The approximation of bonds and swaptions prices in a Black-Karasiński Model based on the Karhunen-Loève expansion

Andrzej Daniluk (with Rafał Muchorski) andrzej.daniluk@gmail.com

6th General AMaMeF and Banach Center Conference, June 2013

Summary of results

- Explicit formulae for Karhunen-Loève Theorem of the Ornstein-Uhlenbeck process and Ornstein-Uhlenbeck bridge
- New idea of approximation technique applicable for particular functionals of Gaussian processes
- Numerically efficient and accurate semi-analytic approximative formulae for bonds and swaptions pricing in a Black-Karasiński model

Karhunen-Loève Theorem

Let $\left(X_{t}\right)_{t \in[a, b]}$ be a centered stochastic process with a covariance function K. Then X_{t} admits the expansion:

$$
X_{t}=\sum_{n=0}^{\infty} \sqrt{\lambda_{n}} f_{n}(t) Z_{n} \quad \text { a.e. } \quad \text { where } \quad Z_{n}=\frac{1}{\sqrt{\lambda_{n}}} \int_{a}^{b} X_{t} f_{n}(t) d t, \quad n \geqslant 0
$$

are orthogonal random variables with mean value equal to zero, $\mathbb{E}\left(Z_{n}^{2}\right)=1$ and $\left\{f_{n}(t), n \geqslant 0\right\}$ form an orthonormal basis in $L^{2}([a, b])$ consisting of the eigenfunctions (corresponding to nonzero eigenvalues) of a Fredholm operator \mathcal{F}_{K}, associated with kernel K, i.e.:

$$
\mathcal{F}_{K} f_{n}=\lambda_{n} f_{n} \quad \text { for each } n \geqslant 0 . \quad \text { where } \quad\left(\mathcal{F}_{K} h\right)(\cdot)=\int_{a}^{b} K(\cdot, x) h(x) d x
$$

This series converges pointwise a.s. in the norm $\|Y(t)\|:=\left(\mathbb{E} Y^{2}(t)\right)^{1 / 2}$ and moreover the convergence is uniform in $t \in[a, b]$.
In particular, if $\left(X_{t}\right)_{t \in[a, b]}$ is a centered Gaussian process, then Z_{n} 's are independent $\mathcal{N}(0,1)$ random variables.

Optimal approximation property

Truncated series of Karhunen-Loève expansion give optimal approximation of the process in a sense of a mean-square error. More precisely, if we consider any orthonormal basis f_{k} of $L^{2}([a, b])$, we may decompose the process X as:

$$
X_{t}=\sum_{n=0}^{\infty} f_{n}(t) Z_{n} \quad \text { a.e. } \quad \text { where } \quad Z_{n}=\int_{a}^{b} X_{t} f_{n}(t) d t
$$

If we consider approximation error of such truncated representation

$$
e_{t}=X_{t}-\sum_{n=0}^{m} f_{n}(t) Z_{n}
$$

then the Karhunen-Loève expansion is the one that minimizes its norm

$$
\int_{a}^{b}\left\|e_{m}\right\|^{2} d t
$$

Note also the fact that the conditional expectation (w.r.t. the given sigma-field) of the random variable is its closest approximation in the L^{2} norm among all random variables measurable w.r.t. this sigma-field.

Approximation idea

Consider a centered stochastic process $\left(X_{t}\right)_{t \in[a, b]}$ and its Karhunen-Loève expansion. Let also $h: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $\mathbb{E}\left(\left|h\left(X_{t}\right)\right|\right)$ exists for each $t \in[a, b]$.
Consider the integral:

$$
I=\int_{a}^{b} h\left(X_{t}\right) d t
$$

Then we will approximate it as

$$
I \approx \int^{b} \mathbb{E}\left(h\left(X_{t}\right) \mid Z_{0}\right) d t
$$

Note that while the original integral is a random variable of rather complex distribution, the approximated one is just a Borel function of a single normal variable.

Much easier to deal with! ...if we only can compute this function effectively.

Ornstein-Uhlenbeck process

We will consider the centered Ornstein-Uhlenbeck process $\left(X_{t}\right)_{t \in[0, T}$ given by an Itô equation

$$
d X_{t}=-b X_{t} d t+d W_{t}
$$

with an initial value $X_{0}=0$ and a real parameter $b>0$.
It can be characterized also as a centred Gaussian process with a covariance function

$$
K(s, t):=\frac{1}{2 b} e^{-b|t-s|}-\frac{1}{2 b} e^{-b(t+s)}
$$

and variance function

$$
V(s):=K(s, s)=\frac{1}{2 b}\left(1-e^{-2 b s}\right) .
$$

Ornstein-Uhlenbeck bridge

We can consider also an Ornstein-Uhlenbeck bridge process $\left(\hat{X}_{t}\right)_{t \in[0, T]}$ defined as

$$
\hat{X}_{t}:=X_{t}-\frac{K(t, T)}{V(T)} X_{T}, \quad t \in[0, T]
$$

which is also centered Gaussian process with a covariance function

$$
\hat{K}(s, t):=K(s, t)-\frac{K(s, T) K(t, T)}{V(T)}
$$

and the variance function

$$
\hat{V}(t):=\hat{K}(t, t)=V(t)\left(1-\frac{e^{-2 b(T-t)}}{1-e^{-2 b T}}\right) .
$$

Additionally for any $t \in[0, T]$ the random vector $\left(X_{T}, \hat{X}_{t}\right)$ has a joint Gaussian distribution and by definition $\mathbb{E}\left(X_{T} \hat{X}_{t}\right)=0$, hence \hat{X}_{s} is independent of X_{T}.

Fredholm equation for Ornstein-Uhlenbeck kernels

Consider a Fredholm operator \mathcal{F}, associated with kernel K or \hat{K}, respectively. Elementary calculation shows that

$$
(\mathcal{F} f)^{\prime \prime}=-f+b^{2} \mathcal{F} f
$$

Hence eigenfunction f of \mathcal{F} (with eigenvalue $\lambda \neq 0$) must fulfill linear differential equation:

$$
-f+b^{2} \lambda f=\lambda f^{\prime \prime} .
$$

with two additional boundary conditions:

$$
f(0)=0
$$

and

$$
f^{\prime}(T)=-b f(T)
$$

or

$$
f(T)=0
$$

for the Ornstein-Uhlenbeck process or Ornstein-Uhlenbeck bridge, respectively. These differential equations can be easily solved, one can also prove that their solutions are solutions of the corresponding Fredholm equation.

Representation of the Ornstein-Uhlenbeck process

Let $\left(X_{t}\right)_{t \in[0, \tau]}$ be an Ornstein-Uhlenbeck process in the interval $[0, \tau]$. Then its Karhunen-Loève expansion has the form

$$
X_{t}=\sum_{n=0}^{\infty} \sqrt{\lambda_{n}(\tau)} f_{n, \tau}(t) Z_{n}
$$

where Z_{n} are independent, identically distributed normal $N(0,1)$ variables and $f_{n, \tau}, \lambda_{n}(\tau)$ are given by

$$
\begin{gathered}
f_{n, \tau}(t)=\sqrt{\frac{2}{\tau+b \lambda_{n}(\tau)}} \sin \left(\omega_{n}(\tau) t\right) \\
\lambda_{n}(\tau)=\frac{1}{b^{2}+\omega_{n}(\tau)^{2}}
\end{gathered}
$$

where $\omega_{n}(\tau)$ is the unique solution of the equation

$$
\omega \operatorname{ctg}(\omega \tau)=-b
$$

in the interval $\left(\left(n+\frac{1}{2}\right) \frac{\pi}{\tau},(n+1) \frac{\pi}{\tau}\right), n \in \mathbb{N} \cup\{0\}$.

Representation of the Ornstein-Uhlenbeck bridge

Let $\left(\hat{X}_{t}\right)_{t \in[0, T]}$ be an Ornstein-Uhlenbeck bridge process in the interval $[0, T]$. Then its Karhunen-Loève expansion has the form

$$
\hat{X}_{t}=\sum_{n=1}^{\infty} \sqrt{\hat{\lambda}_{n}(T)} \hat{f}_{n, T}(t) \hat{Z}_{n}
$$

where \hat{Z}_{n} are independent, identically distributed normal $N(0,1)$ variables and $f_{n, T}, \hat{\lambda}_{n}(T)$ are given by

$$
\begin{aligned}
\hat{f}_{n, T}(t) & =\sqrt{\frac{2}{T}} \sin \left(\frac{n \pi t}{T}\right) \\
\hat{\lambda}_{n}(T) & =\frac{T^{2}}{b^{2} T^{2}+n^{2} \pi^{2}}
\end{aligned}
$$

Black-Karasiński model

Consider the process $\left(r_{t}\right)_{t \geqslant 0}$ the short-term rate and of its logarithm $I_{t}:=\ln \left(r_{t}\right)$. In a single factor Black-Karasiński model I_{t} is assumed to follow the dynamics:

$$
d l_{t}=\left(a(t)-b I_{t}\right) d t+\sigma d W_{t}
$$

where σ, b are positive constants, $a(t)$ is some deterministic function and $\left(W_{t}\right)_{t \geqslant 0}$ is a Wiener process under the spot measure.
In explicit terms

$$
r_{u+t}=\exp \left(A(u, u+t)+e^{-b t} \ln \left(r_{u}\right)+\sigma X_{t}^{(u)}\right)=\bar{r}_{u, t} \exp \left(\sigma X_{t}^{(u)}\right)
$$

where we denoted

$$
\begin{gathered}
A(u, u+v):=\int_{u}^{u+v} e^{-b(u+v-s)} a(s) d s \\
\bar{r}_{u, v}:=r_{u}^{e^{-b v}} \exp (A(u, u+v)) \\
X_{t}^{(u)}:=\frac{1}{\sigma}\left(I_{u+t}-e^{-b t} I_{u}-A(u, u+t)\right)
\end{gathered}
$$

where the last process is an Ornstein-Uhlenbeck process, independent from \mathcal{F}_{u}.

Approximation of saving account

Consider the value of saving account (starting at the time $T \geqslant 0$):

$$
\beta_{T}(\tau):=\exp \left(\int_{T}^{T+\tau} r(s) d s\right)
$$

Now are going to approximate the logarithm of saving account according to our idea with the first term of the Karhunen-Loève expansion of the Ornstein-Uhlenbeck process. In order to do that we first compute directly:

$$
\mathbb{E}\left(r_{T+t} \mid Z_{0}\right)=\bar{r}_{T, t} F_{\tau}\left(t, Z_{0}\right)
$$

where

$$
F_{\tau}(t, z):=\exp \left(\sigma \sqrt{\lambda_{0}(\tau)} f_{0, \tau}(t) z-\frac{\sigma^{2}}{2}\left(V(t)-\lambda_{0}(\tau) f_{0, \tau}^{2}(t)\right)\right)
$$

Thence we obtain

$$
\beta_{T}(\tau) \approx \exp \left(\int_{0}^{\tau} \bar{r}_{T, t} F_{\tau}\left(t, Z_{0}\right) d t\right)
$$

Approximation of bond price

In consequence the price of a zero-coupon bond $B(T, T+\tau)$ at time $T \geqslant 0$, with maturity $T+\tau$, can be approximated with the formula

$$
B(T, T+\tau)=\mathbb{E}\left(\left.\frac{1}{\beta_{T}(\tau)} \right\rvert\, \mathcal{F}_{T}\right) \approx \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \exp \left(-\bar{r}_{T, t} \int_{0}^{\tau} F_{\tau}(t, z) d t\right) e^{-\frac{z^{2}}{2}} d z
$$

This approximation can be further simplified by approximating exponential in the definition of function F_{τ} with a quadratic function and calculating integral over z effectively:

$$
B(T, T+\tau) \approx \exp \left(-\left(c_{0}+c_{2}\right)+\frac{c_{1}^{2}}{2\left(1+2 c_{2}\right)}+c_{2}^{2}\right),
$$

where

$$
\begin{gathered}
h_{0, \tau}(t):=\exp \left(\frac{\sigma^{2}}{2}\left(V(t)-\lambda_{0}(\tau) f_{0, \tau}(t)^{2}\right)\right) \\
c_{j}:=\frac{1}{j!}\left(\sigma \sqrt{\lambda_{0}(\tau)}\right)^{j} \int_{0}^{\tau} \bar{r}_{T, t} h_{0, \tau}(t) f_{0, \tau}(t)^{j} d t \quad j=1,2,3 .
\end{gathered}
$$

Numerical results

In order to test the accuracy of approximations presented in the previous section, several prices of zero coupon bonds have been computed. It was assumed for simplicity that $a(\cdot)$ is a constant function of the form $a(t)=b \ln \left(r_{\text {avg }}\right)$, where $r_{\text {avg }}=5 \%$. For the sake of clarity and comparability, results are presented in the form of yields-to-maturity (with a continuous compounding convention), not the actual prices of bonds. In order to examine the dependence of results on different parameters, yields to maturity were calculated for the following:

- maturities: $2,5,10$ and 20 years
- values of $r_{0}: 2 \%, 4 \%$ and 8%
- values of $b: 0,05,0,1$ and 0,2
- values of $\sigma: 15 \%$ and 30%

Below we present a comparison of results of such prices obtained from
Approximation 1, Approximation 2 and from a Monte-Carlo simulations approach, which provides benchmark values.
As we can see, the errors of approximations are very small with an order of at most few basis points no matter the length of maturities or which parameter sets are examined. In addition, they are comparable with numerical errors from the Monte Carlo approach.

Parameters					Yields				Errors		
Maturity $[\mathrm{Y}]$	r_{0} $[\%]$	a	b	σ $[\%]$	MC $[\%]$	Appr. 1 $[\%]$	Appr. 2 $[\%]$	MC $[\%]$	Appr. 1 vs MC $[\%]$	Appr. 2 vs Appr. 1 $[\%]$	
2	4.0	-0.30	0.10	15	4.1239	4.1234	4.1233	0.002	0.000	0.000	
5	4.0	-0.30	0.10	15	4.2719	4.2728	4.2725	0.002	0.001	0.000	
10	4.0	-0.30	0.10	15	4.4495	4.4502	4.4508	0.003	0.001	0.001	
20	4.0	-0.30	0.10	15	4.6479	4.6502	4.6537	0.003	0.002	0.003	
2	2.0	-0.30	0.10	15	2.2029	2.2033	2.2032	0.001	0.000	0.000	
5	2.0	-0.30	0.10	15	2.4951	2.4936	2.4933	0.001	-0.002	0.000	
10	2.0	-0.30	0.10	15	2.9210	2.9198	2.9197	0.002	-0.001	0.000	
20	2.0	-0.30	0.10	15	3.5550	3.5406	3.5427	0.003	-0.014	0.002	
2	8.0	-0.30	0.10	15	7.7238	7.7255	7.7253	0.003	0.002	0.000	
5	8.0	-0.30	0.10	15	7.3610	7.3617	7.3618	0.004	0.001	0.000	
10	8.0	-0.30	0.10	15	6.8797	6.8815	6.8836	0.004	0.002	0.002	
20	8.0	-0.30	0.10	15	6.2600	6.2694	6.2752	0.004	0.009	0.006	

Comparison of prices and differences between them obtained from Monte Carlo simulations, Approximation 1 and Approximation 2

Parameters					Yields				Errors		
Maturity $[\mathrm{Y}]$	r_{0} $[\%]$	a	b	σ $[\%]$	MC $[\%]$	Appr. 1 $[\%]$	Appr. 2 $[\%]$	MC $[\%]$	Appr. 1 vs MC $[\%]$	Appr. 2 vs Appr. 1 $[\%]$	
2	4.0	-0.15	0.05	15	4.0847	4.0842	4.0840	0.002	-0.001	0.000	
5	4.0	-0.15	0.05	15	4.1920	4.1911	4.1907	0.002	-0.001	0.000	
10	4.0	-0.15	0.05	15	4.3280	4.3247	4.3256	0.003	-0.003	0.001	
20	4.0	-0.15	0.05	15	4.4769	4.4755	4.4850	0.004	-0.001	0.009	
2	4.0	-0.60	0.20	15	4.1993	4.1960	4.1959	0.001	-0.003	0.000	
5	4.0	-0.60	0.20	15	4.4078	4.4075	4.4074	0.002	0.000	0.000	
10	4.0	-0.60	0.20	15	4.6262	4.6223	4.6225	0.002	-0.004	0.000	
20	4.0	-0.60	0.20	15	4.8280	4.8184	4.8191	0.002	-0.010	0.001	
2	4.0	-0.30	0.10	30	4.2440	4.2418	4.2396	0.003	-0.002	-0.002	
5	4.0	-0.30	0.10	30	4.5087	4.5071	4.5035	0.005	-0.002	-0.004	
10	4.0	-0.30	0.10	30	4.7557	4.7572	4.7679	0.006	0.001	0.011	
20	4.0	-0.30	0.10	30	4.9313	4.9328	4.9816	0.006	0.002	0.049	

Comparison of prices and differences between them obtained from Monte Carlo simulations, Approximation 1 and Approximation 2

Approximation of conditional bond price

For further applications we will need yet another approximation of bond's price conditional on the level of then underlying Ornstein-Uhlenbeck process at maturity, being a function of this level. Such approximation can be obtained the same way as unconditional one, using expansion of the Ornstein-Uhlenbeck bridge instead of Ornstein-Uhlenbeck process itself. As a result we get:

$$
\hat{B}(0, T, x):=\mathbb{E}\left(\left.\frac{1}{\beta_{0}(T)} \right\rvert\, X_{t}=x\right) \approx \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \exp \left(-\int_{0}^{T} \bar{r}_{0, t} \hat{F}_{\tau}(t, z, x) d t\right) e^{-\frac{z^{2}}{2}} d z
$$

where

$$
\begin{gathered}
\hat{F}_{\tau}(t, z, x):=\exp \left(\sigma \sqrt{\hat{\lambda}_{1}(T)} \hat{f}_{1, T}(t) z-\frac{\sigma^{2}}{2}\left(\hat{V}(t)-\hat{\lambda}_{1}(\tau) \hat{f}_{1, T}(t)^{2}\right)+\sigma \frac{K(t, T)}{V(T)} x\right) \\
\hat{f}_{1, T}(t)=\sqrt{\frac{2}{T}} \sin \left(\frac{\pi t}{T}\right), \quad \hat{\lambda}_{1}(T)=\frac{T^{2}}{b^{2} T^{2}+\pi^{2}}
\end{gathered}
$$

Approximation of conditional bond price

This can be approximated further to

$$
\hat{B}(0, T, x) \approx \exp \left(-\left(\hat{c}_{0}+\hat{c}_{2}\right)+\frac{\hat{c}_{1}^{2}}{2\left(1+2 \hat{c}_{2}\right)}+\hat{c}_{2}^{2}\right)
$$

where

$$
\begin{aligned}
& \hat{h}_{1, T}(t, x):=\exp \left(\frac{\sigma^{2}}{2}\left(\hat{V}(t)-\hat{\lambda}_{1}(T) \hat{f}_{1, T}(t)^{2}\right)+\sigma \frac{K(t, T)}{V(T)} x\right) \\
& \hat{c}_{j}:=\frac{1}{j!}\left(\sigma \sqrt{\hat{\lambda}_{1}(T)}\right)^{j} \int_{0}^{T} \bar{r}_{0, t} \hat{h}_{1, T}(t, x) \hat{f}_{1, T}(t)^{j} d t \quad j=1,2,3 .
\end{aligned}
$$

Swaption pricing

Consider a payer/receiver swaption with strike S and expiry date T on an underlying swap rate paid at $t=T+k \delta, k=1, \ldots, n$. It is equivalent to the put/call option on a coupon-paying bond and can be priced under a spot measure as

$$
\text { Swpt }=\mathbb{E}\left(\left.\frac{1}{\beta_{0}(T)} 1_{\{\omega \geqslant \omega C(T, n, S)\}} \omega(1-C(T, n, S)) \right\rvert\, \mathcal{F}_{0}\right)
$$

where $\omega=+/-1$ corresponds to the payer/receiver swaption and

$$
C(T, n, S):=B(T, T+n \delta)+S \sum_{k=1}^{n} B(T, T+k \delta)
$$

Swaption pricing

But in a single factor model bond's price is a decreasing function of the short rate, so if we denote this dependence as $C(T, n, S)=C\left(T, n, S ; r_{T}\right)$, we can rewrite previous formula as

$$
S w p t=\mathbb{E}\left(\left.\frac{1}{\beta_{0}(T)} 1_{\left\{\omega r_{T} \geqslant \omega r(S)\right\}} \omega\left(1-C\left(T, n, S ; r_{T}\right)\right) \right\rvert\, \mathcal{F}_{0}\right)
$$

where $r(S)$ is the unique solution of the equation

$$
C(T, n, S ; r(S))=1
$$

Moreover we can first take this expectation conditioned on X_{T}, which gives

$$
\text { Swpt }=\mathbb{E}\left(1_{\left\{\omega r_{T} \geqslant \omega r(S)\right\}} \hat{B}\left(0, T, X_{T}\right) \omega\left(1-C\left(T, n, S ; r_{T}\right)\right) \mid \mathcal{F}_{0}\right) .
$$

Technical approximations

To obtain tractable formula we should make a few addional approximations:

- take the second approximation of $\hat{B}(0, T, x)$ and use it to find approximation of $r(S)$ numerically
- expanding into Taylor series derive approximation of the form

$$
\hat{B}(0, T, x) \approx \exp \left(m_{0}(S)+m_{1}(S) \sigma x+m_{2}(S) \sigma^{2} x^{2}\right)
$$

- similarly, using approximation for the zero-coupon bond and Taylor series compute coefficients of approximation of the form:

$$
\tilde{C}(T, n, S) \approx u_{0}(S)+u_{1}(S) r_{T}+u_{2}(S) r_{T}^{2}
$$

... then put it all together into the swaption pricing formula.
At the end we get:

Approximation of swaption price

The price of a payer/receiver swaption can be approximated by the formula

$$
\begin{aligned}
\omega \Gamma^{-1} S w p t & \approx\left(1-u_{0}(S)\right) \Phi\left(\omega d_{0}\right) \\
& -u_{1}(S) \bar{r}_{0, T} \exp \left(\left(m_{1}(S)+\frac{1}{2}\right) \frac{\sigma^{2}}{\vartheta^{2}}\right) \Phi\left(\omega d_{1}\right) \\
& -u_{2}(S) \bar{r}_{0, T}^{2} \exp \left(2\left(m_{1}(S)+1\right) \frac{\sigma^{2}}{\vartheta^{2}}\right) \Phi\left(\omega d_{2}\right)
\end{aligned}
$$

where:

$$
\begin{gathered}
\vartheta:=\sqrt{\frac{1-2 m_{2}(S) \sigma^{2} V(T)}{V(T)}} \\
d_{j}:=\frac{m_{1}(S)+j}{\vartheta} \sigma-\frac{\vartheta}{\sigma} \ln \left(\frac{\tilde{r}(S)}{\bar{r}_{0}, T}\right), \quad j=0,1,2, \\
\Gamma=\frac{1}{\vartheta \sqrt{V(T)}} \exp \left(m_{0}(S)+\frac{1}{2}\left(\frac{m_{1}(S) \sigma}{\vartheta}\right)^{2}\right)
\end{gathered}
$$

Numerical results

Model parameters				Swaption parameters								
$\begin{gathered} r_{0} \\ {[\%]} \end{gathered}$	a	b	$\begin{gathered} \sigma \\ {[\%]} \end{gathered}$	$\begin{gathered} \exp . \\ {[\mathrm{Y}]} \end{gathered}$	tenor [Y]	Fw. IRS [\%]	ATM [\%]	$\begin{gathered} \text { OTM } \\ 3.5 \% \\ {[\%]} \end{gathered}$	$\begin{gathered} \text { OTM } \\ 4 \% \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \text { OTM } \\ 4.5 \% \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { OTM } \\ 5 \% \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \text { OTM } \\ 5.5 \% \\ {[\%]} \\ \hline \end{gathered}$
4	-0.299	0.1	15	1	1	4.2108	0.0198	-0.032	0.0015	0.0274	0.0259	0.0305
4.0	-0.2996	0.1	15	1	2	4.2478	0.0244	-0.0457	0.0000	0.0366	0.0427	0.0442
4.	-0.2996	0.1	15	1	5	4.3422	0.0122	-0.1006	-0.0198	0.0213	0.0427	0.0198
4.0	-0.2996	0.1	15	1	10	4.4528	-0.0076	-0.1951	-0.0579	0.0351	0.0396	0.0107
4.0	-0.2996	0.1	15	1	20	4.5627	-0.0091	-0.689	-0.1402	0.0213	0.0412	0.0076
2.0	-0.2996	0.1	15	2	1	4.2867	0.0108	0.0463	0.0259	0.0086	0.0075	0.0065
2.0	-0.2996	0.1	15	2	2	4.3206	0.0065	0.0593	0.041	0.0065	0.0129	0.0162
2.0	-0.2996	0.1	15	2	5	4.4054	-0.0226	0.0808	0.0625	0.0216	0.0172	0.0269
2.0	-0.2996	0.1	15	2	10	4.5018	-0.083	0.1153	0.0798	0.0259	-0.0183	0.0097
2.0	-0.2996	0.1	15	2	20	4.5967	-0.1099	0.1444	0.0873	0.0356	-0.0463	-0.0065
8.0	-0.2996	0.1	15	5	1	4.471	-0.0089	-0.002	0.0027	0.0055	0.0027	0.0143
8.0	-0.2996	0.1	15	5	2	4.4946	-0.0423	-0.0048	-0.0014	-0.0027	-0.0191	0.0027
8.0	-0.2996	0.1	15	5	5	4.5529	-0.137	-0.0089	-0.0095	-0.0191	-0.0839	-0.0293

Differences between implied volatilities calculated from swaption approximation prices and from Monte-Carlo simulation prices

Numerical results

Model parameters				Swaption parameters								
$\left\lvert\, \begin{gathered} r_{0} \\ {[\%]} \end{gathered}\right.$	a	b	$\left\|\begin{array}{c} \sigma \\ {[\%]} \end{array}\right\|$	$\begin{gathered} \mathrm{exp} . \\ {[\mathrm{Y}]} \end{gathered}$	tenor [Y]	Fw. IRS [\%]	ATM [\%]	$\begin{gathered} \text { OTM } \\ 3.5 \% \\ {[\%]} \end{gathered}$	$\begin{gathered} \hline \text { OTM } \\ 4 \% \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { OTM } \\ 4.5 \% \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \text { OTM } \\ 5 \% \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { OTM } \\ 5.5 \% \\ {[\%]} \\ \hline \end{gathered}$
8.0	-0.29	0.1	15	5	10	4.6172	-0.24	-0.032	-0.0273	-0.0382	-0.1663	-0.0641
8.0	-0.2996	0.1	15	5	20	4.6757	-0.2638	-0.0198	-0.0273	-0.032	-0.2038	-0.0593
4.0	-0.1498	0.05	15	10	1	4.6561	-0.0583	0.0111	0.013	0.0125	-0.054	-0.0419
4.0	-0.1498	0.05	15	10	2	4.6677	-0.0964	0.0145	0.013	0.0072	-0.0887	-0.0641
4.0	-0.1498	0.05	15	10	5	4.6952	-0.2058	0.0149	0.0096	-0.0072	-0.1894	-0.1205
4.0	-0.1498	0.05	15	10	10	4.7226	-0.3181	0.0048	-0.0034	-0.0255	-0.3037	-0.162
4.0	-0.1498	0.05	15	10	20	4.7431	-0.3476	0.0352	0.0000	-0.0246	-0.0983	-0.1533
4.0	-0.5991	0.2	15	20	1	4.7724	-0.0835	0.032	0.0337	0.0358	0.0358	-0.0631
4.0	-0.5991	0.2	15	20	2	4.7738	-0.1101	0.0327	0.0341	0.0341	0.0303	-0.0777
4.0	-0.5991	0.2	15	20	5	4.7756	-0.1916	0.0337	0.0327	0.0262	0.0095	-0.1217
4.0	-0.5991	0.2	15	20	10	4.7753	-0.2758	0.0358	0.0273	0.0157	-0.016	-0.1558
4.0	-0.5991	0.2	15	20	20	4.7695	-0.2931	0.061	0.0389	0.0184	-0.0252	-0.1391

Differences between implied volatilities calculated from swaption approximation prices and from Monte-Carlo simulation prices

[^0]The approximation of bonds and swaptions prices in a Black-Karasiński Model based on the Karhunen-Loève expansion

Thank you for your attention

[^0]: Andrzej Daniluk (with Rafał Muchorski)

