Arbitrages arising with honest times

Claudio Fontana

INRIA, Mathrisk team, Paris - Rocquencourt (France)

based on a joint work with Monique Jeanblanc and Shiqi Song (University of Évry)

Advances in Mathematics of Finance - 6th General AMaMeF Conference Warsaw, June 10-15, 2013

This research benefited from financial support from Federation Bancaire Française (*Chaire Risque de Crédit*, University of Évry).

Claudio Fontana (INRIA)

Private information and arbitrage profits

- Let the publicly available information be represented by a filtration 𝔽.
- Let $\mathbb{G} = (\mathcal{G}_t)_{t \ge 0}$ be a filtration with $\mathcal{G}_t \supseteq \mathcal{F}_t$ for all $t \ge 0$.

 \Rightarrow from a financial point of view, the filtration \mathbb{G} represents the point of view of a better informed agent (*insider trader*).

・ 同 ト ・ ヨ ト ・ ヨ ト

Private information and arbitrage profits

- Let the publicly available information be represented by a filtration 𝔽.
- Let $\mathbb{G} = (\mathcal{G}_t)_{t \ge 0}$ be a filtration with $\mathcal{G}_t \supseteq \mathcal{F}_t$ for all $t \ge 0$.

 \Rightarrow from a financial point of view, the filtration \mathbb{G} represents the point of view of a better informed agent (*insider trader*).

- Suppose that no arbitrage profits can be realized by relying on the information of the filtration F;
- does the additional knowledge of G give rise to arbitrage profits? And, if yes, in what sense?

Private information and arbitrage profits

- Let the publicly available information be represented by a filtration 𝔽.
- Let $\mathbb{G} = (\mathcal{G}_t)_{t \ge 0}$ be a filtration with $\mathcal{G}_t \supseteq \mathcal{F}_t$ for all $t \ge 0$.

 \Rightarrow from a financial point of view, the filtration \mathbb{G} represents the point of view of a better informed agent (*insider trader*).

- Suppose that no arbitrage profits can be realized by relying on the information of the filtration F;
- does the additional knowledge of G give rise to arbitrage profits? And, if yes, in what sense?

< 回 > < 回 > < 回 >

- Let $W = (W_t)_{t \ge 0}$ be a standard Brownian motion on $(\Omega, \mathcal{F}, \mathbb{F}^W, P)$;
- let $S = (S_t)_{t \ge 0}$ represent the discounted price of a risky asset, with:

$$egin{aligned} dm{S}_t &= m{S}_t\,\sigma\,dm{W}_t\ m{S}_0 &= m{s}\in(0,\infty) \end{aligned}$$

1 E N 4 E N

Let W = (W_t)_{t≥0} be a standard Brownian motion on (Ω, F, F^W, P);
let S = (S_t)_{t>0} represent the discounted price of a risky asset, with:

$$egin{aligned} & \mathsf{d} oldsymbol{S}_t = oldsymbol{S}_t \, \sigma \, \mathsf{d} oldsymbol{W}_t \ & oldsymbol{S}_0 = oldsymbol{s} \in (\mathbf{0},\infty) \end{aligned}$$

• define a *random time* $\tau : \Omega \to [0, \infty)$ as follows:

$$\tau := \sup \Big\{ t \ge 0 : S_t = \sup_{u \ge 0} S_u \Big\}$$

- Let $W = (W_t)_{t \ge 0}$ be a standard Brownian motion on $(\Omega, \mathcal{F}, \mathbb{F}^W, P)$;
- let $S = (S_t)_{t \ge 0}$ represent the discounted price of a risky asset, with:

$$egin{aligned} & \mathsf{dS}_t = \mathsf{S}_t\,\sigma\,\mathsf{dW}_t \ & \mathsf{S}_0 = \mathsf{s} \in (\mathsf{0},\infty) \end{aligned}$$

• define a random time $\tau: \Omega \to [0,\infty)$ as follows:

$$\tau := \sup \Big\{ t \ge \mathbf{0} : S_t = \sup_{u \ge \mathbf{0}} S_u \Big\}$$

τ is not an 𝔽^W-stopping time!
 Define the *progressively enlarged filtration* 𝔅 = (𝔅_t)_{t≥0} as:

$$\mathcal{G}_t := \bigcap_{s>t} \mathcal{G}_s^0$$
 with $\mathcal{G}_t^0 := \mathcal{F}_t^W \lor \sigma(\tau \land t)$, for all $t \ge 0$

- Let $W = (W_t)_{t \ge 0}$ be a standard Brownian motion on $(\Omega, \mathcal{F}, \mathbb{F}^W, P)$;
- let $S = (S_t)_{t \ge 0}$ represent the discounted price of a risky asset, with:

$$egin{aligned} dS_t &= S_t \, \sigma \, dW_t \ S_0 &= oldsymbol{s} \in (0,\infty) \end{aligned}$$

• define a *random time* $\tau : \Omega \to [0, \infty)$ as follows:

$$\tau := \sup \left\{ t \ge \mathbf{0} : S_t = \sup_{u \ge \mathbf{0}} S_u \right\}$$

• τ is not an \mathbb{F}^W -stopping time! Define the progressively enlarged filtration $\mathbb{G} = (\mathcal{G}_t)_{t \ge 0}$ as:

$$\mathcal{G}_t := \bigcap_{s>t} \mathcal{G}_s^0$$
 with $\mathcal{G}_t^0 := \mathcal{F}_t^W \lor \sigma(\tau \land t)$, for all $t \ge 0$

• An arbitrage strategy in the enlarged filtration G:

buy at t = 0 and sell at $t = \tau$

1 E N 4 E N

Discussion and motivation

 In the previous example, the random time τ is an honest time: for every t > 0, there exists an F^W_t-measurable random variable ζ_t such that

 $\tau = \zeta_t \text{ on } \{\tau < t\}.$

Indeed, we can take $\zeta_t := \sup \{ u \in [0, t] : S_u = \sup_{r \in [0, t]} S_r \} \in \mathcal{F}_t^W$.

Discussion and motivation

 In the previous example, the random time τ is an honest time: for every t > 0, there exists an F^W_t-measurable random variable ζ_t such that

 $\tau = \zeta_t \text{ on } \{\tau < t\}.$

Indeed, we can take $\zeta_t := \sup \{ u \in [0, t] : S_u = \sup_{r \in [0, t]} S_r \} \in \mathcal{F}_t^W$.

 Imkeller (2002) and Zwierz (2007) have shown that in a Brownian filtration arbitrage opportunities do exist *immediately after* τ.

Discussion and motivation

 In the previous example, the random time τ is an honest time: for every t > 0, there exists an F^W_t-measurable random variable ζ_t such that

 $\tau = \zeta_t \text{ on } \{\tau < t\}.$

Indeed, we can take $\zeta_t := \sup \{ u \in [0, t] : S_u = \sup_{r \in [0, t]} S_r \} \in \mathcal{F}_t^W$.

• Imkeller (2002) and Zwierz (2007) have shown that in a Brownian filtration arbitrage opportunities do exist *immediately after* τ .

What happens in general?

- continuous semimartingale setting;
- do arbitrage profits exist before τ ?
- do arbitrage profits exist at τ?
- do arbitrage profits exist after τ?
- which is the appropriate notion of "arbitrage profit"?

- Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \ge 0}, P)$ be a given filtered probability space;
- let the ℝ^d-valued continuous semimartingale S = (S_t)_{t≥0} represent the discounted price of d risky assets;
- let $\tau : \Omega \to [0, \infty]$ be a *P*-a.s. finite *honest time*;
- let $\mathbb{G} = (\mathcal{G}_t)_{t \geq 0}$ be the filtration \mathbb{F} progressively enlarged wrt. τ .

ロト (得) (き) (き) う

- Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \ge 0}, P)$ be a given filtered probability space;
- let the ℝ^d-valued continuous semimartingale S = (S_t)_{t≥0} represent the discounted price of d risky assets;
- let $\tau : \Omega \to [0, \infty]$ be a *P*-a.s. finite *honest time*;
- let $\mathbb{G} = (\mathcal{G}_t)_{t \ge 0}$ be the filtration \mathbb{F} progressively enlarged wrt. τ .

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \ge 0}, P)$ be a given filtered probability space;
- let the ℝ^d-valued continuous semimartingale S = (S_t)_{t≥0} represent the discounted price of d risky assets;
- let $\tau : \Omega \to [0, \infty]$ be a *P*-a.s. finite *honest time*;
- let $\mathbb{G} = (\mathcal{G}_t)_{t \ge 0}$ be the filtration \mathbb{F} progressively enlarged wrt. τ .

Definition

Let $\mathbb{H} \in \{\mathbb{F}, \mathbb{G}\}$. For $a \in \mathbb{R}_+$, an element $\theta \in L^{\mathbb{H}}(S)$ is said to be an *a*-admissible \mathbb{H} -strategy if $(\theta \cdot S)_{\infty}$ exists and $(\theta \cdot S)_t \ge -a P$ -a.s. for all $t \ge 0$. We denote by $\mathcal{A}_a^{\mathbb{H}}$ the set of all *a*-admissible \mathbb{H} -strategies. We say that an element $\theta \in L^{\mathbb{H}}(S)$ is an *admissible* \mathbb{H} -strategy if $\theta \in \mathcal{A}^{\mathbb{H}} := \bigcup_{a \in \mathbb{R}_+} \mathcal{A}_a^{\mathbb{H}}$.

Remark: since au is honest, S is a \mathbb{G} -semimartingale and we have $\mathcal{A}^{\mathbb{F}} \subseteq \mathcal{A}^{\mathbb{G}}$.

- Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \ge 0}, P)$ be a given filtered probability space;
- let the ℝ^d-valued continuous semimartingale S = (S_t)_{t≥0} represent the discounted price of d risky assets;
- let $\tau : \Omega \to [0, \infty]$ be a *P*-a.s. finite *honest time*;
- let $\mathbb{G} = (\mathcal{G}_t)_{t \ge 0}$ be the filtration \mathbb{F} progressively enlarged wrt. τ .

Definition

Let $\mathbb{H} \in \{\mathbb{F}, \mathbb{G}\}$. For $a \in \mathbb{R}_+$, an element $\theta \in L^{\mathbb{H}}(S)$ is said to be an *a*-admissible \mathbb{H} -strategy if $(\theta \cdot S)_{\infty}$ exists and $(\theta \cdot S)_t \ge -aP$ -a.s. for all $t \ge 0$. We denote by $\mathcal{A}_a^{\mathbb{H}}$ the set of all *a*-admissible \mathbb{H} -strategies. We say that an element $\theta \in L^{\mathbb{H}}(S)$ is an *admissible* \mathbb{H} -strategy if $\theta \in \mathcal{A}^{\mathbb{H}} := \bigcup_{a \in \mathbb{R}_+} \mathcal{A}_a^{\mathbb{H}}$.

Remark: since τ is honest, *S* is a \mathbb{G} -semimartingale and we have $\mathcal{A}^{\mathbb{F}} \subseteq \mathcal{A}^{\mathbb{G}}$.

• (1) • (

- Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \ge 0}, P)$ be a given filtered probability space;
- let the ℝ^d-valued continuous semimartingale S = (S_t)_{t≥0} represent the discounted price of d risky assets;
- let $\tau : \Omega \to [0, \infty]$ be a *P*-a.s. finite *honest time*;
- let $\mathbb{G} = (\mathcal{G}_t)_{t \geq 0}$ be the filtration \mathbb{F} progressively enlarged wrt. τ .

Definition

Let $\mathbb{H} \in \{\mathbb{F}, \mathbb{G}\}$. For $a \in \mathbb{R}_+$, an element $\theta \in L^{\mathbb{H}}(S)$ is said to be an *a-admissible* \mathbb{H} -strategy if $(\theta \cdot S)_{\infty}$ exists and $(\theta \cdot S)_t \ge -a P$ -a.s. for all $t \ge 0$. We denote by $\mathcal{A}_a^{\mathbb{H}}$ the set of all *a*-admissible \mathbb{H} -strategies. We say that an element $\theta \in L^{\mathbb{H}}(S)$ is an *admissible* \mathbb{H} -strategy if $\theta \in \mathcal{A}^{\mathbb{H}} := \bigcup_{a \in \mathbb{R}_+} \mathcal{A}_a^{\mathbb{H}}$.

Remark: since τ is honest, *S* is a \mathbb{G} -semimartingale and we have $\mathcal{A}^{\mathbb{F}} \subseteq \mathcal{A}^{\mathbb{G}}$.

Definition

- The restricted financial market is the tuple M^F := (Ω, F, F, P; S, A^F);
- the *enlarged financial market* is the tuple $\mathcal{M}^{\mathbb{G}} := (\Omega, \mathcal{F}, \mathbb{G}, P; S, \mathcal{A}^{\mathbb{G}}).$

For a strategy $\theta \in \mathcal{A}^{\mathbb{G}}$ and $x \in \mathbb{R}_+$, we denote by $V(x, \theta) = x + \int \theta dS$ the corresponding wealth process (self-financing trading).

Definition

- An element $\theta \in \mathcal{A}^{\mathbb{G}}$ is said to be an *arbitrage opportunity in* \mathbb{G} if $V(0,\theta)_{\infty} \geq 0$ *P*-a.s. and $P(V(0,\theta)_{\infty} > 0) > 0$. The financial market $\mathcal{M}^{\mathbb{G}}$ satisfies **NA** if no such $\theta \in \mathcal{A}^{\mathbb{G}}$ exists.
- A non-negative random variable ξ with P(ξ > 0) > 0 is said to be an *arbitrage of the first kind in* G if for all x > 0 there exists an element θ^x ∈ A^G_x such that V(x, θ^x)_∞ := x + (θ^x ⋅ S)_∞ ≥ ξ P-a.s. The financial market M^G satisfies NA1 if no such ξ exists.

For a strategy $\theta \in \mathcal{A}^{\mathbb{G}}$ and $x \in \mathbb{R}_+$, we denote by $V(x, \theta) = x + \int \theta dS$ the corresponding wealth process (self-financing trading).

Definition

• An element $\theta \in \mathcal{A}^{\mathbb{G}}$ is said to be an *arbitrage opportunity in* \mathbb{G} if $V(0,\theta)_{\infty} \geq 0$ *P*-a.s. and $P(V(0,\theta)_{\infty} > 0) > 0$. The financial market $\mathcal{M}^{\mathbb{G}}$ satisfies **NA** if no such $\theta \in \mathcal{A}^{\mathbb{G}}$ exists.

A non-negative random variable ξ with P(ξ > 0) > 0 is said to be an *arbitrage of the first kind in* G if for all x > 0 there exists an element θ^x ∈ A^G_x such that V(x, θ^x)_∞ := x + (θ^x ⋅ S)_∞ ≥ ξ P-a.s. The financial market M^G satisfies NA1 if no such ξ exists.

A (B) + A (B) + A (B) +

For a strategy $\theta \in A^{\mathbb{G}}$ and $x \in \mathbb{R}_+$, we denote by $V(x, \theta) = x + \int \theta dS$ the corresponding wealth process (self-financing trading).

Definition

- An element $\theta \in \mathcal{A}^{\mathbb{G}}$ is said to be an *arbitrage opportunity in* \mathbb{G} if $V(0,\theta)_{\infty} \geq 0$ *P*-a.s. and $P(V(0,\theta)_{\infty} > 0) > 0$. The financial market $\mathcal{M}^{\mathbb{G}}$ satisfies **NA** if no such $\theta \in \mathcal{A}^{\mathbb{G}}$ exists.
- A non-negative random variable ξ with $P(\xi > 0) > 0$ is said to be an *arbitrage of the first kind in* \mathbb{G} if for all x > 0 there exists an element $\theta^x \in \mathcal{A}_x^{\mathbb{G}}$ such that $V(x, \theta^x)_{\infty} := x + (\theta^x \cdot S)_{\infty} \ge \xi P$ -a.s. The financial market $\mathcal{M}^{\mathbb{G}}$ satisfies NA1 if no such ξ exists.

< 回 > < 回 > < 回 >

For a strategy $\theta \in A^{\mathbb{G}}$ and $x \in \mathbb{R}_+$, we denote by $V(x, \theta) = x + \int \theta dS$ the corresponding wealth process (self-financing trading).

Definition

- An element $\theta \in \mathcal{A}^{\mathbb{G}}$ is said to be an *arbitrage opportunity in* \mathbb{G} if $V(0,\theta)_{\infty} \geq 0$ *P*-a.s. and $P(V(0,\theta)_{\infty} > 0) > 0$. The financial market $\mathcal{M}^{\mathbb{G}}$ satisfies **NA** if no such $\theta \in \mathcal{A}^{\mathbb{G}}$ exists.
- A non-negative random variable ξ with $P(\xi > 0) > 0$ is said to be an *arbitrage of the first kind in* \mathbb{G} if for all x > 0 there exists an element $\theta^x \in \mathcal{A}_x^{\mathbb{G}}$ such that $V(x, \theta^x)_{\infty} := x + (\theta^x \cdot S)_{\infty} \ge \xi$ *P*-a.s. The financial market $\mathcal{M}^{\mathbb{G}}$ satisfies **NA1** if no such ξ exists.

Remark: NA1 is the minimal condition for the solvability of expected utility maximization problems (see Karatzas & Kardaras, 2007).

ロト イポト イヨト イヨト

Martingale measures and deflators

Definition

- A probability measure Q ~ P is said to be an Equivalent Local Martingale Measure in G (ELMM_G) if S is a G-local martingale under Q.
- A strictly positive G-local martingale L = (L_t)_{t≥0} with L₀ = 1 and L_∞ > 0 P-a.s. is said to be a *local martingale deflator in* G if LS is a G-local martingale;

< 同 > < 三 > < 三 >

Martingale measures and deflators

Definition

- A probability measure Q ~ P is said to be an Equivalent Local Martingale Measure in G (ELMM_G) if S is a G-local martingale under Q.
- A strictly positive G-local martingale L = (L_t)_{t≥0} with L₀ = 1 and L_∞ > 0 P-a.s. is said to be a *local martingale deflator in* G if LS is a G-local martingale;

.

Martingale measures and deflators

Definition

- A probability measure Q ~ P is said to be an Equivalent Local Martingale Measure in G (ELMM_G) if S is a G-local martingale under Q.
- A strictly positive G-local martingale L = (L_t)_{t≥0} with L₀ = 1 and L_∞ > 0 P-a.s. is said to be a *local martingale deflator in* G if LS is a G-local martingale;
- Let *Q* be an ELMM_G and denote by Z^Q its density process, i.e., $Z_t^Q = dQ/dP|_{\mathcal{G}_t}$, for $t \ge 0$. \Rightarrow Then Z^Q is a local martingale deflator in G.
- Let *L* be a local martingale deflator in \mathbb{G} . \Rightarrow Then we can define an ELMM_G *Q* by letting $dQ/dP := L_{\infty}$ if and only if $E[L_{\infty}] = 1$.

Fundamental theorem of asset pricing

Theorem (Delbaen-Schachermayer, 1994-1998; Kardaras, 2007-2012)

- NA1 holds in the financial market M^G if and only if there exists a local martingale deflator in G;
- NFLVR holds in the financial market M^G if and only if there exists an ELMM_G;
- NFLVR holds in the financial market M^G if and only if both NA1 and NA hold.

Assumption I: the restricted financial market $\mathcal{M}^{\mathbb{F}}$ satisfies NFLVR.

э

Assumption I: the restricted financial market $\mathcal{M}^{\mathbb{F}}$ satisfies NFLVR.

Assumption II: the \mathbb{F} -local martingale part $M = (M_t)_{t \ge 0}$ in the \mathbb{F} -canonical decomposition $S = S_0 + A + M$ has the predictable representation property in the filtration \mathbb{F} , i.e., every \mathbb{F} -local martingale can be represented as a stochastic integral of M.

A (B) > A (B) > A (B) >

Assumption I: the restricted financial market $\mathcal{M}^{\mathbb{F}}$ satisfies NFLVR. **Assumption II:** the \mathbb{F} -local martingale part $M = (M_t)_{t \ge 0}$ in the \mathbb{F} -canonical decomposition $S = S_0 + A + M$ has the predictable representation property in the filtration \mathbb{F} , i.e., every \mathbb{F} -local martingale can be represented as a stochastic integral of M.

 \Rightarrow The financial market $\mathcal{M}^{\mathbb{F}}$ is arbitrage-free and complete (up to \mathcal{F}_0).

・ 同 ト ・ ヨ ト ・ ヨ ト

Assumption I: the restricted financial market $\mathcal{M}^{\mathbb{F}}$ satisfies NFLVR. **Assumption II:** the \mathbb{F} -local martingale part $M = (M_t)_{t \ge 0}$ in the \mathbb{F} -canonical decomposition $S = S_0 + A + M$ has the predictable representation property in the filtration \mathbb{F} , i.e., every \mathbb{F} -local martingale can be represented as a stochastic integral of M.

 \Rightarrow The financial market $\mathcal{M}^{\mathbb{F}}$ is arbitrage-free and complete (up to \mathcal{F}_0).

Assumption III: for every \mathbb{F} -stopping time σ we have $P(\tau = \sigma) = 0$.

(日本) (日本) (日本)

Assumption I: the restricted financial market $\mathcal{M}^{\mathbb{F}}$ satisfies NFLVR. **Assumption II:** the \mathbb{F} -local martingale part $M = (M_t)_{t \ge 0}$ in the \mathbb{F} -canonical decomposition $S = S_0 + A + M$ has the predictable representation property in the filtration \mathbb{F} , i.e., every \mathbb{F} -local martingale can be represented as a stochastic integral of M.

 \Rightarrow The financial market $\mathcal{M}^{\mathbb{F}}$ is arbitrage-free and complete (up to \mathcal{F}_0).

Assumption III: for every \mathbb{F} -stopping time σ we have $P(\tau = \sigma) = 0$.

What happens in the enlarged financial market $\mathcal{M}^{\mathbb{G}}$?

Two technical results

Lemma (Nikeghbali-Yor, 2006)

There exists a continuous non-negative \mathbb{F} -local martingale $N = (N_t)_{t\geq 0}$ with $N_0 = 1$ and $\lim_{t\to\infty} N_t = 0$ *P*-a.s. such that the following holds, for all $t \geq 0$:

 $Z_t := P(\tau > t | \mathcal{F}_t) = N_t / N_t^*$

where $N_t^* := \sup_{u \le t} N_u$. Furthermore:

$$\tau = \sup\{t \ge 0 : N_t = N_t^*\} = \sup\{t \ge 0 : N_t = N_\infty^*\}$$

< 同 > < 三 > < 三 >

Two technical results

Lemma (Nikeghbali-Yor, 2006)

There exists a continuous non-negative \mathbb{F} -local martingale $N = (N_t)_{t\geq 0}$ with $N_0 = 1$ and $\lim_{t\to\infty} N_t = 0$ *P*-a.s. such that the following holds, for all $t \geq 0$:

 $Z_t := P(\tau > t | \mathcal{F}_t) = N_t / N_t^*$

where $N_t^* := \sup_{u < t} N_u$. Furthermore:

$$au = \sup\{t \ge 0 : N_t = N_t^*\} = \sup\{t \ge 0 : N_t = N_\infty^*\}$$

Lemma (Barlow, 1978; Nikeghbali-Yor, 2006)

Let $X = (X_t)_{t \ge 0}$ be an \mathbb{F} -local martingale. Then X has the following canonical decomposition as a semimartingale in the filtration \mathbb{G} :

$$X_t = \widetilde{X}_t + \int_0^{t \wedge \tau} \frac{d \langle X, N \rangle_s}{N_s} - \int_{\tau}^{t \vee \tau} \frac{d \langle X, N \rangle_s}{N_{\infty}^* - N_s}$$

where $\widetilde{X} = (\widetilde{X}_t)_{t \ge 0}$ is a \mathbb{G} -local martingale.

Claudio Fontana (INRIA)

<日

Image: Second second

Two technical results

Lemma (Nikeghbali-Yor, 2006)

There exists a continuous non-negative \mathbb{F} -local martingale $N = (N_t)_{t\geq 0}$ with $N_0 = 1$ and $\lim_{t\to\infty} N_t = 0$ *P*-a.s. such that the following holds, for all $t \geq 0$:

 $Z_t := P(\tau > t | \mathcal{F}_t) = N_t / N_t^*$

where $N_t^* := \sup_{u < t} N_u$. Furthermore:

 $\tau = \sup\{t \ge 0 : N_t = N_t^*\} = \sup\{t \ge 0 : N_t = N_\infty^*\}$

Lemma (Barlow, 1978; Nikeghbali-Yor, 2006)

Let $X = (X_t)_{t \ge 0}$ be an \mathbb{F} -local martingale. Then X has the following canonical decomposition as a semimartingale in the filtration \mathbb{G} :

$$X_t = \widetilde{X}_t + \int_0^{t \wedge \tau} \frac{d \langle X, N \rangle_s}{N_s} - \int_{\tau}^{t \vee \tau} \frac{d \langle X, N \rangle_s}{N_{\infty}^* - N_s}$$

where $\widetilde{X} = (\widetilde{X}_t)_{t \ge 0}$ is a \mathbb{G} -local martingale.

Claudio Fontana (INRIA)

<回> < 回> < 回>

An easy arbitrage opportunity at τ

• WLOG, we can suppose that *P* is an $ELMM_{\mathbb{F}}$ for the filtration \mathbb{F} ;

A (1) A (2) A (2) A

An easy arbitrage opportunity at τ

- WLOG, we can suppose that *P* is an ELMM_{\mathbb{F}} for the filtration \mathbb{F} ;
- we have $N_{\tau} \geq 1$ *P*-a.s. and $P(N_{\tau} > 1) > 0$;
- by MRP in the \mathbb{F} -filtration, we can write $N = 1 + \varphi \cdot S$, with $\varphi \in L^{\mathbb{F}}(S)$.

A (B) > A (B) > A (B) >

An easy arbitrage opportunity at τ

- WLOG, we can suppose that P is an ELMM_𝑘 for the filtration 𝑘;
- we have $N_{\tau} \geq 1$ *P*-a.s. and $P(N_{\tau} > 1) > 0$;
- by MRP in the \mathbb{F} -filtration, we can write $N = 1 + \varphi \cdot S$, with $\varphi \in L^{\mathbb{F}}(S)$.

Proposition

The enlarged financial market $\mathcal{M}^{\mathbb{G}}$ does not satisfy NA on $[0, \tau]$.

<u>*Proof:*</u> it suffices to consider the arbitrage strategy $\bar{\varphi} := \mathbf{1}_{[0,\tau]} \varphi \in \mathcal{A}_{1}^{\mathbb{G}}$.

A (B) > A (B) > A (B) >

An easy arbitrage opportunity at τ

- WLOG, we can suppose that P is an ELMM_F for the filtration F;
- we have $N_{\tau} \geq 1$ *P*-a.s. and $P(N_{\tau} > 1) > 0$;
- by MRP in the \mathbb{F} -filtration, we can write $N = 1 + \varphi \cdot S$, with $\varphi \in L^{\mathbb{F}}(S)$.

Proposition

The enlarged financial market $\mathcal{M}^{\mathbb{G}}$ does not satisfy NA on $[0, \tau]$.

<u>*Proof:*</u> it suffices to consider the arbitrage strategy $\bar{\varphi} := \mathbf{1}_{[0,\tau]} \varphi \in \mathcal{A}_{1}^{\mathbb{G}}$.

 \Rightarrow As a consequence, NFLVR fails as well for $\mathcal{M}^{\mathbb{G}}$ on $[0, \tau]$.

(4) 周 ト 4 日 ト 4 日 ト 二 日

An easy arbitrage opportunity at τ

- WLOG, we can suppose that P is an ELMM_𝔅 for the filtration 𝔅;
- we have $N_{\tau} \geq 1$ *P*-a.s. and $P(N_{\tau} > 1) > 0$;
- by MRP in the \mathbb{F} -filtration, we can write $N = 1 + \varphi \cdot S$, with $\varphi \in L^{\mathbb{F}}(S)$.

Proposition

The enlarged financial market $\mathcal{M}^{\mathbb{G}}$ does not satisfy NA on $[0, \tau]$.

<u>*Proof:*</u> it suffices to consider the arbitrage strategy $\bar{\varphi} := \mathbf{1}_{[0,\tau]} \varphi \in \mathcal{A}_{1}^{\mathbb{G}}$.

 \Rightarrow As a consequence, NFLVR fails as well for $\mathcal{M}^{\mathbb{G}}$ on $[0, \tau]$.

Does the enlarged financial market $\mathcal{M}^{\mathbb{G}}$ satisfy NA1 on $[0, \tau]$?

(D) (A) (A) (A) (A) (A)

Existence of a local martingale deflator in $\mathbb G$ on $[0,\tau]$

The stopped process S^{τ} admits the following \mathbb{G} -canonical decomposition:

$$oldsymbol{\mathcal{S}}^{ au} = \widetilde{oldsymbol{\mathcal{S}}}^{ au} + rac{1}{oldsymbol{N}} \cdot ig\langle oldsymbol{\mathcal{S}}^{ au}, oldsymbol{N}ig
angle$$

where $\widetilde{S} = (\widetilde{S}_t)_{t \ge 0}$ is a continuous \mathbb{G} -local martingale with $\widetilde{S}_0 = S_0 = s$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Existence of a local martingale deflator in $\mathbb G$ on $[0,\tau]$

The stopped process S^{τ} admits the following \mathbb{G} -canonical decomposition:

$$oldsymbol{\mathcal{S}}^{ au} = \widetilde{oldsymbol{\mathcal{S}}}^{ au} + rac{1}{oldsymbol{N}} \cdot ig\langle oldsymbol{\mathcal{S}}^{ au}, oldsymbol{\mathcal{N}}ig
angle$$

where $\widetilde{S} = (\widetilde{S}_t)_{t \ge 0}$ is a continuous \mathbb{G} -local martingale with $\widetilde{S}_0 = S_0 = s$.

Proposition

The process $1/N^{\tau}$ is a local martingale deflator in \mathbb{G} on the time horizon $[0, \tau]$. Furthermore, the process $1/N^{\tau}$ is not a u.i. \mathbb{G} -martingale.

Existence of a local martingale deflator in $\mathbb G$ on $[0,\tau]$

The stopped process S^{τ} admits the following \mathbb{G} -canonical decomposition:

$$oldsymbol{\mathcal{S}}^{ au} = \widetilde{oldsymbol{\mathcal{S}}}^{ au} + rac{1}{oldsymbol{N}} \cdot ig\langle oldsymbol{\mathcal{S}}^{ au}, oldsymbol{N}ig
angle$$

where $\widetilde{S} = (\widetilde{S}_t)_{t \ge 0}$ is a continuous \mathbb{G} -local martingale with $\widetilde{S}_0 = S_0 = s$.

Proposition

The process $1/N^{\tau}$ is a local martingale deflator in \mathbb{G} on the time horizon $[0, \tau]$. Furthermore, the process $1/N^{\tau}$ is not a u.i. \mathbb{G} -martingale.

<u>Proof</u>: First argue that $N_{\tau} > 0$ *P*-a.s. Then, by Itô's formula:

$$\frac{1}{N^{\tau}} = 1 - \frac{1}{(N^{\tau})^2} \cdot N^{\tau} + \frac{1}{(N^{\tau})^3} \cdot \langle N \rangle^{\tau} = 1 - \frac{\varphi}{(N^{\tau})^2} \cdot S^{\tau} + \frac{\varphi}{(N^{\tau})^3} \cdot \langle S^{\tau}, N \rangle = 1 - \frac{\varphi}{(N^{\tau})^2} \cdot \widetilde{S}^{\tau}$$

Hence, $1/N^{\tau}$ is a *P*-a.s. strictly positive G-local martingale with $1/N_0 = 1$ and $1/N_{\tau} > 0$ *P*-a.s. The product rule shows that S^{τ}/N^{τ} is a G-local martingale and, hence, $1/N^{\tau}$ is a local martingale deflator in G on $[0, \tau]$. Finally, observe that $E[1/N_{\infty}^{\tau}] = E[1/N_{\tau}] < 1 = E[1/N_0]$.

Validity of NA1 in $\mathcal{M}^{\mathbb{G}}$ on $[0, \tau]$

As an immediate consequence, we get the following theorem:

Theorem

In the enlarged financial market $\mathcal{M}^{\mathbb{G}}$ the following hold:

- (i) NA1 holds on the time horizon $[0, \tau]$;
- (ii) NA and NFLVR fail on the time horizon $[0, \tau]$.

.

Validity of NA1 in $\mathcal{M}^{\mathbb{G}}$ on $[0, \tau]$

As an immediate consequence, we get the following theorem:

Theorem

In the enlarged financial market $\mathcal{M}^{\mathbb{G}}$ the following hold:

(i) NA1 holds on the time horizon $[0, \tau]$;

(ii) NA and NFLVR fail on the time horizon $[0, \tau]$.

A characterization of local martingale deflators in $\mathcal{M}^{\mathbb{G}}$ on $[0, \tau]$:

Lemma

Let $L = (L_t)_{t \ge 0}$ be a local martingale deflator in \mathbb{G} on the time horizon $[0, \tau]$. Then L admits the following representation:

$$L^{\tau} = \frac{1}{N^{\tau}} \exp\left(-\frac{k}{N^*} \cdot N^*\right) \left(1 + k_{\tau} \mathbf{1}_{\llbracket \tau, \infty \rrbracket} + \eta \mathbf{1}_{\llbracket \tau, \infty \rrbracket}\right)$$

where $k = (k_t)_{t \ge 0}$ is an \mathbb{F} -predictable process such that $k_{\tau} > -1$ *P*-a.s. and η is a \mathcal{G}_{τ} -measurable random variable such that $E[\eta|\mathcal{G}_{\tau-}] = 0$.

Arbitrages before time τ

Impossibility of arbitrages before time τ

Lemma

Let σ be an \mathbb{F} -stopping time and $L = (L_t)_{t \ge 0}$ a local martingale deflator in \mathbb{G} on the time horizon $[0, \sigma \land \tau]$. Then the following holds:

$$E[L_{\sigma \wedge \tau}] = E\left[1 - \exp\left(-\int_0^\tau \frac{1 + k_s}{N_s^*} dN_s^*\right) \mathbf{1}_{\{\nu \leq \sigma\}}\right] \leq 1$$

where $\nu := \inf\{t \ge 0 : N_t = 0\}$. Furthermore, we have $\int_0^{\tau} \frac{1+k_s}{N_s^*} dN_s^* > 0$ P-a.s.

< 回 > < 回 > < 回 >

Arbitrages before time τ

Impossibility of arbitrages before time τ

Lemma

Let σ be an \mathbb{F} -stopping time and $L = (L_t)_{t \ge 0}$ a local martingale deflator in \mathbb{G} on the time horizon $[0, \sigma \land \tau]$. Then the following holds:

$$E[L_{\sigma\wedge\tau}] = E\left[1 - \exp\left(-\int_0^\tau \frac{1+k_s}{N_s^*} \, dN_s^*\right) \mathbf{1}_{\{\nu\leq\sigma\}}\right] \leq 1$$

where $\nu := \inf\{t \ge 0 : N_t = 0\}$. Furthermore, we have $\int_0^{\tau} \frac{1+k_s}{N_s^*} dN_s^* > 0$ *P*-a.s.

Corollary

Let σ be an \mathbb{F} -stopping time. The following are equivalent:

- NFLVR holds in the enlarged financial market $\mathcal{M}^{\mathbb{G}}$ on $[0, \sigma \land \tau]$;
- $P(\sigma \geq \nu) = 0.$

In particular, NFLVR holds in the enlarged financial market $\mathcal{M}^{\mathbb{G}}$ on the time horizon $[0, \varrho]$ for every \mathbb{G} -stopping time ϱ with $\varrho < \tau$ P-a.s.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Arbitrages before time τ

Impossibility of arbitrages before time τ

Lemma

Let σ be an \mathbb{F} -stopping time and $L = (L_t)_{t \ge 0}$ a local martingale deflator in \mathbb{G} on the time horizon $[0, \sigma \land \tau]$. Then the following holds:

$$E[L_{\sigma\wedge\tau}] = E\left[1 - \exp\left(-\int_0^\tau \frac{1+k_s}{N_s^*} \, dN_s^*\right) \mathbf{1}_{\{\nu\leq\sigma\}}\right] \leq 1$$

where $\nu := \inf\{t \ge 0 : N_t = 0\}$. Furthermore, we have $\int_0^{\tau} \frac{1+k_s}{N_s^*} dN_s^* > 0$ P-a.s.

Corollary

Let σ be an \mathbb{F} -stopping time. The following are equivalent:

- NFLVR holds in the enlarged financial market $\mathcal{M}^{\mathbb{G}}$ on $[0, \sigma \land \tau]$;
- $P(\sigma \geq \nu) = 0.$

In particular, NFLVR holds in the enlarged financial market $\mathcal{M}^{\mathbb{G}}$ on the time horizon $[0, \varrho]$ for every \mathbb{G} -stopping time ϱ with $\varrho < \tau$ P-a.s.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Failure of NA1in $\mathcal{M}^{\mathbb{G}}$ after time τ

The process *S* admits the following G-canonical decomposition:

$$S_{t} = \widetilde{S}_{t} + \int_{0}^{t \wedge \tau} \frac{d\langle S, N \rangle_{s}}{N_{s}} - \int_{\tau}^{t \vee \tau} \frac{d\langle S, N \rangle_{s}}{N_{\infty}^{*} - N_{s}} = \widetilde{S}_{t} + \int_{0}^{t} d\langle \widetilde{S}, \widetilde{S} \rangle_{s} \, \widetilde{\alpha}_{s}$$

where $\widetilde{S} = (\widetilde{S}_t)_{t \ge 0}$ is a continuous \mathbb{G} -local martingale with $\widetilde{S}_0 = S_0 = s$ and the $\widetilde{\alpha}_t := \mathbf{1}_{\{\tau \ge t\}} \frac{\varphi_t}{N_t} - \mathbf{1}_{\{\tau < t\}} \frac{\varphi_t}{N_{\infty}^* - N_t}$, for all $t \ge 0$.

伺 と く ヨ と く ヨ と

Failure of NA1in $\mathcal{M}^{\mathbb{G}}$ after time τ

The process S admits the following \mathbb{G} -canonical decomposition:

$$S_t = \widetilde{S}_t + \int_0^{t \wedge \tau} \frac{d \langle S, N \rangle_s}{N_s} - \int_{\tau}^{t \vee \tau} \frac{d \langle S, N \rangle_s}{N_{\infty}^* - N_s} = \widetilde{S}_t + \int_0^t d \langle \widetilde{S}, \widetilde{S} \rangle_s \, \widetilde{\alpha}_s$$

where $\widetilde{S} = (\widetilde{S}_t)_{t \ge 0}$ is a continuous \mathbb{G} -local martingale with $\widetilde{S}_0 = S_0 = s$ and the $\widetilde{\alpha}_t := \mathbf{1}_{\{\tau \ge t\}} \frac{\varphi_t}{N_t} - \mathbf{1}_{\{\tau < t\}} \frac{\varphi_t}{N_{\infty}^* - N_t}$, for all $t \ge 0$.

Proposition

The random variable $\xi := N_{\tau} - 1$ yields an arbitrage of the first kind in \mathbb{G} . As a consequence, NA1 fails in the enlarged financial market $\mathcal{M}^{\mathbb{G}}$ on $[0, \infty]$.

< 同 > < 三 > < 三 >

Failure of NA1in $\mathcal{M}^{\mathbb{G}}$ after time τ

The process S admits the following \mathbb{G} -canonical decomposition:

$$S_{t} = \widetilde{S}_{t} + \int_{0}^{t \wedge \tau} \frac{d \langle S, N \rangle_{s}}{N_{s}} - \int_{\tau}^{t \vee \tau} \frac{d \langle S, N \rangle_{s}}{N_{\infty}^{*} - N_{s}} = \widetilde{S}_{t} + \int_{0}^{t} d \langle \widetilde{S}, \widetilde{S} \rangle_{s} \widetilde{\alpha}_{s}$$

where $\widetilde{S} = (\widetilde{S}_t)_{t \ge 0}$ is a continuous G-local martingale with $\widetilde{S}_0 = S_0 = s$ and the $\widetilde{\alpha}_t := \mathbf{1}_{\{\tau \ge t\}} \frac{\varphi_t}{N_t} - \mathbf{1}_{\{\tau < t\}} \frac{\varphi_t}{N_{\infty}^* - N_t}$, for all $t \ge 0$.

Proposition

The random variable $\xi := N_{\tau} - 1$ yields an arbitrage of the first kind in \mathbb{G} . As a consequence, NA1 fails in the enlarged financial market $\mathcal{M}^{\mathbb{G}}$ on $[0, \infty]$.

<u>Sketch of the proof:</u> Note that $\xi \ge 0$ *P*-a.s. and $P(\xi > 0) > 0$ and let $\hat{\varphi} := -\mathbf{1}_{((\tau,\infty))} \in \mathcal{A}_0^{\mathbb{G}}$.

ロト (得) (き) (き)

Failure of NA1in $\mathcal{M}^{\mathbb{G}}$ after time τ The process *S* admits the following \mathbb{G} -canonical decomposition:

$$S_{t} = \widetilde{S}_{t} + \int_{0}^{t \wedge \tau} \frac{d \langle S, N \rangle_{s}}{N_{s}} - \int_{\tau}^{t \vee \tau} \frac{d \langle S, N \rangle_{s}}{N_{\infty}^{*} - N_{s}} = \widetilde{S}_{t} + \int_{0}^{t} d \langle \widetilde{S}, \widetilde{S} \rangle_{s} \widetilde{\alpha}_{s}$$

where $\widetilde{S} = (\widetilde{S}_t)_{t \ge 0}$ is a continuous G-local martingale with $\widetilde{S}_0 = S_0 = s$ and the $\widetilde{\alpha}_t := \mathbf{1}_{\{\tau \ge t\}} \frac{\varphi_t}{N_t} - \mathbf{1}_{\{\tau < t\}} \frac{\varphi_t}{N_{\infty}^* - N_t}$, for all $t \ge 0$.

Proposition

The random variable $\xi := N_{\tau} - 1$ yields an arbitrage of the first kind in \mathbb{G} . As a consequence, NA1 fails in the enlarged financial market $\mathcal{M}^{\mathbb{G}}$ on $[0, \infty]$.

Sketch of the proof:

$$\overline{\text{Note that } \xi \geq 0 \ P\text{-a.s. and } P(\xi > 0) > 0 \text{ and let } \hat{\varphi} := -\mathbf{1}_{(\![\tau,\infty]\!]} \in \mathcal{A}_0^{\mathbb{G}}.$$

⇒ The enlarged financial market $\mathcal{M}^{\mathbb{G}}$ does not admit a local martingale deflator in \mathbb{G} on $[0, \infty]$. ⇒ As a consequence, NFLVR fails in the enlarged financial market $\mathcal{M}^{\mathbb{G}}$.

Claudio Fontana (INRIA)

Arbitrages strictly after τ

Validity of NA1 in $\mathcal{M}^{\mathbb{G}}$ on the time horizon $[\tau + \varepsilon, \infty]$

Proposition

For every $\varepsilon > 0$, the process $\varepsilon L = (\varepsilon L_t)_{t \ge 0}$ defined by

$${}^{\varepsilon}\!L_t = \frac{N_{\tau} - N_{\tau+\varepsilon}}{N_{\tau} - N_{t\,\vee(\tau+\varepsilon)}} = \frac{N_{\infty}^* - N_{\tau+\varepsilon}}{N_{\infty}^* - N_{t\,\vee(\tau+\varepsilon)}}, \qquad \text{for } t \ge 0$$

is a local martingale deflator in \mathbb{G} for the process $^{\tau+\varepsilon}S := S - S^{\tau+\varepsilon}$. \Rightarrow As a consequence, NA1 holds in $\mathcal{M}^{\mathbb{G}}$ on $[\tau + \varepsilon, \infty]$.

.

Arbitrages strictly after τ

Validity of NA1 in $\mathcal{M}^{\mathbb{G}}$ on the time horizon $[\tau + \varepsilon, \infty]$

Proposition

For every $\varepsilon > 0$, the process $\varepsilon L = (\varepsilon L_t)_{t \ge 0}$ defined by

$${}^{\varepsilon}\!L_t = \frac{N_{\tau} - N_{\tau+\varepsilon}}{N_{\tau} - N_{t \vee (\tau+\varepsilon)}} = \frac{N_{\infty}^* - N_{\tau+\varepsilon}}{N_{\infty}^* - N_{t \vee (\tau+\varepsilon)}}, \qquad \text{for } t \ge 0,$$

is a local martingale deflator in \mathbb{G} for the process $^{\tau+\varepsilon}S := S - S^{\tau+\varepsilon}$. \Rightarrow As a consequence, NA1 holds in $\mathcal{M}^{\mathbb{G}}$ on $[\tau + \varepsilon, \infty]$.

However...

For every ε ∈ (0, δ), the strategy -φ/N^{*}_∞ belongs to A^G₁ for the process τ+εS = S - S^{τ+ε} and realizes an arbitrage opportunity on [τ + ε, ∞].

 \Rightarrow NA (and, hence, NFLVR as well) fails on $[\tau + \varepsilon, \infty]$.

Summing up

Theorem

In the enlarged financial market $\mathcal{M}^{\mathbb{G}}$ the following hold:

- (i) NA and NFLVR fail to hold on the time horizon $[0, \tau]$;
- (ii) NA1 holds on the time horizon $[0, \tau]$;

(iii) NA1, NA and NFLVR fail to hold on the global time horizon $[0,\infty]$;

(iv) NA1 holds on the time horizon $[\tau + \varepsilon, \infty]$.

 \Rightarrow Each of the above assertions can be proved:

- by means of explicit constructions of arbitrage strategies;
- by probabilistic arguments, using the multiplicative decomposition $P(\tau > t | \mathcal{F}_t) = N_t / N_t^*$.

A (B) + A (B) + A (B) +

Thank you for your attention

< □ > < //>