On an Integral Equation for the Free-Boundary of Stochastic, Irreversible Investment Problems

Giorgio Ferrari

Center for Mathematical Economics, Bielefeld University and Hausdorff Research Institute for Mathematics, Bonn

6th General AMaMeF and Banach Center Conference Warsaw, June 11, 2013

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

In this talk we discuss the link between

free-boundary of continuous time, stochastic irreversible investment problems

and

the optional solution of a representation problem for optional processes studied by Peter Bank and Nicole El Karoui (2004).

Such a link enables us

• to obtain a new integral equation for the free-boundary which does not require smooth-fit property or a priori continuity of the free-boundary to be derived.

ション ふゆ アメリア メリア しょうくしゃ

A (Very Brief) Introduction to 'Monotone Follower' Problems

Irreversible investment problems may be mathematically modeled as singular stochastic control problems of the **monotone follower** type,

• a stochastic control problem in which a given diffusion is controlled additively by a nondecreasing process (the monotone follower).

A probabilistic treatment of *monotone follower problems* and their application to Economics started with the early papers by

• Karatzas (1981), Karatzas and Shreve (1984), El Karoui and Karatzas (1991), among others.

By purely probabilistic arguments, Karatzas and Shreve in 1984 show that

• the problem of *optimally* tracking a Brownian motion by a nondecreasing process is equivalent to a suitable optimal stopping problem.

A (Very Brief) Introduction to 'Monotone Follower' Problems

Then, the optimal control policy may be characterized as follows:

- The state space (t, x) is divided in two regions.
- In the 'waiting region' \mathcal{C} : optimal to do nothing.
- In the 'action region' \mathcal{S} : profitable to exercise immediately the investment option.
- A monotone boundary splits these two regions. That is the *free-boundary*.
- The optimal control acts like the *local time* of the (optimally controlled) process at the boundary. It is the least effort to keep the controlled diffusion in the closure of C.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A (Very Brief) Introduction to 'Monotone Follower' Problems

Later on, the **equivalence** between singular stochastic control problems and optimal stopping has been established **also for more complicated dynamics of the controlled diffusion**

• Baldursson and Karatzas (1997), Boetius and Kohlmann (1998) and Benth (2004), among others,

and $\ensuremath{\text{irreversible investment problems}}$ have been widely studied in the economic and mathematical literature

• Kobila (1993), Dixit and Pindyck (1994), Øksendal (2000), Chiarolla and Haussmann (2005 and 2009) and Pham (2006), among others.

In the last decade, many papers addressed **optimal irreversible investment or consumption problems by a stochastic Kuhn-Tucker approach** and application of the Bank-El Karoui representation problem

• Bank and Riedel (2001), Bank (2005), Riedel and Su (2011), Steg (2012), Chiarolla, F. (2012) or Chiarolla, F. and Riedel (2012).

The Optimal Investment Problem

A firm represents the productive sector of a stochastic, continuous time economy over an infinite time horizon.

- complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$;
- exogenous Brownian motion $\{W(t), t \ge 0\};$
- $\{\mathcal{F}_t, t \geq 0\}$, the filtration generated by W and augmented by \mathbb{P} -null sets.

The uncertain status of the economy is modeled as a **one-dimensional**, **time-homogeneous**, **diffusion** $\{X^{*}(t), t \geq 0\}$ with state space $\mathcal{I} \subseteq \mathbb{R}$, unique strong solution of the SDE

$$\begin{cases} dX^{x}(t) = \mu(X^{x}(t))dt + \sigma(X^{x}(t))dW(t) \\ X(0) = x, \end{cases}$$

for some Borel functions $\mu : \mathcal{I} \mapsto \mathbb{R}$ and $\sigma : \mathcal{I} \mapsto (0, +\infty)$ such that for every $x \in int(\mathcal{I})$

$$\int_{x-\epsilon}^{x+\epsilon} \frac{1+|\mu(y)|}{\sigma^2(y)} \, dy < +\infty, \text{ for some } \epsilon > 0. \tag{1}$$

Under (1), X^{x} is regular and its scale and speed measures are well defined.

The Optimal Investment Problem

The firm's manager aims to increase the production capacity

$$C^{y,\nu}(t) = y + \nu(t), \qquad C^{y,\nu}(0) = y \ge 0,$$

by optimally choosing an irreversible investment plan $u \in \mathcal{S}_{o}$, where

$$\begin{split} \mathcal{S}_{o} &:= \{\nu: \Omega \times \mathbb{R}_{+} \mapsto \mathbb{R}_{+}, \text{ nondecreasing, left-continuous,} \\ \text{adapted s.t. } \nu(0) = 0, \ \mathbb{P}-\text{a.s.} \} \end{split}$$

is the non empty, convex set of irreversible investment processes.

The firm

 makes profit at rate π(x, c), when its own capacity is c and the status of economy is x;

• discounts revenues and costs at constant rate $r \ge 0$.

Conclusions

The Optimal Investment Problem

The operating profit function $\pi: \mathbb{R} \times \mathbb{R}_+ \mapsto \mathbb{R}_+$ is such that

Assumptions on π

The mapping $c \mapsto \pi(x, c)$ is strictly increasing and strictly concave with continuous derivative $\pi_c(x, c) := \frac{\partial}{\partial c} \pi(x, c)$, satisfying the Inada conditions

$$\lim_{c\to 0}\pi_c(x,c)=\infty, \qquad \lim_{c\to\infty}\pi_c(x,c)=0.$$

The Optimal Investment Problem

The firm's optimal investment problem is then

$$V(x,y) := \sup_{\nu \in S_{\mathbf{o}}} \mathcal{J}_{x,y}(\nu), \tag{2}$$

ション ふゆ アメリア メリア しょうくしゃ

Conclusions

where the net profit functional $\mathcal{J}_{x,y}(\nu)$ is defined as

$$\mathcal{J}_{x,y}(\nu) = \mathbb{E}\bigg\{\int_0^\infty e^{-rt} \pi(X^x(t), C^{y,\nu}(t))dt - \int_0^\infty e^{-rt} d\nu(t)\bigg\}.$$

That is a singular stochastic control problem!

Under further minor assumptions on π and X, existence and uniqueness of a solution is a well known result (cf. Riedel and Su (2011)).

ション ふゆ アメリア メリア しょうくしゃ

The First-Order Conditions for Optimality

We take care of the irreversible investment problem (2) by means of a **stochastic first order conditions approach**.

Let \mathcal{T} denote the set of all \mathcal{F}_t -stopping times $au \geq 0$ a.s.

We may associate to $\mathcal{J}_{x,y}(\nu)$ its supergradient as the unique optional process defined by

$$\nabla \mathcal{J}_{x,y}(\nu)(\tau) := \mathbb{E}\left\{ \int_{\tau}^{\infty} e^{-rs} \pi_{c}(X^{x}(s), C^{y,\nu}(s)) ds \Big| \mathcal{F}_{\tau} \right\} - e^{-r\tau},$$

for any $\tau \in \mathcal{T}$.

うして ふゆう ふほう ふほう うらつ

The First-Order Conditions for Optimality

Theorem

Under the Assumptions on π , a process $\nu^* \in S_o$ is the unique optimal investment strategy for problem (2) if and only if the following first order conditions for optimality

$$\begin{cases} \nabla \mathcal{J}_{x,y}(\nu^*)(\tau) \leq 0, \quad \text{a.s. for any } \tau \in \mathcal{T}, \\ \mathbb{E}\bigg\{\int_0^\infty \nabla \mathcal{J}_{x,y}(\nu^*)(t) d\nu^*(t)\bigg\} = 0, \end{cases}$$
(3)

hold true.

- The first order conditions are not binding at any time and so they cannot be directly applied to determine the optimal control ν^* .
- Nevertheless, ν* may be obtained in terms of the solution of a suitable Bank-El Karoui's representation problem directly related to the FOCs.

The Bank-El Karoui Representation Theorem

The Bank-El Karoui Representation Theorem (2004) states that, given

- an optional process $X = \{X(t), t \in [0, T]\}$ of class (D), lower-semicontinuous in expectation with X(T) = 0,
- a nonnegative optional random Borel measure $\mu(\omega, dt)$,
- $f(\omega, t, x) : \Omega \times [0, T] \times \mathbb{R} \mapsto \mathbb{R}$ such that $f(\omega, t, \cdot) : \mathbb{R} \mapsto \mathbb{R}$ is continuous, strictly decreasing from $+\infty$ to $-\infty$, and the stochastic process $f(\cdot, \cdot, x) : \Omega \times [0, T] \mapsto \mathbb{R}$ is progressively measurable and integrable with respect to $d\mathbb{P} \otimes \mu(\omega, dt)$,

then there exists an optional process $\xi = \{\xi(t), t \in [0, T]\}$ taking values in $\mathbb{R} \cup \{-\infty\}$ such that for all $\tau \in \mathcal{T}$,

$$f(t, \sup_{\tau \leq u < t} \xi(u)) \mathbb{1}_{(\tau, \tau]}(t) \in L^1(d\mathbb{P} \otimes \mu(\omega, dt))$$

and

$$\mathbb{E}\left\{\int_{(\tau,T]} f(s,\sup_{\tau\leq u< s}\xi(u))\,\mu(ds)\,\Big|\,\mathcal{F}_{\tau}\right\} = X(\tau).$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - 釣ぬび

The Bank-El Karoui Representation Theorem

Moreover, any progressively measurable, upper right-continuous solution ξ to the representation problem, i.e. such that

$$\xi(t) = \limsup_{s \downarrow t} \xi(s), \quad t \in [0, T),$$

is uniquely determined up to optional sections on $[0, \mathcal{T})$ in the sense that

$$\xi(\tau) = \operatorname*{essinf}_{\tau < \sigma \leq T} \Xi_{\tau,\sigma}, \qquad \tau \in [0,T),$$

where $\Xi_{\tau,\sigma}$ is the unique (up to a \mathbb{P} -null set) \mathcal{F}_{τ} -measurable random variable satisfying

$$\mathbb{E}\{X(au)-X(\sigma)|\mathcal{F}_{ au}\}=\mathbb{E}igg\{\int_{(au,\sigma]}f(t,\Xi_{ au,\sigma})\,\mu(dt)\Big|\mathcal{F}_{ au}igg\}.$$

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 → のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

The Bank-El Karoui Representation Theorem

In Bank-Föllmer (2003) it is shown that the representation problem is closely linked to the solution of

- stochastic optimization problems as Gittins Index Problems (e.g., cf. El Karoui and Karatzas (1994));
- optimal consumption choice problems with Hindy-Huang-Kreps utility functional (cf. Bank and Riedel (2001));
- parameter-dependent optimal stopping problems (see also Bank-Baumgarten (2010)).

Moreover, it is also related to the solution of irreversible investment problems as in

• Bank (2005), Riedel and Su (2011), Steg (2012), Chiarolla, F. (2012) or Chiarolla, F. and Riedel (2012).

The Optimal Solution

Suitably applying the $\mathsf{Bank}\text{-}\mathsf{E}|$ Karoui's Representation Theorem we can show that

Theorem

Under the Assumptions on π , the unique optimal irreversible investment process is

$$\nu^{*}(t) = (\sup_{0 \le s \le t} l^{*}(s) - y) \lor 0,$$
(4)

ション ふゆ アメリア メリア しょうくしゃ

with $l^{*}(t)$ the unique optional, positive, upper-right continuous solution to

$$\mathbb{E}\bigg\{\int_{\tau}^{\infty} e^{-rs}\pi_{c}(X^{x}(s),\sup_{\tau\leq u\leq s}l^{*}(u))ds\Big|\mathcal{F}_{\tau}\bigg\}=e^{-r\tau},\quad \tau\in\mathcal{T}.$$

Proof

 ν^* of (4) satisfies the FOCs.

So far

- The optimal policy is given in terms of the *base capacity process l**, a desirable value of capacity.
- If the current capacity at time t is below $l^*(t)$, then it is optimal to reach immediately that value; otherwise, no investment is optimal.
- This optimal control strategy acts like as that of the original monotone follower problems.

A link between l^* and the free-boundary b of an associated optimal stopping problem should exist!

ション ふゆ アメリア メリア しょうくしゃ

We show that

Theorem

Under our Assumptions on π , one has

$$l^*(t) = \sup\{y > 0 : v(X^*(t), y) = 1\},$$

where

$$v(x,y) := \inf_{\tau \ge 0} \mathbb{E}\bigg\{\int_0^\tau e^{-rs} \pi_c(X^x(s),y) ds + e^{-r\tau}\bigg\}$$

is the value function of the optimal stopping problem naturally associated to the investment one.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

v is the optimal cost of not investing.

Since

Proposition

Under the Assumptions on $\pi,$ the mapping $y\mapsto v(x,y)$ is decreasing for any $x\in\mathcal{I},$

then

$$b(x) := \sup\{y > 0 : v(x, y) = 1\}, \qquad x \in \mathcal{I},$$

is the boundary between the continuation region

$$\mathcal{C} := \{(x,y) \in \mathcal{I} \times (0,\infty) : v(x,y) < 1\}$$

and the stopping region

$$\mathcal{S} := \{(x,y) \in \mathcal{I} \times (0,\infty) : v(x,y) = 1\}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

It is now clear that

Theorem

Under our Assumptions on π , one has

 $l^*(t) = b(X^*(t)).$

- Such result clarifies why in the literature one usually refers to *I** as a *desirable value of capacity* that the controller aims to maintain in a 'minimal way'.
- The optimal investment ν^* at time t is indeed the least effort needed to reflect the production capacity at the moving (random) boundary $I^*(t) = b(X^x(t))$; that is,

$$\nu^*(t) = \sup_{0 \le s \le t} (b(X^x(s)) - y) \lor 0.$$

Conclusions

ション ふゆ アメリア メリア しょうくしゃ

Two intermediate (simple) results

Assume now that

• $x \mapsto \pi_c(x, c)$ is nondecreasing (if π is C^2 , then π is supermodular)

Proposition

Under our Assumptions on π , $x \mapsto v(x, y)$ is nondecreasing for any y > 0.

Proposition

Under our Assumptions on π , the free-boundary $b(\cdot)$ between the continuation region and the stopping region is nondecreasing for any $x \in \mathcal{I}$.

The Integral Equation for the Free-Boundary

We may now state our main result.

Theorem

Let the Assumptions on π hold. Denote by

- *G* the infinitesimal generator associated to X;
- $\psi_r(x)$ the increasing solution to the ODE $\mathcal{G}u = ru$;
- m(dx) and s(dx) the speed measure and the scale function measure, respectively, associated to X;
- \underline{x} and \overline{x} the lower and upper endpoints of the state space \mathcal{I} of X.

Then, the free-boundary $b(\cdot)$ is the unique nondecreasing positive solution to the integral equation

$$\psi_r(x)\int_x^{\overline{x}}\left(\int_{\underline{x}}^{\underline{x}}\pi_c(y,b(z))\psi_r(y)m(dy)\right)\frac{s(dz)}{\psi_r^2(z)}=1.$$

Conclusions

The Integral Equation for the Free-Boundary: the Proof

Since I^* uniquely solves a backward stochastic equation and $I^*(t) = b(X^*(t))$, then, for any $\tau \in \mathcal{T}$,

$$r = \mathbb{E}\left\{\int_{\tau}^{\infty} r e^{-r(s-\tau)} \pi_{c}(X^{x}(s), \sup_{\tau \leq u \leq s} b(X^{x}(u))) ds \Big| \mathcal{F}_{\tau}\right\}$$
$$= \mathbb{E}\left\{\int_{0}^{\infty} r e^{-rt} \pi_{c}(X^{x}(t+\tau), b(\sup_{0 \leq u \leq t} X^{x}(u+\tau))) dt \Big| \mathcal{F}_{\tau}\right\},$$

where in the second equality we have used the fact that $b(\cdot)$ is nondecreasing. Now, by strong Markov property, the previous one amounts to find $b(\cdot)$ such that

$$\mathbb{E}_{x}\left\{\int_{0}^{\infty} re^{-rt}\pi_{c}(X(t),b(\sup_{0\leq u\leq t}X(u)))dt\right\}=r$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

The Integral Equation for the Free-Boundary: the Proof

that is, such that

$$\mathbb{E}_{x}\left\{\pi_{c}(X(\tau_{r}),b(M(\tau_{r})))\right\}=r,$$

Conclusions

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

where

• $M(t) := \sup_{0 \le s \le t} X(s)$

• τ_r independent exponentially distributed random time with parameter r. But now for a one-dimensional regular diffusion X^x (cf. Csáki et al. (1987)) one has

$$\mathbb{P}_x(X(\tau_r) \in dy, M(\tau_r) \in dz) = r \frac{\psi_r(x)\psi_r(y)}{\psi_r^2(z)} m(dy) s(dz), \quad y \leq z, \ x \leq z,$$

and this concludes the proof.

A Remark

Our integral equation

- follows immediately from the backward equation for $l^*(t) = b(X^*(t))$;
- does not require smooth-fit property or a priori continuity of $b(\cdot)$ to be applied;

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• may be analitically solved for some non-trivial diffusions X.

The case of the 3-dimensional Bessel Process

• $X^{*}(t)$ is a three-dimensional Bessel process; that is,

$$dX^{x}(t) = \frac{1}{X^{x}(t)}dt + dW(t), \qquad X^{x}(0) = x > 0.$$

•
$$s(dx) = x^{-2} dx$$
, $m(dx) = 2x^2 dx$.

•
$$\psi_r(x) = \frac{\sinh(\sqrt{2r}x)}{x}$$

• Operating profit of Cobb-Douglas type: $\pi(x, c) = \frac{x^{\alpha}c^{\beta}}{\alpha+\beta}$ for $\alpha, \beta \in (0, 1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The case of the 3-dimensional Bessel Process

Proposition

For any x > 0 one has

$$b(x) = \left[\left(\frac{\alpha + \beta}{2\beta} \right) x^2 \frac{\psi'_r(x)}{g(x)} \right]^{-\frac{1}{1-\beta}},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where ψ'_r denotes the first derivative of the increasing function $\psi_r(x) = \frac{\sinh(\sqrt{2r}x)}{x}$, and $g(x) := \int_0^x y^{\alpha+1} \sinh(\sqrt{2r}y) dy$.

The case of the 3-dimensional Bessel Process

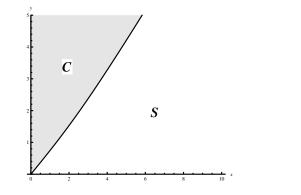


Figura: A computer drawing of the free-boundary for $\alpha = \beta = r = \frac{1}{2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The case of the CEV Process

• $X^{*}(t)$ is a CEV process; that is,

$$dX^{x}(t) = rX^{x}(t)dt + \sigma(X^{x})^{1-\gamma}(t)dW(t), \ X^{x}(0) = x > 0,$$

for some r > 0, $\sigma > 0$ and $\gamma \in (0, \frac{1}{2}]$.

- $m(dx) = \frac{2}{\sigma^2 x^{2(1-\gamma)}} e^{\frac{r}{\gamma \sigma^2} x^{2\gamma}} dx, \qquad s(dx) = e^{-\frac{r}{\gamma \sigma^2} x^{2\gamma}} dx,$
- $\psi_r(x) = x$.
- Operating profit of Cobb-Douglas type: $\pi(x, c) = \frac{x^{\alpha}c^{\beta}}{\alpha+\beta}$ for $\alpha, \beta \in (0, 1)$.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

The case of the CEV Process

Proposition

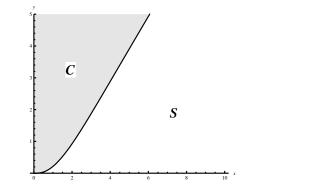
For any x > 0 one has

$$b(x) = \left[\frac{2\beta}{\sigma^2(\alpha+\beta)}g(x)e^{-\frac{r}{\gamma\sigma^2}x^{2\gamma}}\right]^{\frac{1}{1-\beta}},$$
(5)

with $g(x) := \int_0^x y^{2\gamma + \alpha - 1} e^{\frac{r}{\gamma \sigma^2} y^{2\gamma}} dy$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

The case of the CEV Process



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Figura: A computer drawing of the free-boundary for $\alpha = \beta = r = \frac{1}{2}$ and $\sigma = 1$.

The case of the CES Profit Function (non-separable)

Operating profit of CES type:
$$\pi(x,c) = \left(x^{\frac{1}{n}} + c^{\frac{1}{n}}\right)^n, \quad n \ge 2.$$

The free boundary is the solution of an algebraic equation of order n-1.

• Geometric Brownian motion: $b(x) = C_n x$, with C_n the unique positive solution of

$$F_{2,1}(-(n-1), n\theta, n\theta + 1, -C_n^{\frac{1}{n}}) = r, \quad r > 1.$$

• **Bessel 3D**: the free boundary $b(\cdot)$ is the unique positive, nondecreasing solution of

$$\sum_{k=1}^{n-1} \alpha_k(x) b^{-\frac{k}{n}}(x) = (r-1) \int_0^x y \sinh(\sqrt{2r}y) dy, \quad x > 0, \ r > 1.$$

CEV of parameter γ ∈ (0, ½]: the free boundary b(·) is the unique positive, nondecreasing solution of

$$\sum_{k=1}^{n-1} \beta_k(x) b^{-\frac{k}{n}}(x) = \frac{\sigma^2}{2r} [(r-1)e^{\frac{r}{\gamma\sigma^2}z^{2\gamma}} + 1], \quad x > 0, \ r > 1.$$

Conclusions and Current Research

- We have completely solved a general class of stochastic, continuous time irreversible investment problems over an infinite time horizon by means of a generalized Kuhn-Tucker approach.
- We have characterized their free-boundary in terms of the unique optional solution of a suitable representation problem à la Bank-El Karoui.
- Such identification enabled us to obtain a new handy integral equation for the free-boundary $b(\cdot)$.
- Such integral equation does not require smooth-fit or a priori continuity of $b(\cdot)$ to be applied.
- What if we consider a bounded variation control problem?
- Which is the connection between our integral equation and that one can be derived from local time-space calculus à la Peskir (2005)?

Introduction The Optimal Investment Problem The Integral Equation for the Free-Boundary Examples Conclusions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Grazie a tutti per l'attenzione

Essential References

- [1] P. Bank, N. El Karoui, A Stochastic Representation Theorem with Applications to Optimization and Obstacle Problems, The Annals of Probability, 32 (2004), pp. 1030–1067.
- [2]E. Csáki, A. Földes, P. Salminen, On the Joint Distribution of the Maximum and its Location for a Linear Diffusion, Annales de l'Institute Henri Poincaré, section B, tome 23, n°2 (1987), pp. 179–194.
- [3] G. Ferrari, On an Integral Equation for the Free-Boundary of Stochastic, Irreversible Investment Problems, Institute of Mathematical Economics Working paper no. 471 (2012), arXiv:1211.0412v1, under revision.
- [4] F. Riedel, X. Su, On Irreversible Investment, Finance and Stochastics 15(4) (2011), pp. 607–633.