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Ly Vath V., Mnif M. and H. Pham.
A model of optimal portfolio selection under liquidity risk and
price impact.
Finance and Stochastics , 11, 51-90, 2007.

Control problem of portfolio optimization under liquidity risk
and price impact.

The value function is the unique continuous viscosity solution
of some HJB equation.

Numerical resolution of the impulse control problem under
state constraints based on a probabilistic method.
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Let (Ω,F ,P) be a probability space equipped with a filtration
(Ft)0≤t≤T supporting an one-dimensional Brownian motion
W on a finite horizon [0, T ], T < ∞.

We consider a continuous time financial market model. We
denote by Xt the amount of money and by Yt the number of
shares in the stock held by the investor at time t. The price
process of the risky asset is denoted by Pt.

We model the investor’s trades through an impulse control
strategy α = (τn, ζn)n≥1 , where the non-decreasing s.t. τ1 ≤
. . . τn ≤ . . . < T represent the intervention times and (ζn)n≥
are Fτn-measurable real valued r.v. and represent the number
of stock trade at these times.
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Dynamics of Y

Ys = Yτn , τn ≤ s < τn+1

Yτn+1 = Y
τ
−
n+1

+ ζn+1

Dynamics of P

dPs = Ps(bds+ σdWs), τn ≤ s < τn+1

Pτn+1 = eλζn+1P
τ
−
n+1

Dynamics of X

dXs = rXsds τn ≤ s < τn+1

Xτn+1 = X
τ
−
n+1
− ζn+1e

λζn+1P
τ
−
n+1
− k
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State process

Zα,t,zs = (Xα,t,x
s , Y α,t,ys , Pα,t,ps ) ∀s ∈ [t, T ]

The investor’s net wealth

L(z) = max[L0(z), L1(z)]1y≥0 + L0(z)1y<0

where
L0(z) = x+ ype−λy − k, and L1(z) = x.

Solvency region

S = {z = (x, y, p) ∈ R× R× R∗+ : L(z) > 0} ,
with

∂S = {z = (x, y, p) ∈ R× R× R∗+ : L(z) = 0} and S̄ = S ∪ ∂S.
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Value Function

v(t, z) = sup
α∈A(t,z)

E
[
e−r(T−t)UL(Zα,t,zT )

]
, (t, z) ∈ [0, T ]× S̄.

with
UL(z) = U(L(z)) = K

(
L(z)

)γ
, γ ∈]0, 1[.

HJB-QVI

min

[
−∂v
∂t
− Lv , v −Hv

]
= 0 sur [0, T )× S

Lϕ = rx
∂ϕ

∂x
+ bp

∂ϕ

∂p
+

1

2
σ2p2 ∂

2ϕ

∂p2
− rϕ,

Hϕ(t, z) = sup
ζ∈C(z)

ϕ(t,Γ(z, ζ)), (t, z) ∈ [0, T ]× S̄

Γ(z, ζ) = (x− ζpeλζ − k, y + ζ, peλζ).
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Theorem [Ly Vath, Mnif and Pham]

The value function v is continuous on [0, T )× S and is the unique (in
[0, T )× S) constrained viscosity solution to HJB-QVI satisfying the boundary
and terminal conditions :

lim
(t
′
,z
′
)→(t,z)

z′∈S

v(t′, z′) = 0, ∀(t, z) ∈ [0, T )×D0

lim
(t
′
,z
′
)→(T,z)

z′∈S

v(t′, z′) = max[UL(z),HUL(z)], ∀z ∈ S̄,

and
|v(t, z)| ≤ K

(
1 +

(
x+

p

λ

))γ
, ∀(t, z) ∈ [0, T )× S

where D0 = {(0, 0)} × R∗+ and K < ∞.

Gγ([0, T ]× S̄) =

{
v : [0, T ]× S̄ → R; sup

[0,T ]×S̄

| v(t, z) |
(1 + (x+ p

λ
))γ

<∞

}

M’hamed GAIGI AMaMeF and Banach Center Conference, Juin 2013 10



logo.eps

Motivation
Problem formulation
Discretized problem

Convergence of the numerical scheme
Numerical results

Plan

1 Motivation

2 Problem formulation

3 Discretized problem

4 Convergence of the numerical scheme

5 Numerical results

M’hamed GAIGI AMaMeF and Banach Center Conference, Juin 2013 11



logo.eps

Motivation
Problem formulation
Discretized problem

Convergence of the numerical scheme
Numerical results

A classical way for a numerical approximation

Finite difference scheme

∂ϕ

∂x
(x) ∼ ϕ(x+ δ)− ϕ(x− δ)

2δ

∂
2

ϕ

∂x2 (x) ∼ ϕ(x+ δ)− 2φ(x) + ϕ(x− δ)
δ2

ϕ(t, z) = max(£δϕ(t, z); sup
ζ∈Cδ(z)

ϕ(t,Γ(z, ζ))
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Discretization scheme

Sh(t, z, ψ, ϕ) :=


min

[
ψ − E[ϕ(t+ h, Z0,t,z

t+h )], ψ −Hϕ(t, z)
]
; t ∈ [0, T − h]

min
[
ψ − E[ϕ(T,Z0,t,z

T )], ψ −Hϕ(t, z)
]
; t ∈ (T − h, T )

min
[
ψ − UL(z), ψ −HUL(z)

]
; t = T

vh(T, z) = max
[
UL(z),HUL(z)

]
vh(ti, z) = max

[
E[vh(ti + h, Z0,ti,z

ti+h
)],Hvh(ti, z)

]
,

where h = T/m and i ∈ {0, ..,m− 1}.
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Localized domain

S̄loc = S̄ ∩ ([xmin, xmax]× [ymin, ymax]× [0, pmax])

R := min
(
| xmin |, | xmax |, | ymin |, | ymax |, | pmax |

)
.

Space grid

Zl = {z = (x, y, p) ∈ Xl × Yl × Pl; z ∈ S̄loc}
where Xl is the uniform grid on [xmin, xmax] of step xmax−xmin

l
and similarly

for Yl and Pl.

Grid of the admissible controls

CM,R(z) = {ζi = ζmin +
i

M
(ζmax − ζmin); 0 ≤ i ≤M/Γ(z, ζi) ∈ S̄loc}

where ζmin < ζmax ∈ R and M ∈ N∗ are fixed constants.
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Functional Quantization

EN,R[vh(t, Z0,s,z
t )] :=

N1∑
i1=1

..

Nd(N)∑
id(N)=1

Pi1..id(N)
vh(t, Z0,s,z

N,R (t)) ∀ s ≤ t

Z0,s,z
N,R (t) :=

(
x, y, proj[0,pmax](p exp

{
(b− σ2

2
)(t− s) + σWN

i1..id(N)
(t− s)

}
)
)

WN
i1..id(N)

(t) =

d(N)∑
n=1

√
λnxinen(t) =

d(N)∑
n=1

√
2T

π(n− 1
2
)
xin sin (

πt

T
(n− 1

2
))

The optimal grid (xin) and the associated weights Pi1..id(N)
are downloaded

from the website : http ://www.quantize.maths-fi.com/downloads.

M’hamed GAIGI AMaMeF and Banach Center Conference, Juin 2013 15
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H. Luschgya and G. Pages.
Functional quantization of Gaussian processes.
Journal of Functional Analysis, 196, 486–531, 2002.

Discretization scheme

vh(T, z) = max
[
UL(z), sup

ζ∈CM,R(z)
UL(Γ(z, ζ))

]
vh(ti, z) = max

[
EN,R[vh(ti+1, Z

0,ti,z
ti+1

)],HM,Rvh(ti, z)
]
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vn(t, z) := sup
α∈An(t,z)

E[UL(ZT )] (t, z) ∈ [0, T ]× S̄.

Iterative scheme

We define the sequence ϕn(t, z), solution of stopping time problems, as
follows :

ϕn+1(t, z) = sup
τ∈St,T

E[Hϕn(τ, Z0,t,z
τ )],

ϕ0(t, z) = v0(t, z),

and we show that
ϕn(t, z) = vn(t, z).

Theorem

vn (hence ϕn) converges towards v when n goes to +∞

M’hamed GAIGI AMaMeF and Banach Center Conference, Juin 2013 17
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Approximation scheme

vhn+1(T, z) = max
[
UL(z), sup

ζ∈CM,R(z)
UL(Γ(z, ζ))

]
vhn+1(ti, z) = max

[
EN,R[vhn+1(ti+1, Z

0,ti,z
ti+1

)],HM,Rvhn(ti, z)
]

for i = 0, ...,m− 1 ; z = (x, y, p) ∈ Zl and starting from

vh0 (t, z) = EN,R[UL(Z0,t,z
T )]
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Barles G. and P.E. Souganidis.
Convergence of approximation schemes for fully nonlinear
second order equations.
Asymptotic analysis, 4, 271-283, 1991.

Monotonicity + Stability + Consistency → Convergence

Convergence

For all (t, z) ∈ [0, T )× S we have that

lim
(t
′
,z
′
)→(t,z)

(h,M,N,R)→(0,+∞)

(t′,z′)∈Tm×Zl

vh,M,N,R(t′, z′) = v(t, z),

where vh,R,N,M is the solution of the discretized scheme and v is the solution
of the HJB-QVI.
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Monotonicity

∀ h > 0, (t, z) ∈ [0, T ]× S̄, g ∈ R and ϕ,ψ ∈ Gγ s.t. ϕ ≤ ψ we
have that

Sh,R,N,M (t, z, g, ϕ) ≥ Sh,R,N,M (t, z, g, ψ)

Stability

For all h > 0, there exists a unique solution
vh,R,N,Mn ∈ Gγ([0, T ]× S̄) to the discretized scheme and the

sequence (vh,R,N,Mn )h is uniformly bounded in Gγ([0, T ]× S̄) i.e.

there exists w ∈ Gγ([0, T ]× S̄) s.t. |vh,R,N,Mn | ≤ |w| for all h > 0.

M’hamed GAIGI AMaMeF and Banach Center Conference, Juin 2013 21



logo.eps

Motivation
Problem formulation
Discretized problem

Convergence of the numerical scheme
Numerical results

Monotonicity

∀ h > 0, (t, z) ∈ [0, T ]× S̄, g ∈ R and ϕ,ψ ∈ Gγ s.t. ϕ ≤ ψ we
have that

Sh,R,N,M (t, z, g, ϕ) ≥ Sh,R,N,M (t, z, g, ψ)

Stability

For all h > 0, there exists a unique solution
vh,R,N,Mn ∈ Gγ([0, T ]× S̄) to the discretized scheme and the

sequence (vh,R,N,Mn )h is uniformly bounded in Gγ([0, T ]× S̄) i.e.

there exists w ∈ Gγ([0, T ]× S̄) s.t. |vh,R,N,Mn | ≤ |w| for all h > 0.

M’hamed GAIGI AMaMeF and Banach Center Conference, Juin 2013 21



logo.eps

Motivation
Problem formulation
Discretized problem

Convergence of the numerical scheme
Numerical results

Consistency

(i) ∀(t, z) ∈ [0, T )× S̄ and Lipschitz function φ ∈ C1,2([0, T )× S̄) we have

lim sup
(h,t
′
,z
′
)→(0,t,z)

(M,N,R)→+∞

min

{
φ(t
′
, z
′
)− EN,R[φ(t

′
+ h, Z0,t

′
,z
′

t
′
+h

)]

h
, φ(t

′
, z
′
)−HM,Rφ(t

′
, z
′
)

}

≤ min
{(
− ∂φ

∂t
− Lφ

)
(t, z),

(
φ(t, z)−Hφ(t, z)

)}
and

lim inf
(h,t
′
,z
′
)→(0,t,z)

(M,N,R)→+∞

min

{
φ(t
′
, z
′
)− EN,R[φ(t

′
+ h, Z0,t

′
,z
′

t
′
+h

)]

h
, φ(t

′
, z
′
)−HM,Rφ(t

′
, z
′
)

}

≥ min
{(
− ∂φ

∂t
− Lφ

)
(t, z),

(
φ(t, z)−Hφ(t, z)

)}
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Consistency (sequel)

(ii) ∀z ∈ S̄ and Lipschitz function φ ∈ C1,2([0, T ]× S̄) we have

lim sup
(h,t
′
,z
′
)→(0,T,z)

(M,N,R)→+∞

min

{
φ(t
′
, z
′
)− UL(z

′
),
(
φ(t
′
, z
′
)−HM,RUL(z

′
)
)}

≤ min
{
φ(T, z)− UL(z),

(
φ(T, z)−HUL(z)

)}
and

lim inf
(h,t
′
,z
′
)→(0,T,z)

(M,N,R)→+∞

min

{
φ(t
′
, z
′
)− UL(z

′
),
(
φ(t
′
, z
′
)−HM,RUL(z

′
)
)}

≥ min
{
φ(T, z)− UL(z),

(
φ(T, z)−HUL(z)

)}
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Parameter Value Parameter Value

Maturity 1 year xmin -100
λ 5.00E(-07) xmax 200
γ 0.5 ymin -4
σ 0.25 ymax 20
b 0.1 pmin 0
k 1 pmax 50

l 20
m 40
M 100
N 96
ε̄ 10−3

Table 1 : Parameters
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Figure : Value Function for fixed P
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Figure : The Optimal Policy sliced in XY
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Figure : The Optimal Policy sliced in XY for λ = 5.00E(−03)
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Convergence in N

Figure : Relative error of the value function computed when N = 96
Vs. N = 200.
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Convergence in M

Figure : Relative error of the value function when M = 200 Vs.
M = 250.
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Convergence in R

Some values of the value function for two different values R1 and R2 of R
where R1 is chosen as in Table 1 and we choose R2 as follows :

R2 = min
(
| xmin = −257.90 |, | xmax = 342.10 |, | ymin = −16.63 |,

| ymax = 31.36 |, | pmax = 100 |
)

R R1 R2

v(t, z1) 20.0038 19.9966

v(t, z2) 24.5429 24.5340

Table 2 : Values of the value function for different values of R and z.
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Kyle A.
Continuous auctions and insider trading.
Econometrica , 53, 1315-1335, 1985.

Korn R.
Portfolio optimization with strictly positive transaction costs
and impulse control.
Finance and Stochastics, 2, 85-114, 1998.

Oksendal B. and A. Sulem.
Optimal consumption and portfolio with both fixed and
proportional transaction costs.
SIAM J. Cont. Optim., 40, 1765-1790, 2002.
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Ly Vath V., Mnif M. and H. Pham.
A model of optimal portfolio selection under liquidity risk and
price impact.
Finance and Stochastics , 11, 51-90, 2007.

H. Luschgya and G. Pages.
Functional quantization of Gaussian processes.
Journal of Functional Analysis, 196, 486–531, 2002.

Barles G. and P.E. Souganidis.
Convergence of approximation schemes for fully nonlinear
second order equations.
Asymptotic analysis, 4, 271-283, 1991.
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Thank you for your attention.
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