The γ
coefficients may be computed analogously:

γt(i) =
αt(i)βt(i)

P [O|λ]

=
α̂t(i)β̂t(i)NtMt

P [O|λ]

= α̂t(i)β̂t(i)nt,

(29)

because NtMt = ntNT = ntP [O|λ]. We can plug these values to calculate the
parameter estimates according to (18), just as in the unscaled case.
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Viterbi algorithm - the most likely path of the hidden process

First define

δt(i) = max
q1q2...qt−1

logP [q1q2 . . . qt−1, qt = i, O1O2 . . . Ot|λ] , (30)

that is, δt(i) denotes the highest log-likelihood along a single path up to time t
that ends in the state i. The maximum log-likelihood of both hidden and
observable paths is given by:

P ∗ = max
1≤i≤N

[δt(i)] (31)
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δ may be efficiently computed by the following induction:

δ1(i) = log πi + log bi(O1)

δt(j) = max
1≤i≤N

[δt−1(i) + log aij] + log bj(Ot).
(32)

We also need another set of variables ψ to track which previous state was
chosen in the maximisation above, at every time and state j:

ψ1(i) = 0

ψt(j) = arg max
1≤i≤N

[δt−1(i) + log aij]. (33)

Having calculated these numbers, the last element of the most likely hidden path
is given by:

q∗T = arg max
1≤i≤N

[δt(i)]. (34)

To calculate the most likely hidden state at earlier times we use the backtracking
method:

q∗t = ψt+1(q
∗
t+1). (35)
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Continuous-time extension

Most models in mathematical-finance are in continuous time, mainly for easier
tractability. However, real world data is only available at discrete time points
(monthly in case of the Shiller index) and hence the statistics literature deals
with discrete time series.

To be able to bridge these two fields easily and without introducing additional
error terms, we only work with price processes that can be discretized exactly.
The state process is assumed to only change value on the observation dates, so
the continuous-time version has right-continuous piecewise-constant paths.
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Histograms of realized observations in different states:
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Probability forecasts

Traditionally everyone used point forecasts, e.g. tomorrow the temperature will
be 20 degrees.

We prefer to use probability forecasts, e.g. tomorrow, the temperature is
distributed by –given distribution–.

Point forecasts (the expected value) contain not enough information for many
purposes, e.g.

- Calculating probability of temperature falling below certain level

- Analysing variability of temperature

- Performing any optimisation over all possible values of temperature, etc.

Moreover, it might be the case that the temperature of 20 degrees will never
happen. Imagine a bi-modal distribution with peaks at 15 degrees (if the wind is
from the north) and at 25 degrees (otherwise), with zero mass at 20 degrees.

AMaMeF G Andruszkiewicz 2013



Estimating animal spirits - 32 - Warsaw, June 2013

One-period forecasts with HMMs

Given the history of the process up to time T , the distribution of the observable
at time T + 1 is given by:

P [OT+1 = o|O1 . . . OT ] =
P [O1 . . . OT , OT+1 = o]

P [O1 . . . OT ]

=

∑N
i=1 αT (i)

∑N
j=1 aijbj(o)∑N

i=1 αT (i)
,

(36)

where αT (i) is defined as αt(i) = P [O1O2 . . . Ot, Qt = i|λ].

It is easy to notice that the forecast distribution is a mixture of the base
distributions (Gaussian in our case):

P [OT+1 = o|O1 . . . OT ] =

N∑
j=1

ψT (j)bj(o), (37)

with

ψT (j) =

∑N
i=1 αT (i)aij∑N
i=1 αT (i)

(38)
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The forecast distribution of the hidden state is:

P [QT+1 = q|O1 . . . OT ] =
P [O1 . . . OT , QT+1 = q]

P [O1 . . . OT ]

=

∑N
i=1 αT (i)aiq∑N
i=1 αT (i)

.

(39)

Note that in all the formulas above we can substitute αT by the scaled version
α̂T , because the normalisation factors cancel out.
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Verification of forecast distribution

Proposition 1. Assume that at each point in time T0 ≤ t ≤ T we are given a
distribution forecast for the value of process X :

Ft(x) = P [Xt < x| Gt−1] , (40)

where for simplicity we assume that Ft is a continuous and strictly increasing
function (as it is the case for mixture Gaussian distribution) and Gt−1 is the
sigma algebra representing the information available at time t− 1. Let
Yt = Ft(Xt) for every t.

Then the random variables Yt are uniformly distributed on (0, 1) and are
mutually independent.

The proof is rather elementary, uses the existence and properties of the inverse
of Ft(x), as well as the tower property of conditional expectations.

AMaMeF G Andruszkiewicz 2013



Estimating animal spirits - 35 - Warsaw, June 2013

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  0.2  0.4  0.6  0.8  1

Distribution of uniforms associated with forecast results

AMaMeF G Andruszkiewicz 2013



Estimating animal spirits - 36 - Warsaw, June 2013

 0

 2

 4

 6

 8

 10

 12

 0  0.2  0.4  0.6  0.8  1

Distribution of uniforms associated with forecast results (using final parameter estimates)

AMaMeF G Andruszkiewicz 2013



Estimating animal spirits - 37 - Warsaw, June 2013

Multivariate models with lags (inspired by VAR models)

It is often observed that the variable of interest is correlated with a lagged
version of a different variable.

Assume that Xt is the variable of interest and Yt is another observable variable,
such that Yt−1 is correlated with Xt. The observable process at time t is
composed of both Xt and Yt−1:

Ot = [XtYt−1]
T. (41)

To forecast XT+1 at time T we can use the available observation YT in a natural
way:

P [XT+1 = x|X1 . . . XT , Y0 . . . YT ] =
P [XT+1 = x,X1 . . . XT , Y0 . . . YT ]

P [X1 . . . XT , Y0 . . . YT ]

=

∑N
i=1 αT (i)

∑N
j=1 aijbj(x, YT )∑N

i=1 αT (i)
∑N

j=1 aijb
Y
j (YT )

,

(42)

where bYj (YT ) is the marginal distribution of YT . By applying the definition of

conditional probability bl(x, YT ) = bl(x|YT )bYl (YT ) we can transform the
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equation above to arrive at:

P [XT+1 = x|X1 . . . XT , Y0 . . . YT ] =

N∑
l=1

ψlT+1(YT )bl(x|YT ), (43)

where

ψlT+1(YT ) =

∑N
i=1 αT (i)ailb

Y
l (YT )∑N

i=1 αT (i)
∑N

j=1 aijb
Y
j (YT )

(44)

The forecast is thus a mixture of distributions.

Moreover, if X and Y are jointly-normal distributed in every state i with
parameters: [

X
Y

]
∼ N

([
µXi
µYi

]
,

[
ΣX
i ΣXY

i

ΣY X
i ΣY

i

])
, (45)

then Y is normally distributed Y ∼ N (µYi ,Σ
Y
i ), and X , conditionally given Y ,

is also normally distributed with

XT+1|YT = y ∼ N
(
µXi + ΣXY

i (ΣY
i )−1(y − µYi ),ΣX

i − ΣXY
i (ΣY

i )−1ΣY X
i

)
.

(46)
As a result the forecast of X is given by a mixture of Gaussians.

AMaMeF G Andruszkiewicz 2013



Estimating animal spirits - 39 - Warsaw, June 2013

It’s not finished yet!

Further work:

1. Analyse different sets of explanatory data

2. Look at hand-crafted crash scenarios

3. Explore different distribution families
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