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In this talk we discuss the link between

free-boundary of continuous time, stochastic irreversible investment problems

and

the optional solution of a representation problem for optional processes
studied by Peter Bank and Nicole El Karoui (2004).

Such a link enables us

to obtain a new integral equation for the free-boundary which does not
require smooth-�t property or a priori continuity of the free-boundary to
be derived.
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A (Very Brief) Introduction to `Monotone Follower' Problems

Irreversible investment problems may be mathematically modeled as singular
stochastic control problems of the monotone follower type,

a stochastic control problem in which a given di�usion is controlled
additively by a nondecreasing process (the monotone follower).

A probabilistic treatment of monotone follower problems and their application
to Economics started with the early papers by

Karatzas (1981), Karatzas and Shreve (1984), El Karoui and Karatzas
(1991), among others.

By purely probabilistic arguments, Karatzas and Shreve in 1984 show that

the problem of optimally tracking a Brownian motion by a nondecreasing
process is equivalent to a suitable optimal stopping problem.
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A (Very Brief) Introduction to `Monotone Follower' Problems

Then, the optimal control policy may be characterized as follows:

The state space (t, x) is divided in two regions.

In the `waiting region' C: optimal to do nothing.

In the `action region' S: pro�table to exercise immediately the investment
option.

A monotone boundary splits these two regions. That is the free-boundary.

The optimal control acts like the local time of the (optimally controlled)
process at the boundary. It is the least e�ort to keep the controlled
di�usion in the closure of C.
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A (Very Brief) Introduction to `Monotone Follower' Problems

Later on, the equivalence between singular stochastic control problems and
optimal stopping has been established also for more complicated dynamics of
the controlled di�usion

Baldursson and Karatzas (1997), Boetius and Kohlmann (1998) and
Benth (2004), among others,

and irreversible investment problems have been widely studied in the economic
and mathematical literature

Kobila (1993), Dixit and Pindyck (1994), Øksendal (2000), Chiarolla and
Haussmann (2005 and 2009) and Pham (2006), among others.

In the last decade, many papers addressed optimal irreversible investment or
consumption problems by a stochastic Kuhn-Tucker approach and application
of the Bank-El Karoui representation problem

Bank and Riedel (2001), Bank (2005), Riedel and Su (2011), Steg (2012),
Chiarolla, F. (2012) or Chiarolla, F. and Riedel (2012).
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The Optimal Investment Problem

A �rm represents the productive sector of a stochastic, continuous time
economy over an in�nite time horizon.

complete probability space (Ω,F ,P);

exogenous Brownian motion {W (t), t ≥ 0};
{Ft , t ≥ 0}, the �ltration generated by W and augmented by P-null sets.

The uncertain status of the economy is modeled as a one-dimensional,
time-homogeneous, di�usion {X x(t), t ≥ 0} with state space I ⊆ R, unique
strong solution of the SDE{

dX x(t) = µ(X x(t))dt + σ(X x(t))dW (t)
X (0) = x ,

for some Borel functions µ : I 7→ R and σ : I 7→ (0,+∞) such that for every
x ∈ int(I) ∫ x+ε

x−ε

1 + |µ(y)|
σ2(y)

dy < +∞, for some ε > 0. (1)

Under (1), X x is regular and its scale and speed measures are well de�ned.
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The Optimal Investment Problem

The �rm's manager aims to increase the production capacity

C y,ν(t) = y + ν(t), C y,ν(0) = y ≥ 0,

by optimally choosing an irreversible investment plan ν ∈ So , where

So := {ν : Ω× R+ 7→ R+, nondecreasing, left-continuous,

adapted s.t. ν(0) = 0, P− a.s.}

is the non empty, convex set of irreversible investment processes.

The �rm

makes pro�t at rate π(x , c), when its own capacity is c and the status of
economy is x ;

discounts revenues and costs at constant rate r ≥ 0.
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The Optimal Investment Problem

The operating pro�t function π : R× R+ 7→ R+ is such that

Assumptions on π

The mapping c 7→ π(x , c) is strictly increasing and strictly concave with
continuous derivative πc(x , c) := ∂

∂c
π(x , c), satisfying the Inada conditions

lim
c→0

πc(x , c) =∞, lim
c→∞

πc(x , c) = 0.
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The Optimal Investment Problem

The �rm's optimal investment problem is then

V (x , y) := sup
ν∈So

Jx,y (ν), (2)

where the net pro�t functional Jx,y (ν) is de�ned as

Jx,y (ν) = E
{∫ ∞

0

e−rt π(X x(t),C y,ν(t))dt −
∫ ∞
0

e−rtdν(t)

}
.

That is a singular stochastic control problem!

Under further minor assumptions on π and X , existence and uniqueness of a
solution is a well known result (cf. Riedel and Su (2011)).
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The First-Order Conditions for Optimality

We take care of the irreversible investment problem (2) by means of a
stochastic �rst order conditions approach.

Let T denote the set of all Ft-stopping times τ ≥ 0 a.s.

We may associate to Jx,y (ν) its supergradient as the unique optional process
de�ned by

∇Jx,y (ν)(τ) := E
{∫ ∞

τ

e−rsπc(X x(s),C y,ν(s))ds
∣∣∣Fτ}− e−rτ ,

for any τ ∈ T .
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The First-Order Conditions for Optimality

Theorem

Under the Assumptions on π, a process ν∗ ∈ So is the unique optimal
investment strategy for problem (2) if and only if the following �rst order
conditions for optimality

∇Jx,y (ν∗)(τ) ≤ 0, a.s. for any τ ∈ T ,

E
{∫ ∞

0

∇Jx,y (ν∗)(t)dν∗(t)

}
= 0,

(3)

hold true.

The �rst order conditions are not binding at any time and so they cannot
be directly applied to determine the optimal control ν∗.

Nevertheless, ν∗ may be obtained in terms of the solution of a suitable
Bank-El Karoui's representation problem directly related to the FOCs.
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The Bank-El Karoui Representation Theorem

The Bank-El Karoui Representation Theorem (2004) states that, given

an optional process X = {X (t), t ∈ [0,T ]} of class (D),
lower-semicontinuous in expectation with X (T ) = 0,

a nonnegative optional random Borel measure µ(ω, dt),

f (ω, t, x) : Ω× [0,T ]× R 7→ R such that f (ω, t, ·) : R 7→ R is continuous,
strictly decreasing from +∞ to −∞, and the stochastic process
f (·, ·, x) : Ω× [0,T ] 7→ R is progressively measurable and integrable with
respect to dP⊗ µ(ω, dt),

then there exists an optional process ξ = {ξ(t), t ∈ [0,T ]} taking values in
R ∪ {−∞} such that for all τ ∈ T ,

f (t, sup
τ≤u<t

ξ(u))1(τ,T ](t) ∈ L1 (dP⊗ µ(ω, dt))

and

E
{ ∫

(τ,T ]

f (s, sup
τ≤u<s

ξ(u))µ(ds)
∣∣∣Fτ } = X (τ).
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The Bank-El Karoui Representation Theorem

Moreover, any progressively measurable, upper right-continuous solution ξ to
the representation problem, i.e. such that

ξ(t) = lim sup
s↓t

ξ(s), t ∈ [0,T ),

is uniquely determined up to optional sections on [0,T ) in the sense that

ξ(τ) = ess inf
τ<σ≤T

Ξτ,σ, τ ∈ [0,T ),

where Ξτ,σ is the unique (up to a P-null set) Fτ -measurable random variable
satisfying

E{X (τ)− X (σ)|Fτ} = E
{∫

(τ,σ]

f (t,Ξτ,σ)µ(dt)
∣∣∣Fτ}.
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The Bank-El Karoui Representation Theorem

In Bank-Föllmer (2003) it is shown that the representation problem is closely
linked to the solution of

stochastic optimization problems as Gittins Index Problems (e.g., cf. El
Karoui and Karatzas (1994));

optimal consumption choice problems with Hindy-Huang-Kreps utility
functional (cf. Bank and Riedel (2001));

parameter-dependent optimal stopping problems (see also
Bank-Baumgarten (2010)).

Moreover, it is also related to the solution of irreversible investment problems
as in

Bank (2005), Riedel and Su (2011), Steg (2012), Chiarolla, F. (2012) or
Chiarolla, F. and Riedel (2012).
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The Optimal Solution

Suitably applying the Bank-El Karoui's Representation Theorem we can show
that

Theorem

Under the Assumptions on π, the unique optimal irreversible investment
process is

ν∗(t) = ( sup
0≤s≤t

l∗(s)− y) ∨ 0, (4)

with l∗(t) the unique optional, positive, upper-right continuous solution to

E
{∫ ∞

τ

e−rsπc(X x(s), sup
τ≤u≤s

l∗(u))ds
∣∣∣Fτ} = e−rτ , τ ∈ T .

Proof

ν∗ of (4) satis�es the FOCs.
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Base Capacity and Free-Boundary

So far

The optimal policy is given in terms of the base capacity process l∗, a
desirable value of capacity.

If the current capacity at time t is below l∗(t), then it is optimal to reach
immediately that value; otherwise, no investment is optimal.

This optimal control strategy acts like as that of the original monotone
follower problems.

A link between l∗ and the free-boundary b of an associated optimal stopping
problem should exist!



Introduction The Optimal Investment Problem The Integral Equation for the Free-Boundary Examples Conclusions

Base Capacity and Free-Boundary

We show that

Theorem

Under our Assumptions on π, one has

l∗(t) = sup{y > 0 : v(X x(t), y) = 1},

where

v(x , y) := inf
τ≥0

E
{∫ τ

0

e−rsπc(X x(s), y)ds + e−rτ
}

is the value function of the optimal stopping problem naturally associated to
the investment one.

v is the optimal cost of not investing.
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Base Capacity and Free-Boundary

Since

Proposition

Under the Assumptions on π, the mapping y 7→ v(x , y) is decreasing for any
x ∈ I,

then

b(x) := sup{y > 0 : v(x , y) = 1}, x ∈ I,

is the boundary between the continuation region

C := {(x , y) ∈ I × (0,∞) : v(x , y) < 1}

and the stopping region

S := {(x , y) ∈ I × (0,∞) : v(x , y) = 1}.
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Base Capacity and Free-Boundary

It is now clear that

Theorem

Under our Assumptions on π, one has

l∗(t) = b(X x(t)).

Such result clari�es why in the literature one usually refers to l∗ as a
desirable value of capacity that the controller aims to maintain in a
`minimal way'.

The optimal investment ν∗ at time t is indeed the least e�ort needed to
re�ect the production capacity at the moving (random) boundary
l∗(t) = b(X x(t)); that is,

ν∗(t) = sup
0≤s≤t

(b(X x(s))− y) ∨ 0.
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Two intermediate (simple) results

Assume now that

x 7→ πc(x , c) is nondecreasing (if π is C 2, then π is supermodular)

Proposition

Under our Assumptions on π, x 7→ v(x , y) is nondecreasing for any y > 0.

Proposition

Under our Assumptions on π, the free-boundary b(·) between the continuation
region and the stopping region is nondecreasing for any x ∈ I.
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The Integral Equation for the Free-Boundary

We may now state our main result.

Theorem

Let the Assumptions on π hold. Denote by

G the in�nitesimal generator associated to X ;

ψr (x) the increasing solution to the ODE Gu = ru;

m(dx) and s(dx) the speed measure and the scale function measure,
respectively, associated to X ;

x and x the lower and upper endpoints of the state space I of X .

Then, the free-boundary b(·) is the unique nondecreasing positive solution to
the integral equation

ψr (x)

∫ x

x

(∫ z

x

πc(y , b(z))ψr (y)m(dy)

)
s(dz)

ψ2
r (z)

= 1.
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The Integral Equation for the Free-Boundary: the Proof

Since l∗ uniquely solves a backward stochastic equation and l∗(t) = b(X x(t)),
then, for any τ ∈ T ,

r = E
{∫ ∞

τ

re−r(s−τ)πc(X x(s), sup
τ≤u≤s

b(X x(u)))ds
∣∣∣Fτ}

= E
{∫ ∞

0

re−rtπc(X x(t + τ), b( sup
0≤u≤t

X x(u + τ)))dt
∣∣∣Fτ},

where in the second equality we have used the fact that b(·) is nondecreasing.

Now, by strong Markov property, the previous one amounts to �nd b(·) such
that

Ex

{∫ ∞
0

re−rtπc(X (t), b( sup
0≤u≤t

X (u)))dt

}
= r ;
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The Integral Equation for the Free-Boundary: the Proof

that is, such that

Ex

{
πc(X (τr ), b(M(τr )))

}
= r ,

where

M(t) := sup
0≤s≤t X (s)

τr independent exponentially distributed random time with parameter r .

But now for a one-dimensional regular di�usion X x (cf. Csáki et al. (1987))
one has

Px(X (τr ) ∈ dy ,M(τr ) ∈ dz) = r
ψr (x)ψr (y)

ψ2
r (z)

m(dy)s(dz), y ≤ z , x ≤ z ,

and this concludes the proof.
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A Remark

Our integral equation

follows immediately from the backward equation for l∗(t) = b(X x(t));

does not require smooth-�t property or a priori continuity of b(·) to be
applied;

may be analitically solved for some non-trivial di�usions X .
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The case of the 3-dimensional Bessel Process

X x(t) is a three-dimensional Bessel process; that is,

dX x(t) =
1

X x(t)
dt + dW (t), X x(0) = x > 0.

s(dx) = x−2dx , m(dx) = 2x2dx .

ψr (x) = sinh (
√
2rx)

x
.

Operating pro�t of Cobb-Douglas type: π(x , c) = xαcβ

α+β
for α, β ∈ (0, 1).
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The case of the 3-dimensional Bessel Process

Proposition

For any x > 0 one has

b(x) =

[(
α + β

2β

)
x2
ψ′r (x)

g(x)

]− 1
1−β

,

where ψ′r denotes the �rst derivative of the increasing function

ψr (x) = sinh (
√
2rx)

x
, and g(x) :=

∫ x

0
yα+1 sinh (

√
2ry)dy.



Introduction The Optimal Investment Problem The Integral Equation for the Free-Boundary Examples Conclusions

The case of the 3-dimensional Bessel Process
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Figura: A computer drawing of the free-boundary for α = β = r = 1

2
.
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The case of the CEV Process

X x(t) is a CEV process; that is,

dX x(t) = rX x(t)dt + σ(X x)1−γ(t)dW (t), X x(0) = x > 0,

for some r > 0, σ > 0 and γ ∈ (0, 1
2

].

m(dx) = 2

σ2x2(1−γ) e
r

γσ2
x2γ

dx , s(dx) = e
− r

γσ2
x2γ

dx ,

ψr (x) = x .

Operating pro�t of Cobb-Douglas type: π(x , c) = xαcβ

α+β
for α, β ∈ (0, 1).
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The case of the CEV Process

Proposition

For any x > 0 one has

b(x) =

[
2β

σ2(α + β)
g(x)e

− r

γσ2
x2γ
] 1
1−β

, (5)

with g(x) :=
∫ x

0
y2γ+α−1e

r

γσ2
y2γ

dy.
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The case of the CEV Process
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Figura: A computer drawing of the free-boundary for α = β = r = 1

2
and σ = 1.



Introduction The Optimal Investment Problem The Integral Equation for the Free-Boundary Examples Conclusions

The case of the CES Pro�t Function (non-separable)

Operating pro�t of CES type: π(x , c) =
(
x

1
n + c

1
n

)n
, n ≥ 2.

The free boundary is the solution of an algebraic equation of order n − 1.

Geometric Brownian motion: b(x) = Cnx , with Cn the unique positive
solution of

F2,1(−(n − 1), nθ, nθ + 1,−C
1
n
n ) = r , r > 1.

Bessel 3D: the free boundary b(·) is the unique positive, nondecreasing
solution of

n−1∑
k=1

αk(x)b−
k
n (x) = (r − 1)

∫ x

0

y sinh(
√
2ry)dy , x > 0, r > 1.

CEV of parameter γ ∈ (0, 1
2

]: the free boundary b(·) is the unique
positive, nondecreasing solution of

n−1∑
k=1

βk(x)b−
k
n (x) =

σ2

2r
[(r − 1)e

r

γσ2
z2γ

+ 1], x > 0, r > 1.
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Conclusions and Current Research

We have completely solved a general class of stochastic, continuous time
irreversible investment problems over an in�nite time horizon by means of
a generalized Kuhn-Tucker approach.

We have characterized their free-boundary in terms of the unique optional
solution of a suitable representation problem à la Bank-El Karoui.

Such identi�cation enabled us to obtain a new handy integral equation for
the free-boundary b(·).

Such integral equation does not require smooth-�t or a priori continuity of
b(·) to be applied.

What if we consider a bounded variation control problem?

Which is the connection between our integral equation and that one can
be derived from local time-space calculus à la Peskir (2005)?
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Grazie a tutti per l'attenzione
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