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Private information and arbitrage profits

Let the publicly available information be represented by a filtration F.
Let G = (Gt )t≥0 be a filtration with Gt ⊇ Ft for all t ≥ 0.
⇒ from a financial point of view, the filtration G represents the point of
view of a better informed agent (insider trader).
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⇒ from a financial point of view, the filtration G represents the point of
view of a better informed agent (insider trader).

Suppose that no arbitrage profits can be realized by relying on the
information of the filtration F;
does the additional knowledge of G give rise to arbitrage profits?
And, if yes, in what sense?
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The basic example

Let W = (Wt )t≥0 be a standard Brownian motion on (Ω,F ,FW ,P);
let S = (St )t≥0 represent the discounted price of a risky asset, with:

dSt = St σ dWt

S0 = s ∈ (0,∞)
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define a random time τ : Ω→ [0,∞) as follows:

τ := sup
{

t ≥ 0 : St = sup
u≥0

Su

}
τ is not an FW -stopping time!
Define the progressively enlarged filtration G = (Gt )t≥0 as:

Gt :=
⋂
s>t

G0
s with G0

t := FW
t ∨ σ(τ ∧ t), for all t ≥ 0
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define a random time τ : Ω→ [0,∞) as follows:

τ := sup
{

t ≥ 0 : St = sup
u≥0

Su

}
τ is not an FW -stopping time!
Define the progressively enlarged filtration G = (Gt )t≥0 as:

Gt :=
⋂
s>t

G0
s with G0

t := FW
t ∨ σ(τ ∧ t), for all t ≥ 0

An arbitrage strategy in the enlarged filtration G:

buy at t = 0 and sell at t = τ
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Discussion and motivation

In the previous example, the random time τ is an honest time:
for every t > 0, there exists an FW

t -measurable random variable ζt such
that

τ = ζt on {τ < t}.

Indeed, we can take ζt := sup
{

u ∈ [0, t ] : Su = supr∈[0,t] Sr
}
∈ FW

t .
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Imkeller (2002) and Zwierz (2007) have shown that in a Brownian
filtration arbitrage opportunities do exist immediately after τ .
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for every t > 0, there exists an FW

t -measurable random variable ζt such
that

τ = ζt on {τ < t}.

Indeed, we can take ζt := sup
{

u ∈ [0, t ] : Su = supr∈[0,t] Sr
}
∈ FW

t .

Imkeller (2002) and Zwierz (2007) have shown that in a Brownian
filtration arbitrage opportunities do exist immediately after τ .

What happens in general?
continuous semimartingale setting;
do arbitrage profits exist before τ?
do arbitrage profits exist at τ?
do arbitrage profits exist after τ?
which is the appropriate notion of “arbitrage profit”?
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Setting and preliminaries

Let (Ω,F ,F = (Ft )t≥0,P) be a given filtered probability space;
let the Rd -valued continuous semimartingale S = (St )t≥0 represent the
discounted price of d risky assets;
let τ : Ω→ [0,∞] be a P-a.s. finite honest time;
let G = (Gt )t≥0 be the filtration F progressively enlarged wrt. τ .
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Let (Ω,F ,F = (Ft )t≥0,P) be a given filtered probability space;
let the Rd -valued continuous semimartingale S = (St )t≥0 represent the
discounted price of d risky assets;
let τ : Ω→ [0,∞] be a P-a.s. finite honest time;
let G = (Gt )t≥0 be the filtration F progressively enlarged wrt. τ .

Definition

Let H ∈ {F,G}. For a ∈ R+, an element θ ∈ LH(S) is said to be an a-admissible
H-strategy if (θ ·S)∞ exists and (θ ·S)t ≥ −a P-a.s. for all t ≥ 0. We denote by
AH

a the set of all a-admissible H-strategies. We say that an element θ ∈ LH(S)
is an admissible H-strategy if θ ∈ AH :=

⋃
a∈R+
AH

a .

Remark: since τ is honest, S is a G-semimartingale and we have AF ⊆ AG.
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discounted price of d risky assets;
let τ : Ω→ [0,∞] be a P-a.s. finite honest time;
let G = (Gt )t≥0 be the filtration F progressively enlarged wrt. τ .

Definition

Let H ∈ {F,G}. For a ∈ R+, an element θ ∈ LH(S) is said to be an a-admissible
H-strategy if (θ ·S)∞ exists and (θ ·S)t ≥ −a P-a.s. for all t ≥ 0. We denote by
AH

a the set of all a-admissible H-strategies. We say that an element θ ∈ LH(S)
is an admissible H-strategy if θ ∈ AH :=

⋃
a∈R+
AH

a .

Remark: since τ is honest, S is a G-semimartingale and we have AF ⊆ AG.

Definition

The restricted financial market is the tupleMF := (Ω,F ,F,P; S,AF);
the enlarged financial market is the tupleMG := (Ω,F ,G,P; S,AG).
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Two notions of arbitrage

For a strategy θ ∈ AG and x ∈ R+, we denote by V (x , θ) = x +
∫
θdS the

corresponding wealth process (self-financing trading).

Definition

An element θ ∈ AG is said to be an arbitrage opportunity in G if
V (0, θ)∞ ≥ 0 P-a.s. and P(V (0, θ)∞ > 0) > 0.
The financial marketMG satisfies NA if no such θ ∈ AG exists.
A non-negative random variable ξ with P(ξ > 0) > 0 is said to be an
arbitrage of the first kind in G if for all x > 0 there exists an element
θx ∈ AG

x such that V (x , θx )∞ := x + (θx · S)∞ ≥ ξ P-a.s.
The financial marketMG satisfies NA1 if no such ξ exists.
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For a strategy θ ∈ AG and x ∈ R+, we denote by V (x , θ) = x +
∫
θdS the

corresponding wealth process (self-financing trading).

Definition

An element θ ∈ AG is said to be an arbitrage opportunity in G if
V (0, θ)∞ ≥ 0 P-a.s. and P(V (0, θ)∞ > 0) > 0.
The financial marketMG satisfies NA if no such θ ∈ AG exists.
A non-negative random variable ξ with P(ξ > 0) > 0 is said to be an
arbitrage of the first kind in G if for all x > 0 there exists an element
θx ∈ AG

x such that V (x , θx )∞ := x + (θx · S)∞ ≥ ξ P-a.s.
The financial marketMG satisfies NA1 if no such ξ exists.

Remark: NA1 is the minimal condition for the solvability of expected utility
maximization problems (see Karatzas & Kardaras, 2007).
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Martingale measures and deflators

Definition
A probability measure Q ∼ P is said to be an Equivalent Local Martingale
Measure in G (ELMMG) if S is a G-local martingale under Q.
A strictly positive G-local martingale L = (Lt )t≥0 with L0 = 1 and L∞ > 0
P-a.s. is said to be a local martingale deflator in G if LS is a G-local
martingale;
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Martingale measures and deflators

Definition
A probability measure Q ∼ P is said to be an Equivalent Local Martingale
Measure in G (ELMMG) if S is a G-local martingale under Q.
A strictly positive G-local martingale L = (Lt )t≥0 with L0 = 1 and L∞ > 0
P-a.s. is said to be a local martingale deflator in G if LS is a G-local
martingale;

Let Q be an ELMMG and denote by Z Q its density process, i.e.,
Z Q

t = dQ/dP|Gt , for t ≥ 0.
⇒ Then Z Q is a local martingale deflator in G.

Let L be a local martingale deflator in G.
⇒ Then we can define an ELMMG Q by letting dQ/dP := L∞ if and only
if E [L∞] = 1.
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Fundamental theorem of asset pricing

Theorem (Delbaen-Schachermayer, 1994-1998; Kardaras, 2007-2012)

NA1 holds in the financial marketMG if and only if there exists a local
martingale deflator in G;
NFLVR holds in the financial marketMG if and only if there exists an
ELMMG;
NFLVR holds in the financial marketMG if and only if both NA1 and NA
hold.
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Assumptions

Assumption I: the restricted financial marketMF satisfies NFLVR.

Claudio Fontana (INRIA) Advances in Mathematics of Finance, Warsaw, June 10-15, 2013 9 / 18



Assumptions

Assumption I: the restricted financial marketMF satisfies NFLVR.
Assumption II: the F-local martingale part M = (Mt )t≥0 in the F-canonical
decomposition S = S0 + A + M has the predictable representation property in
the filtration F, i.e., every F-local martingale can be represented as a
stochastic integral of M.
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Assumption I: the restricted financial marketMF satisfies NFLVR.
Assumption II: the F-local martingale part M = (Mt )t≥0 in the F-canonical
decomposition S = S0 + A + M has the predictable representation property in
the filtration F, i.e., every F-local martingale can be represented as a
stochastic integral of M.

⇒ The financial marketMF is arbitrage-free and complete (up to F0).

Assumption III: for every F-stopping time σ we have P(τ = σ) = 0.

What happens in the enlarged financial marketMG?
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Two technical results

Lemma (Nikeghbali-Yor, 2006)

There exists a continuous non-negative F-local martingale N = (Nt )t≥0 with
N0 = 1 and limt→∞ Nt = 0 P-a.s. such that the following holds, for all t ≥ 0:

Zt := P(τ > t |Ft ) = Nt/N∗t
where N∗t := supu≤t Nu. Furthermore:

τ = sup{t ≥ 0 : Nt = N∗t } = sup{t ≥ 0 : Nt = N∗∞}
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Zt := P(τ > t |Ft ) = Nt/N∗t
where N∗t := supu≤t Nu. Furthermore:

τ = sup{t ≥ 0 : Nt = N∗t } = sup{t ≥ 0 : Nt = N∗∞}

Lemma (Barlow, 1978; Nikeghbali-Yor, 2006)

Let X = (Xt )t≥0 be an F-local martingale. Then X has the following canonical
decomposition as a semimartingale in the filtration G:

Xt = X̃t +

∫ t∧τ

0

d〈X ,N〉s
Ns

−
∫ t∨τ

τ

d〈X ,N〉s
N∗∞ − Ns

where X̃ = (X̃t )t≥0 is a G-local martingale.
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Arbitrages on the time horizon [0, τ ]
An easy arbitrage opportunity at τ

WLOG, we can suppose that P is an ELMMF for the filtration F;
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by MRP in the F-filtration, we can write N = 1 + ϕ · S, with ϕ ∈ LF(S).

Proposition

The enlarged financial marketMG does not satisfy NA on [0, τ ].

Proof: it suffices to consider the arbitrage strategy ϕ̄ := 1[[0,τ ]]ϕ ∈ AG
1 .
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Proof: it suffices to consider the arbitrage strategy ϕ̄ := 1[[0,τ ]]ϕ ∈ AG
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⇒ As a consequence, NFLVR fails as well forMG on [0, τ ].
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Arbitrages on the time horizon [0, τ ]
An easy arbitrage opportunity at τ

WLOG, we can suppose that P is an ELMMF for the filtration F;
we have Nτ ≥ 1 P-a.s. and P(Nτ > 1) > 0;
by MRP in the F-filtration, we can write N = 1 + ϕ · S, with ϕ ∈ LF(S).

Proposition

The enlarged financial marketMG does not satisfy NA on [0, τ ].

Proof: it suffices to consider the arbitrage strategy ϕ̄ := 1[[0,τ ]]ϕ ∈ AG
1 .

⇒ As a consequence, NFLVR fails as well forMG on [0, τ ].

Does the enlarged financial marketMG satisfy NA1 on [0, τ ]?
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Arbitrages on the time horizon [0, τ ]
Existence of a local martingale deflator in G on [0, τ ]

The stopped process Sτ admits the following G-canonical decomposition:

Sτ = S̃τ +
1
N
·
〈
Sτ ,N

〉
where S̃ = (S̃t )t≥0 is a continuous G-local martingale with S̃0 = S0 = s.
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Sτ = S̃τ +
1
N
·
〈
Sτ ,N

〉
where S̃ = (S̃t )t≥0 is a continuous G-local martingale with S̃0 = S0 = s.

Proposition

The process 1/Nτ is a local martingale deflator in G on the time horizon [0, τ ].
Furthermore, the process 1/Nτ is not a u.i. G-martingale.
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Arbitrages on the time horizon [0, τ ]
Existence of a local martingale deflator in G on [0, τ ]

The stopped process Sτ admits the following G-canonical decomposition:

Sτ = S̃τ +
1
N
·
〈
Sτ ,N

〉
where S̃ = (S̃t )t≥0 is a continuous G-local martingale with S̃0 = S0 = s.

Proposition

The process 1/Nτ is a local martingale deflator in G on the time horizon [0, τ ].
Furthermore, the process 1/Nτ is not a u.i. G-martingale.

Proof: First argue that Nτ > 0 P-a.s. Then, by Itô’s formula:

1
Nτ

=1− 1
(Nτ )2 ·N

τ+
1

(Nτ )3 ·〈N〉
τ =1− ϕ

(Nτ )2 ·S
τ+

ϕ

(Nτ )3 ·〈S
τ ,N〉=1− ϕ

(Nτ )2 ·S̃
τ

Hence, 1/Nτ is a P-a.s. strictly positive G-local martingale with 1/N0 = 1 and
1/Nτ > 0 P-a.s. The product rule shows that Sτ/Nτ is a G-local martingale
and, hence, 1/Nτ is a local martingale deflator in G on [0, τ ]. Finally, observe
that E [1/Nτ

∞] = E [1/Nτ ] < 1 = E [1/N0].

Claudio Fontana (INRIA) Advances in Mathematics of Finance, Warsaw, June 10-15, 2013 12 / 18



Arbitrages on the time horizon [0, τ ]
Validity of NA1 in MG on [0, τ ]

As an immediate consequence, we get the following theorem:
Theorem

In the enlarged financial marketMG the following hold:
(i) NA1 holds on the time horizon [0, τ ];
(ii) NA and NFLVR fail on the time horizon [0, τ ].
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Validity of NA1 in MG on [0, τ ]

As an immediate consequence, we get the following theorem:
Theorem

In the enlarged financial marketMG the following hold:
(i) NA1 holds on the time horizon [0, τ ];
(ii) NA and NFLVR fail on the time horizon [0, τ ].

A characterization of local martingale deflators inMG on [0, τ ]:
Lemma
Let L = (Lt )t≥0 be a local martingale deflator in G on the time horizon [0, τ ].
Then L admits the following representation:

Lτ =
1

Nτ
exp

(
− k

N∗
· N∗

)(
1 + kτ1[[τ,∞)) + η1[[τ,∞))

)
where k = (kt )t≥0 is an F-predictable process such that kτ > −1 P-a.s. and η
is a Gτ -measurable random variable such that E [η|Gτ−] = 0.
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Arbitrages before time τ
Impossibility of arbitrages before time τ

Lemma
Let σ be an F-stopping time and L = (Lt )t≥0 a local martingale deflator in G on
the time horizon [0, σ ∧ τ ]. Then the following holds:

E
[
Lσ∧τ

]
= E

[
1− exp

(
−
∫ τ

0

1 + ks

N∗s
dN∗s

)
1{ν≤σ}

]
≤ 1

where ν := inf{t ≥ 0 : Nt = 0}. Furthermore, we have
∫ τ

0
1+ks
N∗s

dN∗s > 0 P-a.s.
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≤ 1

where ν := inf{t ≥ 0 : Nt = 0}. Furthermore, we have
∫ τ

0
1+ks
N∗s

dN∗s > 0 P-a.s.

Corollary

Let σ be an F-stopping time. The following are equivalent:
NFLVR holds in the enlarged financial marketMG on [0, σ ∧ τ ];
P (σ ≥ ν) = 0.

In particular, NFLVR holds in the enlarged financial market MG on the time
horizon [0, %] for every G-stopping time % with % < τ P-a.s.
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Arbitrages on the global time horizon
Failure of NA1in MG after time τ

The process S admits the following G-canonical decomposition:

St = S̃t +

∫ t∧τ

0

d〈S,N〉s
Ns

−
∫ t∨τ

τ

d〈S,N〉s
N∗∞ − Ns

= S̃t +

∫ t

0
d〈S̃, S̃〉s α̃s

where S̃ = (S̃t )t≥0 is a continuous G-local martingale with S̃0 = S0 = s and
the α̃t := 1{τ≥t}

ϕt
Nt
− 1{τ<t}

ϕt
N∗∞−Nt

, for all t ≥ 0.
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the α̃t := 1{τ≥t}

ϕt
Nt
− 1{τ<t}

ϕt
N∗∞−Nt

, for all t ≥ 0.

Proposition

The random variable ξ := Nτ − 1 yields an arbitrage of the first kind in G. As a
consequence, NA1 fails in the enlarged financial marketMG on [0,∞].
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Proposition

The random variable ξ := Nτ − 1 yields an arbitrage of the first kind in G. As a
consequence, NA1 fails in the enlarged financial marketMG on [0,∞].

Sketch of the proof:
Note that ξ ≥ 0 P-a.s. and P(ξ > 0) > 0 and let ϕ̂ := −1((τ,∞]] ∈ AG

0 .
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Nt
− 1{τ<t}

ϕt
N∗∞−Nt

, for all t ≥ 0.

Proposition

The random variable ξ := Nτ − 1 yields an arbitrage of the first kind in G. As a
consequence, NA1 fails in the enlarged financial marketMG on [0,∞].

Sketch of the proof:
Note that ξ ≥ 0 P-a.s. and P(ξ > 0) > 0 and let ϕ̂ := −1((τ,∞]] ∈ AG

0 .

⇒ The enlarged financial marketMG does not admit a local martingale defla-
tor in G on [0,∞].
⇒ As a consequence, NFLVR fails in the enlarged financial marketMG.
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Arbitrages strictly after τ
Validity of NA1 in MG on the time horizon [τ + ε,∞]

Proposition

For every ε > 0, the process εL = ( εLt )t≥0 defined by

εLt =
Nτ − N τ+ε

Nτ − N t ∨(τ+ε)
=

N∗∞ − N τ+ε

N∗∞ − N t ∨(τ+ε)
, for t ≥ 0,

is a local martingale deflator in G for the process τ+εS := S − Sτ+ε.
⇒ As a consequence, NA1 holds inMG on [τ + ε,∞].
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N∗∞ − N t ∨(τ+ε)
, for t ≥ 0,

is a local martingale deflator in G for the process τ+εS := S − Sτ+ε.
⇒ As a consequence, NA1 holds inMG on [τ + ε,∞].

However...
For every ε ∈ (0, δ), the strategy −ϕ/N∗∞ belongs to AG

1 for the process
τ+εS = S − Sτ+ε and realizes an arbitrage opportunity on [τ + ε,∞].

⇒ NA (and, hence, NFLVR as well) fails on [τ + ε,∞].
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Summing up

Theorem

In the enlarged financial marketMG the following hold:
(i) NA and NFLVR fail to hold on the time horizon [0, τ ];
(ii) NA1 holds on the time horizon [0, τ ];

(iii) NA1, NA and NFLVR fail to hold on the global time horizon [0,∞];
(iv) NA1 holds on the time horizon [τ + ε,∞].

⇒ Each of the above assertions can be proved:
by means of explicit constructions of arbitrage strategies;
by probabilistic arguments, using the multiplicative decomposition
P(τ > t |Ft ) = Nt/N∗t .
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