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1. Introduction/Motivation

Merton’s (Classical) Portfolio Optimisation (1969, 1971):

• Investor has logarithmic utility, that is U(x) = ln(x).

• Investment opportunities are one risk–free asset (bond) and one

risky asset (stock) with dynamics given by

dP0,0(t) = P0,0(t) r0 dt , P0,0(0) = 1 , “bond”

dP0,1(t) = P0,1(t) [µ0 dt+ σ0 dW0(t)] , P0,1(0) = p1 , “stock”

with constant market coefficients µ0, r0, σ0 6= 0 and where W0

is a Brownian Motion on a complete probability space (Ω,F , P ).

• Xπ
0 denotes the wealth process of the investor given the port-

folio strategy π (which denotes the fraction invested in the risky

asset). More specific, the wealth process satisfies

dXπ
0(t) = Xπ

0 (t) [(r0 + π(t) [µ0 − r0]) dt+ π(t)σ0 dW0(t)] ,

Xπ
0(0) = x.
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• With this, one can define the performance function for an

arbitrary admissible portfolio strategy π(t)

J0 (t, x, π) := E

[

ln
(

X
π,t,x
0 (T )

)]

= ln (x) + E







T
∫

t

[

Ψ0 −
σ20
2

(

π(s)− π∗
0
)2

]

ds






.

• Here,

Ψ0 := r0 +
1

2

(

µ0 − r0

σ0

)2

= r0 +
σ20
2

(

π∗
0
)2 and π∗

0 :=
µ0 − r0

σ20

will be called the utility growth potential or earning potential

and the optimal portfolio strategy, respectively.

• The portfolio optimisation problem is given by

sup
π(·)∈A(x)

J0 (t, x, π) =: ν0(t, x) [= ln(x) +Ψ0(T − t)] , (1)

where ν0 is called value function.
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Merton’s Portfolio Optimisation with Jumps (1976):

• In this case the dynamics of the risky asset changes to

dPJ(t) = PJ(t) [µ0 dt+ σ0 dW0(t)− k dN(t)] ,

where N is a Poisson process with intensity λ > 0 on (Ω,F , P )

and k > 0 is the crash or jump size.

• The performance function is given in this setting as

JJ (t, x, π)

= ln (x) + E







T
∫

t

[

Ψ0 −
σ20
2

(

π(s)− π∗
0
)2 − ln (1− π(s)k)λ

]

ds






.

• The optimal portfolio strategy computes to

π∗
J =

1

2

(

π∗
0 +

1

k

)

−

√

√

√

√

1

4

(

π∗
0 −

1

k

)2

+
λ

σ20
.
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Examples of Merton’s Optimal Portfolio Strategies
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λ = 0.1 or 1/λ = 10
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λ = 0.3 or 1/λ = 3.3333

λ = 0.4 or 1/λ = 2.5

This Figure is plotted with π∗
0 = 1.25, σ0 = 0.25, r = 0.05, k = 0.25, and T = 50. This

implies that λ0 =
σ2
0
π∗
0

k
= 0.3125, Ψ0 ≈ 0.098828, and 1

k∗ = 4.
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Alternative: Worst Case Scenario Portfolio Optimisation

(Korn and Wilmott, 2002):

• In normal times: same set up as in the classical Merton case.

• At crash time: stock price falls by a factor of k ∈ [k∗, k∗].

Consequence: The wealth process Xπ
0(t) at crash time τ sat-

isfies:
Xπ

0 (τ−) = (1− π(τ))Xπ
0 (τ−) + π(τ)Xπ

0 (τ−)

=⇒ (1− π(τ)Xπ
0 (τ−) + π(τ)Xπ

0 (τ−) (1− k)

=

✓
✒

✏
✑(1− π(τ )k) ·Xπ

0 (τ−) = Xπ
0 (τ ).

• Main disadvantage: Need to know the maximal possible num-

ber of crashes N that can happen at most and need to know

the worst crash size k∗ that can happen.
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• Aim: Find the best uniform worst case bound, e.g. solve✬

✫

✩

✪
sup

π(·)∈A0(x)
inf

0≤τ≤T

k∈K

E [U (Xπ (T ))] , (2)

where the final wealth satisfies Xπ (T ) = (1− π(τ)k)Xπ
0 (T ) in

the case of a crash of size k at stopping time τ . Moreover,

K = {0} ∪ [k∗, k∗]. We call is also the worst case scenario

portfolio problem.

Note: To avoid bankruptcy we require π(t) < 1
k∗

for all t ∈ [0, T ].

• The value function to the above problem is defined via

νc(t, x) := sup
π(·)∈A(t,x)

inf
t≤τ≤T,

k∈K

E

[

ln
(

Xπ,t,x(T )
)]

. (3)
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• A portfolio strategy π̂ ≥ 0 determined via the equation

J0 (t, x, π̂) = ν1
(

t, x
(

1− π̂(t)k∗
))

for all t ∈ [0, T ]

will be called a crash indifference strategy.

• There exists a unique crash indifference strategy π̂, which is

given by the solution of the differential equation

π̂′(t) =
σ20
2

(

π̂(t)−
1

k∗

)

(

π̂(t)− π∗
0
)2

, (4)

and π̂(T ) = 0 . (5)

This crash indifference strategy is bounded by 0 ≤ π̂ ≤ min{π∗
0,

1
k∗
}.

• The optimal portfolio strategy for an investor, who wants to

maximize her worst case scenario portfolio problem, is given by

π̄(t) := min {π̂(t), π∗
0} for all t ∈ [0, T ]. (6)

π̄ will be named the optimal crash hedging strategy.

c© Olaf Menkens School of Mathematical Sciences, DCU



Costs and Benefits of Crash Hedging 9

Examples of Worst Case Optimal Portfolio Strategies
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2. Literature Review

Worst Case Scenario Approach – Some References:

• Hua and Wilmott (1997) [→ Binomial Model Derivative Pricing],

• Korn and Wilmott (2002), [→ Portfolio Optimisation],

• Korn (2005) [→ Optimal Investment for Insurances],

• Korn and M. (2005) [→ Stochastic Control Approach],

• M. (2006) [→ Changing Market Coefficients after a Crash],

• Korn and Steffensen (2007) [→ Stochastic Differential Game],

• Seifried (2010) [→ Martingale Approach],

• Korn, M., Steffensen (2012) [→ Optimising Reinsurance],

• Belak, M., Sass (2013) [→ Transaction Costs],

• Desmettre, Korn, Seifried (2013) [→ Infinite Time Consumption

Problem].

c© Olaf Menkens School of Mathematical Sciences, DCU



Costs and Benefits of Crash Hedging 11

Remark: The worst case scenario optimisation problem is also

known as Wald’s Maximin approach (Wald 1945, 1950), which is

a well–known concept in decision theory. There, this approach is

known as robust optimisation (e.g. Bertsimas et al. (2011))

[→ usually involves optimisation procedure done by a computer].

• Mataramvura and Oksendal (2008), Oksendal and Sulem (2006,

2009, 2011) [→ Compute optimal strategies directly].

[→ perturbation analysis].
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3 Explicit and Implicit Solutions
The following abbreviations will be used in order to get more concise formulae.

∆ :=

√

2

σ2
0

[Ψ0 −Ψ1] , κ := π∗
0 −

1

k∗
,

Θ(t) := σ2
0π

∗
0(T − t) , η :=

1

2

[

π∗
0 +

1

k∗

]

.

Proposition 3.1
With these conventions one has the following characterizations for the solutions
of the differential equation (4) with the terminal condition (5).

i) If Ψ1 = Ψ0 and 1
k∗ = π∗

0 (that is ∆ = 0 = κ), then

π̂(t) = π∗
0 −

π∗
0

√

(

π∗
0

)2
σ2
0 (T − t) + 1

.

ii) If Ψ1 = Ψ0 and 1
k∗ 6= π∗

0 (that is ∆ = 0), then

σ2
0

2
κ2 (T − t) = ln

(

π∗
0 − π̂(t)

π∗
0 [1− π̂(t)k∗]

)

+
κ

π∗
0

π̂(t)

π̂(t)− π∗
0

. (7)
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4 Approximating Implicit Solutions
Proposition 4.1
In the situation of Ψ1 = Ψ0 and π∗

0 6= 1
k∗ (see Proposition 3.1), there exists three

different explicit approximations of equation (7):

(a) An approximation of π̂(t) in equation (7) is given by

π̃a(t) =
π∗
0

2
+

1

2k∗
+

1

Θ(t)
−

√

(

π∗
0

2
+

1

2k∗
+

1

Θ(t)

)2

−
π∗
0

k∗
. (8)

This approximation holds always if 0 ≤ π∗
0 < 1

k∗. If π∗
0 > 1

k∗, then the approxi-

mation holds for those t ∈ [0, T ] for which the inequality

π̂(t) ≤
π∗
0

2π∗
0k

∗ − 1

is satisfied. In the case of π∗
0 > 1

k∗, the error of this approximation has the
following upper bound

|επ̃a
(t)| ≤

1

2

(

π̂(t)

π∗
0

)2

·

(

π∗
0k

∗ − 1
)2

(1− π̂(t)k∗)
2
. (9)

(b) Another explicit approximation of π̂(t) is given by
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π̃b(t) = π∗
0 −

k∗π∗
0

k∗ + 1
2
Θ(t)

. (10)

This approximation holds always if π∗
0 > 1

k∗. If π∗
0 < 1

k∗, then the approximation

holds for those t ∈ [0, T ] for which the inequality

π̂(t) ≤
π∗
0

2− π∗
0k

∗

is satisfied. In the case of π∗
0 < 1

k∗, the error of this approximation has the
following bound

|επ̃b
(t)| ≤

π̂2(t)

2
·

(

1− π∗
0k

∗
)2

(

π∗
0 − π̂(t)

)2
. (11)

(c) Yet another explicit approximation of π̂(t) is given by

π̃c(t) = π∗
0






1−

1
4
Θ(t)κ+

√

1+ 1
2
Θ(t)

[

π∗
0 + 1

k∗

]

+ 1
16

Θ2(t)κ2

1+ 1
2
Θ(t)

[

π∗
0 + 1

k∗

]







= π∗
0






1−

1
4
Θ(t)κ+

√

(

1+ 1
4
Θ(t)κ

)2
+ Θ(t)

k∗

1+ 1
2
Θ(t)

[

π∗
0 + 1

k∗

]






. (12)
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Lemma 4.2

We have the following inequalities for the approximations in Propo-

sition 4.1:
π̃b(t) ≥ π̂(t) ≥ π̃a(t) and

π̂(t)

{

< π̃c(t) if π∗
0 > 1

k∗

> π̃c(t) if π∗
0 < 1

k∗

}

for all t ∈ [0, T ] with strict inequality applying for all t < T .

Proof: This follows directly from the corresponding properties of

the different approximations for the logarithm:

x− 1 ≥ ln(x) ≥
x− 1

x
and

ln(x)







< 2 x−1
x+1 if x < 1

> 2 x−1
x+1 if x > 1







The condition x < 1 corresponds to the condition π∗
0 < 1

k∗
if π̂(t) > 0.

(If π̂(t) < 0, the condition would be π∗
0 > 1

k∗
). �
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Comparing Approximations for π̂(t) in the Case of π∗
0 < 1

k∗
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This Figure is plotted with π∗
0 = 1.25, σ0 = 0.25, r = 0.05, k∗ = 0.25, and T = 100. This

implies that Ψ0 ≈ 0.0988, 1
k∗ = 4. The bounds

π∗
0

2k∗π∗
0
−1

≈ −3.3333 and
π∗
0

2−k∗π∗
0

≈ 0.7407

should be obliged by π̃a and π̃b, respectively. Of these, only the latter is relevant.
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Absolute Relative Difference in the Case of π∗
0 < 1

k∗
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This Figure is plotted with π∗
0 = 1.25, σ0 = 0.25, r = 0.05, k∗ = 0.25, and T = 100. This

implies that Ψ0 ≈ 0.0988, 1
k∗ = 4. The bounds
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2k∗π∗
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−1

≈ −3.3333 and
π∗
0

2−k∗π∗
0

≈ 0.7407

should be obliged by π̃a and π̃b, respectively. Of these, only the latter is relevant.
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Comparing Approximations for π̂(t) in the Case of π∗
0 > 1

k∗
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This Figure is plotted with π∗
0 = 3.25, σ0 = 0.25, r = 0.05, k∗ = 0.5, and T = 100. This

implies that Ψ0 ≈ 0.3801, 1
k∗ = 2. The bounds

π∗
0

2k∗π∗
0
−1

≈ 1.4444 and
π∗
0

2−k∗π∗
0

≈ 8.6667 should

be obliged by π̃a and π̃b, respectively. Of these, only the first is relevant.
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Absolute Relative Difference in the Case of π∗
0 > 1

k∗
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This Figure is plotted with π∗
0 = 3.25, σ0 = 0.25, r = 0.05, k∗ = 0.5, and T = 100. This

implies that Ψ0 ≈ 0.3801, 1
k∗ = 2. The bounds
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0

2−k∗π∗
0

≈ 8.6667 should

be obliged by π̃a and π̃b, respectively. Of these, only the first is relevant.
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5 Approximating the Value Function

Corollary 5.1

In the special case of Ψ0 = Ψ1 and π∗
0 = 1

k∗
(that is π∗

0 ≥ 1), the

value function is given by

J0 (t, x, π̂(t)) = ν̂(t, x) = ν1
(

t, x
[

1− π̂(t)k∗
])

= ln(x) +Ψ0 (T − t)−
1

2
ln
(

σ20
[

π∗
0
]2

[T − t] + 1
)

.

Note that either J0 or ν1 can be used to calculate the value function

ν̂ and both give the same result given in the Corollary.
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Proposition 5.2
In the case of Ψ0 = Ψ1 and π∗

0 6= 1
k∗, the following performance functions can be

used as an approximation for the value function ν̂(t, x):

(i) ν1 (t, x [1− π̃a(t)k
∗]) = ln(x) +Ψ0 (T − t) +

+ ln



−
k∗κ

2
−

k∗

Θ(t)
+

√

(

k∗η +
k∗

Θ(t)

)2

− k∗π∗
0



 .

(ii) J b
0 (t, x, π̃b(t)) = ln(x) +Ψ0 (T − t)−

π∗
0k

∗Θ(t)

π∗
0Θ(t) + 2k∗

.

(iii) ν1 (t, x [1− π̃b(t)k
∗]) = ln(x) +Ψ0 (T − t) + ln

(

1−
k∗π∗

0Θ(t)

2k∗ +Θ(t)

)

.

(iv) J c
0 (t, x, π̃c(t)) = ln(x) +Ψ0 (T − t) +

π∗
0κ

2η2
+

[

π∗
0

]2

η3k∗
ln (8π∗

0) +

−
π∗
0κ

16η2
[2 + ηΘ(t)]

κΘ(t) +
√

Θ2(t)κ2 +16ηΘ(t) + 16

1+ ηΘ(t)
+

−

[

π∗
0

]2

2η3k∗

{

ln

(

8η + κ2Θ(t) + κ

√

κ2Θ2(t) + 16+ 16ηΘ(t)

)

+

+ln

(

8η +
[

8η2 − κ2
]

Θ(t) + κ

√

κ2Θ2(t) + 16ηΘ(t) + 16

)}

.
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(v) ν1 (t, x [1− π̃c(t)k
∗]) = ln(x) +Ψ0 (T − t) +

+ ln






1− π∗

0k
∗






1−

1
4
Θ(t)κ+

√

(

1+ 1
4
Θ(t)κ

)2
+ Θ(t)

k∗

1+ ηΘ(t)












.

Moreover, one has that

(a)
J a
0 (t, x, π̃a(t)) ≤ ν̂(t, x) ≤ ν1 (t, x [1− π̃a(t)k

∗])

(b)
J b
0 (t, x, π̃b(t)) ≥ ν̂(t, x) ≥ ν1 (t, x [1− π̃b(t)k

∗])

(c)
J c
0 (t, x, π̃c(t))

{

≥
≤

}

ν̂(t, x)

{

≥
≤

}

ν1 (t, x [1− π̃c(t)k
∗]) if

{

π∗
0 > 1

k∗

π∗
0 < 1

k∗

}

with strict inequality applying for t < T .
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6 Costs and Benefits

Let us define the relative loss of utility by

J c
0 (t, x, π̃c(t))− ν0(t, x)

ν0(t, x)
, .
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Relative Utility Loss using J c
0 (t, x, π̃c(t))
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This Figure is plotted with σ0 = 0.25, r0 = 0.03, k∗ = 0.25, T = 10, and an initial capital
of x = 1. This implies that 1

k∗ = 4.
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Relative Utility Loss using J c
0 (t, x, π̃c(t))
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This Figure is plotted with σ0 = 0.25, r0 = 0.03, T = 10, and an initial capital of x = 1.
The upper surface is the case k∗ = 0.1 and the lower surface is k∗ = 0.5.
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Relative Utility Loss using J c
0 (t, x, π̃c(t))
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This Figure is plotted with σ0 = 0.25, r0 = 0.03, T = 10, and k∗ = 0.25. The upper
surface is the case x = 10 and the lower surface is x = 2.
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Relative Maximum Potential Net Benefit using J c
0 (t, x, π̃c(t))
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This Figure is plotted with σ0 = 0.25, r0 = 0.03, and T = 10.
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7 Efficiency of Crash Hedging
There is another possibility to compare the performance of the
crash hedging strategy with the performance of the classical optimal
Merton strategy. This is known as efficiency and is defined as
follows (see e.g. Rogers (2013))

ν̂(t, x) = ν0 (t,Λ0(x)) ,

where Λ0(x) is the efficiency of the optimal worst case portfolio
strategy π̂ compared the the classical case of Merton with optimal
portfolio strategy π∗

0 in the initial market (assuming that no crash
happens). The definition means that Λ0(x) is the amount of initial
capital needed in the classical Merton case to ensure the same utility
as in the considered worst case scenario approach with initial capital
x. Since the worst case scenario approach can be considered as the
classical Merton case with an additional constraint, it is clear that
0 ≤ Λ0(x) ≤ 1. This should be compared with the case that a crash
of the worst possible size happens, that is

ν̂(t, x) = ν1
(

t,Λ1(x)
[

1− π∗
0k

∗]) .
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Efficiency per Unit of Initial Capital
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This Figure is plotted assuming σ0 = 0.25, r0 = 0.03, k∗ = 0.25, T = 10, and using the
approximation J c

0.
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Efficiency per Unit of Initial Capital
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This Figure is plotted assuming σ0 = 0.25, r0 = 0.03, k∗ = 0.25, T = 10, and using the
approximation J c

0.
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8 Break Even Crash Sizes

Let us calculate the crash size k(t) ∈ [0, k∗] with t ∈ [s, T ] for which

ν1

(

t,X
π∗
0,s,x

0 (t)
[

1− π∗
0k(t)

]

)

= ν1

(

t,X
π̂,s,x
0 (t) [1− π̂(t)k(t)]

)

(13)

with initial endowment x at time s. Obviously, k(t) is the crash
size at time t which makes the investor indifferent between using
the optimal worst case portfolio strategy π̂ or using the classical
optimal Merton strategy π∗

0. Equation (13) can be simplified to

E

[

ln

(

X
π∗
0,s,x

0 (t)

)]

+ ln
(

1− π∗
0k(t)

)

= E

[

ln
(

X
π̂,s,x
0 (t)

)]

+ ln (1− π̂(t)k(t))

⇐⇒ k(t) =

exp

(

σ20
2

t
∫

s

(

π̂(u)− π∗
0

)2
du

)

− 1

π∗
0 exp

(

σ20
2

t
∫

s

(

π̂(u)− π∗
0

)2
du

)

− π̂(t)

,

where J0 (s, t, x, π) := E

[

ln
(

X
π,s,x
0 (t)

)]

.
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Since π̂(t) ≤ π∗
0 for all t ∈ [0, T ] and ν1 (t, x [1− π(t)k]) is decreasing

in k for any fixed t, k, π(t), it follows that for crash sizes below

k(t), the Merton investor (using π∗
0) has a higher utility than the

crash hedging investor (using π̂(t)). Correspondingly, for crash sizes

above k(t) the utility of the crash hedging investor will be higher

than the utility of the Merton investor.
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Break Even Crash Height k(t)
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This Figure is plotted with σ0 = 0.25, r0 = 0.03, k∗ = 0.25, T = 10, and using the
approximation J c

0.
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Relative Break Even Crash Height
k(t)
k∗
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This Figure is plotted with σ0 = 0.25, r0 = 0.03, k∗ = 0.25, T = 10, and using the
approximation J c

0.
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9 Sensitivities with Respect to k∗

Sensitivity of πc(t) with Respect to k∗
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This Figure is plotted with σ0 = 0.25, r0 = 0.03, k∗ = 0.25, and using the approxi-
mation πc(t).
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Sensitivity of πc(t) with Respect to k∗
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This Figure is plotted with σ0 = 0.25, r0 = 0.03, k∗ = 0.25, and using the approxi-
mation πc(t).

c© Olaf Menkens School of Mathematical Sciences, DCU



Costs and Benefits of Crash Hedging 37

Sensitivity of νc1 with Respect to k∗
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This Figure is plotted with σ0 = 0.25, r0 = 0.03, k∗ = 0.25, and using the approximation νc
1.
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