# Numerical approximation for a portfolio optimization problem under liquidity risk and costs.

presented by : M'HAMED GAIGI

Joint work with :

Vathana LY VATH, Mohamed MNIF and Salwa TOUMI







# Motivation

Problem formulation

Oiscretized problem

Onvergence of the numerical scheme

Oumerical results

- ∢ ≣ ▶



# Motivation

- Problem formulation
- Oiscretized problem
- Onvergence of the numerical scheme
- Oumerical results

A 3 b



# Motivation

- Problem formulation
- Oiscretized problem
- Onvergence of the numerical scheme
- Oumerical results

-



- Motivation
- Problem formulation
- Oiscretized problem
- Onvergence of the numerical scheme
- Output Numerical results



- Motivation
- Problem formulation
- Oiscretized problem
- Onvergence of the numerical scheme
- Sumerical results





- 2 Problem formulation
- 3 Discretized problem
- 4 Convergence of the numerical scheme
- 5 Numerical results

< E.

# Ly Vath V., Mnif M. and H. Pham.

A model of optimal portfolio selection under liquidity risk and price impact.

Finance and Stochastics, 11, 51-90, 2007.

4

- Ly Vath V., Mnif M. and H. Pham.
   A model of optimal portfolio selection under liquidity risk and price impact.
   *Finance and Stochastics*, 11, 51-90, 2007.
  - Control problem of portfolio optimization under liquidity risk and price impact.

- Ly Vath V., Mnif M. and H. Pham.
   A model of optimal portfolio selection under liquidity risk and price impact.
   *Finance and Stochastics*, 11, 51-90, 2007.
  - Control problem of portfolio optimization under liquidity risk and price impact.
  - The value function is the unique continuous viscosity solution of some HJB equation.

- Ly Vath V., Mnif M. and H. Pham.
   A model of optimal portfolio selection under liquidity risk and price impact.
   *Finance and Stochastics*, 11, 51-90, 2007.
  - Control problem of portfolio optimization under liquidity risk and price impact.
  - The value function is the unique continuous viscosity solution of some HJB equation.
  - Numerical resolution of the impulse control problem under state constraints based on a probabilistic method.





- 2 Problem formulation
- 3 Discretized problem
- 4 Convergence of the numerical scheme
- 5 Numerical results

< E.

・ロト ・回ト ・ヨト ・ヨト

 Let (Ω, F, P) be a probability space equipped with a filtration (F<sub>t</sub>)<sub>0≤t≤T</sub> supporting an one-dimensional Brownian motion W on a finite horizon [0, T], T < ∞.</li>

- Let (Ω, F, P) be a probability space equipped with a filtration (F<sub>t</sub>)<sub>0≤t≤T</sub> supporting an one-dimensional Brownian motion W on a finite horizon [0, T], T < ∞.</li>
- We consider a continuous time financial market model. We denote by  $X_t$  the amount of money and by  $Y_t$  the number of shares in the stock held by the investor at time t. The price process of the risky asset is denoted by  $P_t$ .

- Let (Ω, F, P) be a probability space equipped with a filtration (F<sub>t</sub>)<sub>0≤t≤T</sub> supporting an one-dimensional Brownian motion W on a finite horizon [0, T], T < ∞.</li>
- We consider a continuous time financial market model. We denote by  $X_t$  the amount of money and by  $Y_t$  the number of shares in the stock held by the investor at time t. The price process of the risky asset is denoted by  $P_t$ .
- We model the investor's trades through an impulse control strategy  $\alpha = (\tau_n, \zeta_n)_{n \ge 1}$ , where the non-decreasing s.t.  $\tau_1 \le \ldots \tau_n \le \ldots < T$  represent the intervention times and  $(\zeta_n)_{n \ge 1}$  are  $\mathcal{F}_{\tau_n}$ -measurable real valued r.v. and represent the number of stock trade at these times.

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Dynamics of Y

$$\begin{split} Y_s &= Y_{\tau_n}, \quad \tau_n \leq s < \tau_{n+1} \\ Y_{\tau_{n+1}} &= Y_{\tau_{n+1}^-} + \zeta_{n+1} \end{split}$$

<ロ> <同> <同> < 回> < 回>

#### Dynamics of Y

$$Y_s = Y_{\tau_n}, \quad \tau_n \le s < \tau_{n+1}$$
  
 $Y_{\tau_{n+1}} = Y_{\tau_{n+1}^-} + \zeta_{n+1}$ 

#### Dynamics of P

$$dP_s = P_s(bds + \sigma dW_s), \quad \tau_n \le s < \tau_{n+1}$$
$$P_{\tau_{n+1}} = e^{\lambda \zeta_{n+1}} P_{\tau_{n+1}^-}$$

<ロ> <同> <同> < 回> < 回>

#### Dynamics of Y

$$Y_s = Y_{\tau_n}, \quad \tau_n \le s < \tau_{n+1}$$
  
 $Y_{\tau_{n+1}} = Y_{\tau_{n+1}^-} + \zeta_{n+1}$ 

#### Dynamics of P

$$dP_s = P_s(bds + \sigma dW_s), \quad \tau_n \le s < \tau_{n+1}$$
$$P_{\tau_{n+1}} = e^{\lambda \zeta_{n+1}} P_{\tau_{n+1}^-}$$

#### Dynamics of X

$$dX_s = rX_s ds \quad \tau_n \le s < \tau_{n+1}$$
$$X_{\tau_{n+1}} = X_{\tau_{n+1}^-} - \zeta_{n+1} e^{\lambda \zeta_{n+1}} P_{\tau_{n+1}^-} - k$$

#### State process

$$Z_s^{\alpha,t,z} = (X_s^{\alpha,t,x}, Y_s^{\alpha,t,y}, P_s^{\alpha,t,p}) \quad \forall s \in [t,T]$$

<ロ> <同> <同> < 回> < 回>

#### State process

$$Z_s^{\alpha,t,z} = (X_s^{\alpha,t,x},Y_s^{\alpha,t,y},P_s^{\alpha,t,p}) \quad \forall s \in [t,T]$$

The investor's net wealth

$$L(z) = \max[L_0(z), L_1(z)]\mathbf{1}_{y \ge 0} + L_0(z)\mathbf{1}_{y < 0}$$

where

$$L_0(z) = x + y p e^{-\lambda y} - k$$
, and  $L_1(z) = x$ .

<ロ> <同> <同> < 回> < 回>

#### State process

$$Z_s^{\alpha,t,z} = (X_s^{\alpha,t,x},Y_s^{\alpha,t,y},P_s^{\alpha,t,p}) \quad \forall s \in [t,T]$$

The investor's net wealth

$$L(z) = \max[L_0(z), L_1(z)]\mathbf{1}_{y \ge 0} + L_0(z)\mathbf{1}_{y < 0}$$

where

$$L_0(z) = x + y p e^{-\lambda y} - k$$
, and  $L_1(z) = x$ .

#### Solvency region

$$S = \left\{ z = (x, y, p) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^*_+ : L(z) > 0 \right\},\$$

with

$$\partial S = \{z = (x, y, p) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^*_+ : L(z) = 0\} \text{ and } \bar{S} = S \cup \partial S.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

# Value Function

$$v(t,z) = \sup_{\alpha \in \mathcal{A}(t,z)} \mathbb{E}\left[e^{-r(T-t)}U_L(Z_T^{\alpha,t,z})\right], \quad (t,z) \in [0,T] \times \bar{S}.$$

with

$$U_L(z) = U(L(z)) = K(L(z))^{\gamma}, \quad \gamma \in ]0,1[.$$

<ロ> <同> <同> < 回> < 回>

# Value Function

$$v(t,z) = \sup_{\alpha \in \mathcal{A}(t,z)} \mathbb{E}\left[e^{-r(T-t)}U_L(Z_T^{\alpha,t,z})\right], \quad (t,z) \in [0,T] \times \bar{S}.$$

with

$$U_L(z) = U(L(z)) = K(L(z))^{\gamma}, \quad \gamma \in ]0,1[.$$

## HJB-QVI

$$\begin{split} \min\left[-\frac{\partial v}{\partial t} - \mathcal{L}v , v - \mathcal{H}v\right] &= 0 \quad sur \quad [0,T) \times S \\ \mathcal{L}\varphi &= rx\frac{\partial \varphi}{\partial x} + bp\frac{\partial \varphi}{\partial p} + \frac{1}{2}\sigma^2 p^2\frac{\partial^2 \varphi}{\partial p^2} - r\varphi, \\ \mathcal{H}\varphi(t,z) &= \sup_{\zeta \in \mathcal{C}(z)} \varphi(t,\Gamma(z,\zeta)), \quad (t,z) \in [0,T] \times \bar{S} \\ \Gamma(z,\zeta) &= (x - \zeta p e^{\lambda \zeta} - k, y + \zeta, p e^{\lambda \zeta}). \end{split}$$

200

#### Theorem [Ly Vath, Mnif and Pham]

The value function v is continuous on  $[0,T)\times S$  and is the unique (in  $[0,T)\times S$ ) constrained viscosity solution to HJB-QVI satisfying the boundary and terminal conditions :

$$\lim_{\substack{(t',z') \to (t,z) \\ z' \in S}} v(t',z') = 0, \quad \forall (t,z) \in [0,T) \times D_0$$

$$\lim_{\substack{(t',z')\to(T,z)\\z'\in S}} v(t',z') = \max[U_L(z),\mathcal{H}U_L(z)], \quad \forall z\in \bar{S},$$

and

$$v(t,z)| \le K \left(1 + \left(x + \frac{p}{\lambda}\right)\right)^{\gamma}, \quad \forall (t,z) \in [0,T) \times S$$

where  $D_0 = \{(0,0)\} \times \mathbb{R}^*_+$  and  $K < \infty$ .

$$\mathcal{G}_{\gamma}([0,T]\times\bar{S}) = \left\{ v: [0,T]\times\bar{S} \to \mathbb{R}; \sup_{[0,T]\times\bar{S}} \frac{|v(t,z)|}{(1+(x+\frac{p}{\lambda}))^{\gamma}} < \infty \right\}$$





- Problem formulation
- Oiscretized problem
- 4 Convergence of the numerical scheme
- 5 Numerical results

< E.

# A classical way for a numerical approximation

# Finite difference scheme

$$\frac{\partial \varphi}{\partial x}(x) \sim \frac{\varphi(x+\delta) - \varphi(x-\delta)}{2\delta}$$
$$\frac{\partial^2 \varphi}{\partial x^2}(x) \sim \frac{\varphi(x+\delta) - 2\phi(x) + \varphi(x-\delta)}{\delta^2}$$

- 4 同 🕨 - 4 目 🕨 - 4 目

э

# A classical way for a numerical approximation

# Finite difference scheme

$$\frac{\partial \varphi}{\partial x}(x) \sim \frac{\varphi(x+\delta) - \varphi(x-\delta)}{2\delta}$$
$$\frac{\partial^2 \varphi}{\partial x^2}(x) \sim \frac{\varphi(x+\delta) - 2\phi(x) + \varphi(x-\delta)}{\delta^2}$$

$$\varphi(t,z) = \max(\pounds_{\delta}\varphi(t,z); \sup_{\zeta \in \mathcal{C}_{\delta}(z)} \varphi(t,\Gamma(z,\zeta))$$

- 4 同 6 4 日 6 4 日 6

# Discretization scheme

$$S^{h}(t,z,\psi,\varphi) := \begin{cases} \min\left[\psi - \mathbb{E}[\varphi(t+h,Z_{t+h}^{0,t,z})], \psi - \mathcal{H}\varphi(t,z)\right]; t \in [0,T-h] \\ \min\left[\psi - \mathbb{E}[\varphi(T,Z_{T}^{0,t,z})], \psi - \mathcal{H}\varphi(t,z)\right]; t \in (T-h,T) \\ \min\left[\psi - U_{L}(z), \psi - \mathcal{H}U_{L}(z)\right]; t = T \end{cases}$$

<ロ> <同> <同> < 回> < 回>

э

# Discretization scheme

$$S^{h}(t,z,\psi,\varphi) := \begin{cases} \min\left[\psi - \mathbb{E}[\varphi(t+h,Z_{t+h}^{0,t,z})], \psi - \mathcal{H}\varphi(t,z)\right]; t \in [0,T-h] \\ \min\left[\psi - \mathbb{E}[\varphi(T,Z_{T}^{0,t,z})], \psi - \mathcal{H}\varphi(t,z)\right]; t \in (T-h,T) \\ \min\left[\psi - U_{L}(z), \psi - \mathcal{H}U_{L}(z)\right]; t = T \end{cases}$$

$$v^{h}(T,z) = \max\left[U_{L}(z), \mathcal{H}U_{L}(z)\right]$$
$$v^{h}(t_{i},z) = \max\left[\mathbb{E}[v^{h}(t_{i}+h, Z_{t_{i}+h}^{0,t_{i},z})], \mathcal{H}v^{h}(t_{i},z)\right],$$

where h = T/m and  $i \in \{0, .., m - 1\}$ .

#### Localized domain

$$\begin{split} \bar{S}_{loc} &= \bar{S} \cap \left( [x_{min}, x_{max}] \times [y_{min}, y_{max}] \times [0, p_{max}] \right) \\ R &:= \min \Big( \mid x_{min} \mid, \mid x_{max} \mid, \mid y_{min} \mid, \mid y_{max} \mid, \mid p_{max} \mid \Big). \end{split}$$

<ロ> <同> <同> < 回> < 回>

#### Localized domain

$$\begin{split} \bar{S}_{loc} &= \bar{S} \cap \left( [x_{min}, x_{max}] \times [y_{min}, y_{max}] \times [0, p_{max}] \right) \\ R &:= \min \Big( \mid x_{min} \mid, \mid x_{max} \mid, \mid y_{min} \mid, \mid y_{max} \mid, \mid p_{max} \mid \Big). \end{split}$$

#### Space grid

$$\mathbb{Z}_{l} = \{ z = (x, y, p) \in \mathbb{X}_{l} \times \mathbb{Y}_{l} \times \mathbb{P}_{l}; z \in \bar{S}_{loc} \}$$

where  $\mathbb{X}_l$  is the uniform grid on  $[x_{min}, x_{max}]$  of step  $\frac{x_{max} - x_{min}}{l}$  and similarly for  $\mathbb{Y}_l$  and  $\mathbb{P}_l$ .

(日) (同) (三) (三)

3

#### Localized domain

$$\begin{split} \bar{S}_{loc} &= \bar{S} \cap \left( [x_{min}, x_{max}] \times [y_{min}, y_{max}] \times [0, p_{max}] \right) \\ R &:= \min \Big( \mid x_{min} \mid, \mid x_{max} \mid, \mid y_{min} \mid, \mid y_{max} \mid, \mid p_{max} \mid \Big). \end{split}$$

#### Space grid

$$\mathbb{Z}_{l} = \{ z = (x, y, p) \in \mathbb{X}_{l} \times \mathbb{Y}_{l} \times \mathbb{P}_{l}; z \in \bar{S}_{loc} \}$$

where  $X_l$  is the uniform grid on  $[x_{min}, x_{max}]$  of step  $\frac{x_{max} - x_{min}}{l}$  and similarly for  $Y_l$  and  $\mathbb{P}_l$ .

#### Grid of the admissible controls

$$\mathcal{C}_{M,R}(z) = \{\zeta_i = \zeta_{min} + \frac{i}{M}(\zeta_{max} - \zeta_{min}); 0 \le i \le M/\Gamma(z,\zeta_i) \in \bar{S}_{loc}\}$$

where  $\zeta_{min} < \zeta_{max} \in \mathbb{R}$  and  $M \in \mathbb{N}^*$  are fixed constants.

14

#### **Functional Quantization**

$$\mathcal{E}^{N,R}[v^h(t, Z_t^{0,s,z})] := \sum_{i_1=1}^{N_1} \dots \sum_{i_{d(N)}=1}^{N_{d(N)}} \mathbb{P}_{i_1 \dots i_{d(N)}} v^h(t, Z_{N,R}^{0,s,z}(t)) \quad \forall \ s \le t$$

$$Z_{N,R}^{0,s,z}(t) := \left(x, y, proj_{[0,p_{max}]}(p \exp\left\{(b - \frac{\sigma^2}{2})(t - s) + \sigma W_{i_1..i_{d(N)}}^N(t - s)\right\})\right)$$
$$W_{i_1..i_{d(N)}}^N(t) = \sum_{n=1}^{d(N)} \sqrt{\lambda_n} x_{i_n} e_n(t) = \sum_{n=1}^{d(N)} \frac{\sqrt{2T}}{\pi(n - \frac{1}{2})} x_{i_n} \sin\left(\frac{\pi t}{T}(n - \frac{1}{2})\right)$$

<ロ> <同> <同> < 回> < 回>

#### **Functional Quantization**

$$\mathcal{E}^{N,R}[v^h(t, Z_t^{0,s,z})] := \sum_{i_1=1}^{N_1} \dots \sum_{i_{d(N)}=1}^{N_{d(N)}} \mathbb{P}_{i_1 \dots i_{d(N)}} v^h(t, Z_{N,R}^{0,s,z}(t)) \quad \forall \ s \le t$$

$$Z_{N,R}^{0,s,z}(t) := \left(x, y, proj_{[0,p_{max}]}(p\exp\left\{(b - \frac{\sigma^2}{2})(t - s) + \sigma W_{i_1..i_{d(N)}}^N(t - s)\right\})\right)$$
$$W_{i_1..i_{d(N)}}^N(t) = \sum_{n=1}^{d(N)} \sqrt{\lambda_n} x_{i_n} e_n(t) = \sum_{n=1}^{d(N)} \frac{\sqrt{2T}}{\pi(n - \frac{1}{2})} x_{i_n} \sin\left(\frac{\pi t}{T}(n - \frac{1}{2})\right)$$

The optimal grid  $(x_{i_n})$  and the associated weights  $\mathbb{P}_{i_1..i_{d(N)}}$  are downloaded from the website : http ://www.quantize.maths-fi.com/downloads.

・ロト ・同ト ・ヨト ・ヨト

# H. Luschgya and G. Pages. Functional quantization of Gaussian processes. Journal of Functional Analysis, 196, 486–531, 2002.

# H. Luschgya and G. Pages. Functional quantization of Gaussian processes. Journal of Functional Analysis, 196, 486–531, 2002.

#### Discretization scheme

$$v^{h}(T,z) = \max\left[U_{L}(z), \sup_{\zeta \in \mathcal{C}_{M,R}(z)} U_{L}(\Gamma(z,\zeta))\right]$$
$$v^{h}(t_{i},z) = \max\left[\mathcal{E}^{N,R}[v^{h}(t_{i+1}, Z^{0,t_{i},z}_{t_{i+1}})], \mathcal{H}^{M,R}v^{h}(t_{i},z)\right]$$

3

$$v_n(t,z) := \sup_{\alpha \in \mathcal{A}_n(t,z)} \mathbb{E}[U_L(Z_T)] \quad (t,z) \in [0,T] \times \bar{S}.$$

\*ロト \*部ト \*注ト \*注ト

$$v_n(t,z) := \sup_{\alpha \in \mathcal{A}_n(t,z)} \mathbb{E}[U_L(Z_T)] \quad (t,z) \in [0,T] \times \bar{S}.$$

#### Iterative scheme

We define the sequence  $\varphi_n(t,z),$  solution of stopping time problems, as follows :

$$\varphi_{n+1}(t,z) = \sup_{\tau \in \mathcal{S}_{t,T}} \mathbb{E}[\mathcal{H}\varphi_n(\tau, Z_{\tau}^{0,t,z})],$$
$$\varphi_0(t,z) = v_0(t,z),$$

and we show that

$$\varphi_n(t,z) = v_n(t,z).$$

イロト 不得 トイヨト イヨト 二日

$$v_n(t,z) := \sup_{\alpha \in \mathcal{A}_n(t,z)} \mathbb{E}[U_L(Z_T)] \quad (t,z) \in [0,T] \times \bar{S}.$$

#### Iterative scheme

We define the sequence  $\varphi_n(t,z),$  solution of stopping time problems, as follows :

$$\varphi_{n+1}(t,z) = \sup_{\tau \in \mathcal{S}_{t,T}} \mathbb{E}[\mathcal{H}\varphi_n(\tau, Z_{\tau}^{0,t,z})],$$
$$\varphi_0(t,z) = v_0(t,z),$$

and we show that

$$\varphi_n(t,z) = v_n(t,z).$$

#### Theorem

 $v_n$  (hence  $\varphi_n$ ) converges towards v when n goes to  $+\infty$ 

イロン 不同 とくほう イロン

3

# Approximation scheme

$$\begin{aligned} v_{n+1}^{h}(T,z) &= \max \left[ U_{L}(z), \sup_{\zeta \in \mathcal{C}_{M,R}(z)} U_{L}(\Gamma(z,\zeta)) \right] \\ v_{n+1}^{h}(t_{i},z) &= \max \left[ \mathcal{E}^{N,R}[v_{n+1}^{h}(t_{i+1}, Z_{t_{i+1}}^{0,t_{i},z})], \mathcal{H}^{M,R}v_{n}^{h}(t_{i},z) \right] \\ \text{for } i = 0, ..., m-1 \text{ ; } z = (x, y, p) \in \mathbb{Z}_{l} \text{ and starting from} \\ v_{0}^{h}(t,z) &= \mathcal{E}^{N,R}[U_{L}(Z_{T}^{0,t,z})] \end{aligned}$$

< ロ > < 同 > < 回 > < 回 >

э





- Problem formulation
- 3 Discretized problem
- 4 Convergence of the numerical scheme
- 5 Numerical results

# Barles G. and P.E. Souganidis.

Convergence of approximation schemes for fully nonlinear second order equations.

Asymptotic analysis, 4, 271-283, 1991.

 $\mathsf{Monotonicity} + \mathsf{Stability} + \mathsf{Consistency} \to \mathsf{Convergence}$ 

# Barles G. and P.E. Souganidis.

Convergence of approximation schemes for fully nonlinear second order equations.

Asymptotic analysis, 4, 271-283, 1991.

 $\mathsf{Monotonicity} + \mathsf{Stability} + \mathsf{Consistency} \to \mathsf{Convergence}$ 

#### Convergence

For all  $(t,z) \in [0,T) \times S$  we have that

$$\lim_{\substack{(t',z')\to(t,z)\\(h,M,N,R)\to(0,+\infty)\\(t',z')\in\mathbb{T}_m\times\mathbb{Z}_l}} v^{h,M,N,R}(t',z') = v(t,z),$$

where  $v^{h,R,N,M}$  is the solution of the discretized scheme and v is the solution of the HJB-QVI.

・ コ ト ・ 雪 ト ・ 日 ト

### Monotonicity

 $\forall \ h>0, \ (t,z)\in[0,T]\times\bar{S}, \ g\in\mathbb{R} \ \text{and} \ \varphi,\psi\in\mathcal{G}_{\gamma} \ \text{s.t.} \ \varphi\leq\psi \ \text{we have that}$ 

$$S^{h,R,N,M}(t,z,g,\varphi) \ge S^{h,R,N,M}(t,z,g,\psi)$$

**□ > < = > <** 

#### Monotonicity

 $\forall \ h>0, \ (t,z)\in[0,T]\times\bar{S}, \ g\in\mathbb{R} \ \text{and} \ \varphi,\psi\in\mathcal{G}_{\gamma} \ \text{s.t.} \ \varphi\leq\psi \ \text{we have that}$ 

$$S^{h,R,N,M}(t,z,g,\varphi) \ge S^{h,R,N,M}(t,z,g,\psi)$$

#### Stability

For all h > 0, there exists a unique solution  $v_n^{h,R,N,M} \in \mathcal{G}_{\gamma}([0,T] \times \overline{S})$  to the discretized scheme and the sequence  $(v_n^{h,R,N,M})_h$  is uniformly bounded in  $\mathcal{G}_{\gamma}([0,T] \times \overline{S})$  i.e. there exists  $w \in \mathcal{G}_{\gamma}([0,T] \times \overline{S})$  s.t.  $|v_n^{h,R,N,M}| \le |w|$  for all h > 0.

- 4 同 6 4 日 6 4 日 6

#### Consistency

 $(i) \; \forall (t,z) \in [0,T) \times \bar{S}$  and Lipschitz function  $\phi \in C^{1,2}([0,T) \times \bar{S})$  we have

$$\lim_{\substack{(h,t^{'},z^{'})\to(0,t,z)\\(M,N,R)\to+\infty}} \left\{ \frac{\phi(t^{'},z^{'}) - \mathcal{E}^{N,R}[\phi(t^{'}+h,Z^{0,t^{'},z^{'}})]}{h}, \phi(t^{'},z^{'}) - \mathcal{H}^{M,R}\phi(t^{'},z^{'}) \right\} \leq \min\left\{ \left( -\frac{\partial\phi}{\partial t} - \mathcal{L}\phi\right)(t,z), \left(\phi(t,z) - \mathcal{H}\phi(t,z)\right) \right\}$$

and

$$\lim_{\substack{(h,t^{'},z^{'})\to(0,t,z)\\(M,N,R)\to+\infty}} \left\{ \frac{\phi(t^{'},z^{'}) - \mathcal{E}^{N,R}[\phi(t^{'}+h,Z^{0,t^{'},z^{'}})]}{h}, \phi(t^{'},z^{'}) - \mathcal{H}^{M,R}\phi(t^{'},z^{'}) \right\} \\
\geq \min\left\{ \left( -\frac{\partial\phi}{\partial t} - \mathcal{L}\phi \right)(t,z), \left(\phi(t,z) - \mathcal{H}\phi(t,z)\right) \right\}$$

イロン イロン イヨン イヨン

# Consistency (sequel)

 $(ii) \; \forall z \in \bar{S} \text{ and Lipschitz function } \phi \in C^{1,2}([0,T] \times \bar{S}) \text{ we have }$ 

$$\lim_{\substack{h,t^{'},z^{'})\to(0,T,z)\\(M,N,R)\to+\infty}} \min\left\{\phi(t^{'},z^{'}) - U_{L}(z^{'}), \left(\phi(t^{'},z^{'}) - \mathcal{H}^{M,R}U_{L}(z^{'})\right)\right\} \\
\leq \min\left\{\phi(T,z) - U_{L}(z), \left(\phi(T,z) - \mathcal{H}U_{L}(z)\right)\right\}$$

and

$$\lim_{\substack{(h,t',z')\to(0,T,z)\\(M,N,R)\to+\infty}} \min\left\{\phi(t',z') - U_L(z'), \left(\phi(t',z') - \mathcal{H}^{M,R}U_L(z')\right)\right\} \\
\geq \min\left\{\phi(T,z) - U_L(z), \left(\phi(T,z) - \mathcal{H}U_L(z)\right)\right\}$$

- 4 同 6 4 日 6 4 日 6

э



# Motivation

- Problem formulation
- 3 Discretized problem
- 4 Convergence of the numerical scheme
- 5 Numerical results

- ∢ ≣ ▶

-

| Parameter | Value      | Parameter           | Value     |
|-----------|------------|---------------------|-----------|
| Maturity  | 1 year     | $x_{min}$           | -100      |
| $\lambda$ | 5.00E(-07) | $x_{max}$           | 200       |
| $\gamma$  | 0.5        | $y_{min}$           | -4        |
| $\sigma$  | 0.25       | $y_{max}$           | 20        |
| b         | 0.1        | $p_{min}$           | 0         |
| k         | 1          | $p_{max}$           | 50        |
|           |            | l                   | 20        |
|           |            | m                   | 40        |
|           |            | M                   | 100       |
|           |            | N                   | 96        |
|           |            | $\bar{\varepsilon}$ | $10^{-3}$ |

#### Table 1 : Parameters

<ロ> <同> <同> < 回> < 回>



FIGURE : Value Function for fixed P

(日)

э

3



FIGURE : The Optimal Policy sliced in XY

(日)

э



FIGURE : The Optimal Policy sliced in XY for  $\lambda = 5.00E(-03)$ 

Image: A image: A

э

# Convergence in N



FIGURE : Relative error of the value function computed when N = 96Vs. N = 200.

Problem formulation Convergence of the numerical scheme Numerical results

# Convergence in M



FIGURE : Relative error of the value function when M = 200 Vs. M = 250. → M'hamed GAIGI AMaMeF and Banach Center Conference, Juin 2013

э

# Convergence in R

Some values of the value function for two different values  $R_1$  and  $R_2$  of R where  $R_1$  is chosen as in Table 1 and we choose  $R_2$  as follows :

$$\begin{aligned} R_2 &= \min \left( \mid x_{min} = -257.90 \mid, \mid x_{max} = 342.10 \mid, \mid y_{min} = -16.63 \mid, \\ \mid y_{max} = 31.36 \mid, \mid p_{max} = 100 \mid \right) \end{aligned}$$

| R           | $R_1$   | $R_2$   |
|-------------|---------|---------|
| $v(t,z_1)$  | 20.0038 | 19.9966 |
| $v(t, z_2)$ | 24.5429 | 24.5340 |

Table 2 : Values of the value function for different values of R and z.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

# Kyle A.

Continuous auctions and insider trading. *Econometrica*, 53, 1315-1335, 1985.

Korn R.

Portfolio optimization with strictly positive transaction costs and impulse control.

Finance and Stochastics, 2, 85-114, 1998.

Oksendal B. and A. Sulem.

Optimal consumption and portfolio with both fixed and proportional transaction costs.

SIAM J. Cont. Optim., 40, 1765-1790, 2002.

# Ly Vath V., Mnif M. and H. Pham.

A model of optimal portfolio selection under liquidity risk and price impact.

Finance and Stochastics, 11, 51-90, 2007.

- H. Luschgya and G. Pages.
   Functional quantization of Gaussian processes.
   Journal of Functional Analysis, 196, 486–531, 2002.
- Barles G. and P.E. Souganidis.

Convergence of approximation schemes for fully nonlinear second order equations.

Asymptotic analysis, 4, 271-283, 1991.

### Thank you for your attention.