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The Dalang–Morton–Willinger theorem (1990)

Theorem (DMW, Fundamental Theorem of Asset Pricing)

Let (Ω,F , {Ft}t=0,...,T ,P) be a (general) filtered probability space
and let S = {St}t∈{0,...,T} be an adapted, Rd -valued stochastic
process describing the discounted prices of d ∈ N financial assets.
Then the following properties are equivalent:

(a) The financial market model is free of arbitrage.

(b) There exists a probability measure P∗ on (Ω,F ,P) such that

P∗ is equivalent to P and the Radon–Nikodým density
% := dP∗/dP is bounded, i.e. in L∞(Ω,FT ,P),

Integrability: St ∈ L1(Ω,Ft ,P∗) for all t ∈ {0, . . . ,T},
Martingale property w.r.t. P∗:

EP∗ [St |Ft−1]
a.s.
= St−1 for all t ∈ {1, . . . ,T}.
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Remarks on the proof
of the Dalang–Morton–Willinger theorem

No integrability assumption on S0, . . . ,ST w.r.t. P.

Proving (a) =⇒ (b), i.e. the existence of the equivalent
martingale measure P∗, is the hard part.

The proof uses the Hahn–Banach theorem (and therefore the
axiom of choice), hence it is not constructive.

Boundedness of the density % originates from the fact that
L∞(Ω,FT ,P) “is” the topological dual of L1(Ω,FT ,P).

For proving (b) =⇒ (a), i.e. absence of arbitrage,
the boundedness of the density % is not needed.
(This works nicely with conditional expectations for
σ-integrable random variables.)
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Application of the Dalang–Morton–Willinger theorem
to the pricing of contingent claims

Add a discounted, contingent claim C ∈ L1(Ω,FT ,P) to an
arbitrage-free financial market model.

By DMW, (a) =⇒ (b), there exists an equivalent martingale
measure P∗ with bounded density %, hence

EP∗
[
|C |
]

= EP
[
%|C |

]
≤ ‖%‖∞ EP

[
|C |
]
<∞.

Therefore, the additional discounted price process

S
(d+1)
t := EP∗ [C |Ft ], t ∈ {0, . . . ,T},

is (also) a well-defined P∗-martingale.

By DMW, (b) =⇒ (a), the model (S
(1)
t , . . . ,S

(d)
t ,S

(d+1)
t ),

t ∈ {0, . . . ,T}, with the additional discounted price process is
free of arbitrage.
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Example for gaining “nice” dependence properties

Binomial model:

On Ω = {−1, 1}T let X1, . . . ,XT denote the {−1, 1}-valued
projections.

Define St = X1 + · · ·+ Xt and Ft = σ(S0, . . . ,St) for all
t ∈ {0, . . . ,T}.
Under P∗ = (12δ−1 + 1

2δ1)⊗T the projections X1, . . . ,XT are
i.i.d. with symmetric distribution and (S0, . . . ,ST ) is a
martingale.

P∗ with this martingale property is unique.

By DMW, (b) =⇒ (a), every measure P with full support
gives an arbitrage-free model, hence DMW, (a) =⇒ (b), turns
every P with full support into P∗.
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Central question concerning the measure change

If the discounted asset price process S = {St}t∈{0,...,T} has a
“nice” dependence property under the original measure P,
does there exist an equivalent martingale measure P∗ as in DMW
(with bounded density) such that S has the same dependence
property under P∗?

Examples:

Martingale property (trivial, holds for every P∗)
If S is an integrable process which is increasing in the convex
order w.r.t. P (i.e, S is a peacock), then S keeps this property
under every P∗, because every martingale is a peacock
(apply the conditional Jensen inequality).
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Further dependence properties

Does there exist at least one P∗ from the DMV theorem to
preserve the following dependence properties:

independence of additive (or multiplicative) increments of S ,

independence and identical distribution of additive
(or multiplicative) increments of S ,

Markov property,

k-multiple Markov property,

exchangeablility,

. . .?
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Result for independent additive increments

Theorem (Gülüm/S.)

Assume that the adapted process S = {St}t∈{0,...,T} of the
discounted asset prices does not offer arbitrage possibilities.

Assume that the additive increment Xt := St − St−1 is
independent of Ft−1 under P for every t ∈ {1, . . . ,T}.
Then there exists an equivalent martingale measure P∗ for S
with bounded density such that the increments {Xt}t∈{1,...,T}
of S keep this independence under P∗.
If, in addition, X1, . . . ,XT have the same distribution under
P, then P∗ can be chosen to preserve this property, too.
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Preservation of the Markov property (history)

Stanley Pliska shows in his book “Introduction to
Mathematical Finance, Discrete Time Models” (1998) that, if
the discounted asset price process S is a Markov chain under
P with finite state space, then an equivalent martingale
measure P∗ can be chosen such that S also has the Markov
property under P∗. Due to the finite state space, the
boundedness of the density % is trivial.
This result was generalized by Freddy Delbaen (lectures on
discrete-time mathematical finance at ETH Zürich) to Markov
chains with a general state space, but boundedness of the
density % was left open.
To my (and Freddy Delbaen’s) knowledge, this problem
remained open for the last decade.
While searching for a counterexample to close a matter,
we instead found a proof, even for k-multiple Markov chains.
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Definition of k-multiple Markov chains

Slightly more general setting:
Let I ⊆ Z be a discrete interval, (E , E) be a measurable space,
S = {St}t∈I a E -valued stochastic process on (Ω,F , {Ft}t∈I ,P),
and k ∈ N. Define Ik = {t ∈ I | t − k ∈ I}.
Definition

We say that S is a k-multiple Markov chain with respect to P and
{Ft}t∈I , if S is adapted and if

P(St ∈ B |Ft−1)
a.s.
= P(St ∈ B |St−1, St−2, . . . ,St−k)

for every B ∈ E and for every t ∈ Ik .

Remark (no enlargement of the state space E to E k)

The usual reduction to the Markov chain S ′t := (St , . . . ,St−k+1),
t ∈ Ik−1, doesn’t fit nicely with the martingale property for E = Rd .
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Characterization of k-multiple Markov chains

Lemma

For an E -valued process S adapted to the filtration {Ft}t∈I , the
following statements are equivalent:

1 S is a k-multiple Markov chain.

2 For every E-measurable function g : E → R, which is bounded
or nonnegative, and every t ∈ Ik ,

E
[
g(St)

∣∣Ft−1
] a.s.

= E
[
g(St)

∣∣St−1,St−2, . . . ,St−k
]
.

3 For every E⊗(k+1)-measurable function h: E k+1 → R, which is
bounded or nonnegative, and every t ∈ Ik ,

E
[
h(St , St−1, . . . ,St−k)

∣∣Ft−1
]

a.s.
= E

[
h(St ,St−1, . . . ,St−k)

∣∣St−1,St−2, . . . ,St−k
]
.
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DMW theorem for k-multiple Markov chains

Theorem (Gülüm/S.)

Let (Ω,F , {Ft}t=0,...,T ,P) be a (general) filtered probability space
and let S = {St}t∈{0,...,T} be an adapted, Rd -valued discounted
asset price process, which has the k-multiple Markov property
w.r.t. P. Then the following properties are equivalent:

(a) The financial market model is free of arbitrage.

(b) There exists a probability measure P∗ on (Ω,F ,P) such that

P∗ ∼ P with % := dP∗/dP ∈ L∞(Ω,FT ,P),
Integrability: St ∈ L1(Ω,Ft ,P∗) for all t ∈ {0, . . . ,T},
Martingale property w.r.t. P∗:

EP∗ [St |Ft−1]
a.s.
= St−1 for all t ∈ {1, . . . ,T}.

k-multiple Markov property: For all B ∈ E and t ∈ {k , . . . ,T}

P∗(St ∈ B |Ft−1)
a.s.
= P∗(St ∈ B |St−1,St−2, . . . ,St−k).
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Idea of the proof: lemma for backward induction

Suppose we have shown the following result:

Lemma (Gülüm/S.)

Let u ∈ {1, . . . ,T}. Assume that there is a measure Q such that

S = {St}t∈{0,...,T} is a k-multiple Markov chain under Q and

{St}t∈{u,u+1,...,T} is a Q-martingale.

Then there is a probability measure Q∗ on (Ω,F) such that:

Q∗ ∼ Q and the density dQ∗/dQ is bounded and
Fu-measurable,

Su−1 is Q∗-integrable and {St}t∈{u−1,u,...,T} is a
Q∗-martingale,

S = {St}t∈{0,...,T} is a k-multiple Markov chain under Q∗.

Uwe Schmock (and Ismail Cetin Gülüm), TU Vienna DMW Theorem and Preservation of Dependence Structure 14



Introduction
Main result

Announcements

k-multiple Markov chains
DMW theorem for k-multiple Markov chains
Proof of the theorem

Idea of the proof: application of the lemma

After changing from P to a QT to make ST integrable w.r.t. QT ,
the model of the theorem satisfies all of the conditions of the
lemma for u = T . So we get a probability measure Q∗T ∼ QT with
bounded density ZT . The model (Ω,F , {Ft}t∈{0,...,T−1},Q∗T ) with
asset prices {St}t∈{0,...,T−1} is arbitrage-free and satisfies all of the
above conditions, hence we get a new probability measure
Q∗T−1 ∼ Q∗T with bounded, FT−1-measurable density ZT−1.
Doing this iteratively, we get probability measures
Q∗T ,Q∗T−1, . . . ,Q∗1 such that Zu = dQ∗u/dQ∗u+1 ∈ L∞ for
u ∈ {1, . . . ,T − 1}. Set P∗ = Q∗1. All that remains to show is that
dP∗/dP is bounded and strictly positive. This follows from

dP∗

dP
=

dQ∗1
dQ∗2

· dQ∗2
dQ∗3

· · · · ·
dQ∗T
dQT

· dQT

dP
=

dQT

dP

T∏
u=1

Zu .
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Proof of the lemma (sketch)

Since the model {St}t∈{0,...,u} is also arbitrage-free, there is
by the DMW theorem an equivalent martingale measure Q′
with bounded and Fu-measurable density Z ′ with respect to
Q such that {St}t∈{0,...,u} is a Q′-martingale.
If u ∈ {k, . . . ,T}, then we define Z as the density of Q′ with
respect to Q on σ(Su,Su−1, . . . ,Su−k), i.e.

Z = EQ
[
Z ′
∣∣Su, Su−1, . . . ,Su−k

]
.

If u ∈ {1, . . . , k − 1}, then we define Z = Z ′.
Z is almost surely bounded, strictly positive and EQ[Z ] = 1,
so we can define a new probability measure Q∗ on F via

dQ∗

dQ
= Z .

It follows that Q∗ ∼ Q, that Z is Fu-measurable, and by
calculation that Q∗ has the desired properties.
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18th ÖMG Congress and Annual DMV Meeting

Monday–Friday, 23.–27. September 2013

University of Innsbruck, Austria

Minisymposium on Financial and Actuarial Mathematics

http://math-oemg-dmv-2013.uibk.ac.at/

Portfolio Risk Management Day 2013

Friday, 27. September 2013, 9:00 – 18:00

TU Vienna, no registration fee
(but no free lunch, just free coffee)

http://www.fam.tuwien.ac.at/prisma2013/

2nd European Actuarial Journal Conference 2014

Wednesday–Friday, 10.–12. September 2014

TU Vienna

http://www.fam.tuwien.ac.at/eaj2014/
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