Optimal Investment with Illiquid Assets

Advances in Mathematics of Finance - 6th AMaMeF and Banach Center Conference
Warsaw, June 10-15, 2013
Sascha Desmettre and Frank Thomas Seifried

Agenda

1. Financial Market Model
2. Optimal Investment Problem with Illiquid Assets

- Explain the differences to a classical investment problem

Solution by Duality Methods
Application: Investment with fixed Deposits

Agenda

1. Financial Market Model
2. Optimal Investment Problem with Illiquid Assets

- Explain the differences to a classical investment problem

Solution by Duality Methods
Application: Investment with fixed Deposits

Agenda

1. Financial Market Model
2. Optimal Investment Problem with Illiquid Assets

- Explain the differences to a classical investment problem

3. Solution by Duality Methods

Application: Investment with fixed Deposits

Agenda

1. Financial Market Model
2. Optimal Investment Problem with Illiquid Assets

- Explain the differences to a classical investment problem

3. Solution by Duality Methods
4. Application: Investment with fixed Deposits

Financial Market Model

■ Money market account $B=\left\{B_{t}\right\}$ with

$$
\begin{equation*}
\mathrm{dB}_{\mathrm{t}}=\mathrm{B}_{\mathrm{t}} \mathrm{r}_{\mathrm{t}} \mathrm{dt} \tag{1}
\end{equation*}
$$

with an \mathfrak{F}-progressively measurable interest rate process $r=\left\{r_{t}\right\}$

Risky asset $\mathrm{P}=\left\{\mathrm{P}_{\mathrm{t}}\right\}$, a stock or stock index with

$$
\begin{equation*}
\mathrm{dP}_{\mathrm{t}}=\mathrm{P}_{\mathrm{t}}\left[\left(\mathrm{r}_{\mathrm{t}}+\eta_{\mathrm{t}}\right) \mathrm{dt}+\sigma_{\mathrm{t}} \mathrm{dW}_{\mathrm{t}}\right] \tag{2}
\end{equation*}
$$

with \mathfrak{F}-progressively measurable excess return and volatility processes $\eta=\left\{\eta_{\mathrm{t}}\right\}$ and $\sigma=\left\{\sigma_{\mathrm{t}}\right\}$, W Wiener process.
The financial market is then $\mathfrak{F}_{\mathrm{T}}$-complete.
We denote the corresponding state-price deflator by $\mathrm{Z}=\left\{\mathrm{Z}_{\mathrm{t}}\right\}$,

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{t}} \triangleq \exp \left\{-\int_{0}^{\mathrm{t}} \theta_{\mathrm{s}} \mathrm{~d} \mathrm{~W}_{\mathrm{s}}-\int_{0}^{\mathrm{t}}\left(\mathrm{r}_{\mathrm{s}}+\frac{1}{2} \theta_{\mathrm{s}}^{2}\right) \mathrm{ds}\right\} \text { for } \mathrm{t} \in[0, \mathrm{~T}] \tag{3}
\end{equation*}
$$

where $\theta=\left\{\theta_{\mathrm{t}}\right\}, \theta_{\mathrm{t}} \triangleq \frac{\eta_{\mathrm{t}}}{\sigma_{\mathrm{t}}}$ is the market price of risk process.

Financial Market Model

- Money market account $\mathrm{B}=\left\{\mathrm{B}_{\mathrm{t}}\right\}$ with

$$
\begin{equation*}
\mathrm{dB}_{\mathrm{t}}=\mathrm{B}_{\mathrm{t}} \mathrm{r}_{\mathrm{t}} \mathrm{dt} \tag{1}
\end{equation*}
$$

with an \mathfrak{F}-progressively measurable interest rate process $r=\left\{r_{t}\right\}$

- Risky asset $\mathrm{P}=\left\{\mathrm{P}_{\mathrm{t}}\right\}$, a stock or stock index with

$$
\begin{equation*}
\mathrm{dP}_{\mathrm{t}}=\mathrm{P}_{\mathrm{t}}\left[\left(\mathrm{r}_{\mathrm{t}}+\eta_{\mathrm{t}}\right) \mathrm{dt}+\sigma_{\mathrm{t}} \mathrm{~d} \mathrm{~W}_{\mathrm{t}}\right] \tag{2}
\end{equation*}
$$

with \mathfrak{F}-progressively measurable excess return and volatility processes $\eta=\left\{\eta_{\mathrm{t}}\right\}$ and $\sigma=\left\{\sigma_{\mathrm{t}}\right\}$, W Wiener process.

Financial Market Model

- Money market account $\mathrm{B}=\left\{\mathrm{B}_{\mathrm{t}}\right\}$ with

$$
\begin{equation*}
\mathrm{dB}_{\mathrm{t}}=\mathrm{B}_{\mathrm{t}} \mathrm{r}_{\mathrm{t}} \mathrm{dt} \tag{1}
\end{equation*}
$$

with an \mathfrak{F}-progressively measurable interest rate process $r=\left\{r_{t}\right\}$

- Risky asset $\mathrm{P}=\left\{\mathrm{P}_{\mathrm{t}}\right\}$, a stock or stock index with

$$
\begin{equation*}
\mathrm{dP}_{\mathrm{t}}=\mathrm{P}_{\mathrm{t}}\left[\left(\mathrm{r}_{\mathrm{t}}+\eta_{\mathrm{t}}\right) \mathrm{dt}+\sigma_{\mathrm{t}} \mathrm{~d} \mathrm{~W}_{\mathrm{t}}\right] \tag{2}
\end{equation*}
$$

with \mathfrak{F}-progressively measurable excess return and volatility processes $\eta=\left\{\eta_{\mathrm{t}}\right\}$ and $\sigma=\left\{\sigma_{\mathrm{t}}\right\}$, W Wiener process.

- The financial market is then $\mathfrak{F}_{\mathrm{T}}$-complete.

$$
\mathrm{Z}_{\mathrm{t}} \triangleq \exp \left\{-\int_{0}^{\mathrm{t}} \theta_{\mathrm{s}} \mathrm{dW}_{\mathrm{s}}-\int_{0}^{\mathrm{t}}\left(\mathrm{r}_{\mathrm{s}}+\frac{1}{2} \theta_{\mathrm{s}}^{2}\right) \mathrm{ds}\right\} \text { for } \mathrm{t} \in[0, \mathrm{~T}]
$$

where $\theta=\left\{\theta_{\mathrm{t}}\right\}, \theta_{\mathrm{t}} \triangleq \frac{\eta_{\mathrm{t}}}{\sigma_{\mathrm{t}}}$ is the market price of risk process.

Financial Market Model

- Money market account $B=\left\{B_{t}\right\}$ with

$$
\begin{equation*}
\mathrm{dB}_{\mathrm{t}}=\mathrm{B}_{\mathrm{t}} \mathrm{r}_{\mathrm{t}} \mathrm{dt} \tag{1}
\end{equation*}
$$

with an \mathfrak{F}-progressively measurable interest rate process $r=\left\{r_{t}\right\}$

- Risky asset $\mathrm{P}=\left\{\mathrm{P}_{\mathrm{t}}\right\}$, a stock or stock index with

$$
\begin{equation*}
\mathrm{dP}_{\mathrm{t}}=\mathrm{P}_{\mathrm{t}}\left[\left(\mathrm{r}_{\mathrm{t}}+\eta_{\mathrm{t}}\right) \mathrm{dt}+\sigma_{\mathrm{t}} \mathrm{dW}_{\mathrm{t}}\right] \tag{2}
\end{equation*}
$$

with \mathfrak{F}-progressively measurable excess return and volatility processes $\eta=\left\{\eta_{\mathrm{t}}\right\}$ and $\sigma=\left\{\sigma_{\mathrm{t}}\right\}$, W Wiener process.

- The financial market is then $\mathfrak{F}_{\mathrm{T}}$-complete.
- We denote the corresponding state-price deflator by $\mathrm{Z}=\left\{\mathrm{Z}_{\mathrm{t}}\right\}$,

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{t}} \triangleq \exp \left\{-\int_{0}^{\mathrm{t}} \theta_{\mathrm{s}} \mathrm{dW} \mathrm{~s}_{\mathrm{s}}-\int_{0}^{\mathrm{t}}\left(\mathrm{r}_{\mathrm{s}}+\frac{1}{2} \theta_{\mathrm{s}}^{2}\right) \mathrm{ds}\right\} \text { for } \mathrm{t} \in[0, \mathrm{~T}] \tag{3}
\end{equation*}
$$

where $\theta=\left\{\theta_{\mathrm{t}}\right\}, \theta_{\mathrm{t}} \triangleq \frac{\eta_{\mathrm{t}}}{\sigma_{\mathrm{t}}}$ is the market price of risk process.

Illiquid Asset

Additionally there is an illiquid asset which offers
■ a random payoff F_{T} at time T and

- a continuous coupon payment at a rate $\delta=\left\{\delta_{\mathrm{t}}\right\}$.

We suppose that F_{T} admits the representation

$\rightarrow \mathrm{M}$ and N represent, respectively, the marketed (observable) and
non-marketed (unobservable) components of the risk inherent in F_{T}

Illiquid Asset

Additionally there is an illiquid asset which offers

- a random payoff F_{T} at time T and
- a continuous coupon payment at a rate $\delta=\left\{\delta_{\mathrm{t}}\right\}$.

We suppose that F_{T} admits the representation

$$
\mathrm{F}_{\mathrm{T}}(\omega)=\mathrm{F}(\mathrm{M}(\omega), \mathrm{N}(\omega)) \text { with }\left\{\begin{array}{l}
\mathrm{M} \mathfrak{F}_{\mathrm{T}} \text {-measurable }, \\
\mathrm{N} \text { independent of } \mathfrak{F}_{\mathrm{T}} .
\end{array}\right.
$$

$\rightarrow \mathrm{M}$ and N represent, respectively, the marketed (observable) and
non-marketed (unobservable) components of the risk inherent in F_{T}

Illiquid Asset

Additionally there is an illiquid asset which offers

- a random payoff F_{T} at time T and
- a continuous coupon payment at a rate $\delta=\left\{\delta_{\mathrm{t}}\right\}$.

We suppose that F_{T} admits the representation

$$
\mathrm{F}_{\mathrm{T}}(\omega)=\mathrm{F}(\mathrm{M}(\omega), \mathrm{N}(\omega)) \text { with }\left\{\begin{array}{l}
\mathrm{M} \mathfrak{F}_{\mathrm{T}} \text {-measurable }, \\
\mathrm{N} \text { independent of } \mathfrak{F}_{\mathrm{T}} .
\end{array}\right.
$$

$\rightarrow \mathrm{M}$ and N represent, respectively, the marketed (observable) and non-marketed (unobservable) components of the risk inherent in F_{T}.

- We assume that δ is \mathfrak{F}-progressively measurable.
- The illiquid asset is traded at a price of F_{0} at time 0 .
- The investor obtains a payment $\psi \mathrm{F}_{\mathrm{T}}$ at time T and receives a continuous coupon $\psi \delta_{\mathrm{t}} \mathrm{dt}$ between time t and time $\mathrm{t}+\mathrm{dt}$, if she decides to buy ψ illiquid assets at time 0 .
- The money market account and the stock are liquidly traded.
- But it is not possible to buy or sell the illiquid ascet after time 0 .
- Agreed contractually as in the case of a fixed deposit.
- Inherent illiquidity and intermediate usage of the illiquid investment (for instance, housing).
- Short positions in the illiquid asset are prohibited.
- We assume that δ is \mathfrak{F}-progressively measurable.
- The illiquid asset is traded at a price of F_{0} at time 0 .
- The investor obtains a payment $\psi \mathrm{F}_{\mathrm{T}}$ at time T and receives a continuous coupon $\psi \delta_{\mathrm{t}} \mathrm{dt}$ between time t and time $\mathrm{t}+\mathrm{dt}$, if she decides to buy ψ illiquid assets at time 0 .
- The money market account and the stock are liquidly traded.
- But it is not possible to buy or sell the illiquid asset after time 0 .
- Agreed contractually as in the case of a fixed deposit.
- Inherent illiquidity and intermediate usage of the illiquid investment (for instance, housing).
- Short positions in the illiquid asset are prohibited.
- We assume that δ is \mathfrak{F}-progressively measurable.
- The illiquid asset is traded at a price of F_{0} at time 0 .
- The investor obtains a payment $\psi \mathrm{F}_{\mathrm{T}}$ at time T and receives a continuous coupon $\psi \delta_{\mathrm{t}} \mathrm{dt}$ between time t and time $\mathrm{t}+\mathrm{dt}$, if she decides to buy ψ illiquid assets at time 0 .
- The money market account and the stock are liquidly traded.
- But it is not possible to buy or sell the illiquid asset after time 0 . Agreed contractually as in the case of a fixed deposit.
Inherent illiquidity and intermediate usage of the illiquid investment (for instance, housing).
- Short positions in the illiquid asset are prohibited.
- We assume that δ is \mathfrak{F}-progressively measurable.

■ The illiquid asset is traded at a price of F_{0} at time 0 .
■ The investor obtains a payment $\psi \mathrm{F}_{\mathrm{T}}$ at time T and receives a continuous coupon $\psi \delta_{\mathrm{t}} \mathrm{dt}$ between time t and time $\mathrm{t}+\mathrm{dt}$, if she decides to buy ψ illiquid assets at time 0 .

- The money market account and the stock are liquidly traded.

- Short positions in the illiquid asset are prohibited.
- We assume that δ is \mathfrak{F}-progressively measurable.
- The illiquid asset is traded at a price of F_{0} at time 0 .
- The investor obtains a payment $\psi \mathrm{F}_{\mathrm{T}}$ at time T and receives a continuous coupon $\psi \delta_{\mathrm{t}} \mathrm{dt}$ between time t and time $\mathrm{t}+\mathrm{dt}$, if she decides to buy ψ illiquid assets at time 0 .
- The money market account and the stock are liquidly traded.
- But it is not possible to buy or sell the illiquid asset after time 0 .
- Agreed contractually as in the case of a fixed deposit.
- Inherent illiquidity and intermediate usage of the illiquid investment (for instance, housing).
- Short positions in the illiquid asset are prohibited.
- We assume that δ is \mathfrak{F}-progressively measurable.
- The illiquid asset is traded at a price of F_{0} at time 0 .
- The investor obtains a payment $\psi \mathrm{F}_{\mathrm{T}}$ at time T and receives a continuous coupon $\psi \delta_{\mathrm{t}} \mathrm{dt}$ between time t and time $\mathrm{t}+\mathrm{dt}$, if she decides to buy ψ illiquid assets at time 0 .
- The money market account and the stock are liquidly traded.

■ But it is not possible to buy or sell the illiquid asset after time 0 .

- Agreed contractually as in the case of a fixed deposit.
- Inherent illiquidity and intermediate usage of the illiquid investment (for instance, housing).
- Short positions in the illiquid asset are prohibited.

Wealth Dynamics

- x_{0} : initial wealth
- $\psi \mathrm{F}_{0}$: time- 0 value of the illiquid investment
- Investor can borrow - a the interest rate r - against a fraction $\alpha \in[0,1)$ of the face value of her illquid wealth and against the total value of the outstanding coupon payments $\psi \mathbb{E}_{t}\left[\int_{t}^{T} Z_{s} \delta_{s} d s\right]$ at time t.
- In general, $\alpha<1$ and the divident stream is sold completely.
$\pi=\left\{\pi_{\mathrm{t}}\right\}$: fraction of liquid wealth invested into the stock at time t and c_{t} : investor's consumption rate. Investor's liquid wealth $\left\{\mathrm{X}_{\mathrm{t}}^{\psi, \pi, c}\right\}$ is

$$
\mathrm{dX}_{\mathrm{t}}^{\psi, \pi, \mathrm{c}}=\mathrm{X}_{\mathrm{t}}^{\psi, \pi, \mathrm{c}}\left[\left(\mathrm{r}_{\mathrm{t}}+\pi_{\mathrm{t}} \eta_{\mathrm{t}}\right) \mathrm{dt}+\pi_{\mathrm{t}} \sigma_{\mathrm{t}} \mathrm{~d} \mathrm{~W}_{\mathrm{t}}\right]-\mathrm{c}_{\mathrm{t}} \mathrm{dt},
$$

and $\bar{\delta} \triangleq \mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{Z}_{\mathrm{t}} \delta_{\mathrm{t}} \mathrm{dt}\right]$.

- Solvency requirement: $X, \pi, c \geq 0, t \in[0, T]$, a.s.

Wealth Dynamics

- x_{0} : initial wealth
- $\psi \mathrm{F}_{0}$: time- 0 value of the illiquid investment
- Investor can borrow - a the interest rate r - against a fraction $\alpha \in[0,1)$ of the face value of her illquid wealth and against the total value of the outstanding coupon payments $\psi \mathbb{E}_{\mathrm{t}}\left[\int_{+}^{\mathrm{T}} \mathrm{Z}_{\mathrm{s}} \delta_{\mathrm{s}} \mathrm{ds}\right]$ at time t.
- In general, $\alpha<1$ and the divident stream is sold completely. - $\pi=\left\{\pi_{\mathrm{t}}\right\}$: fraction of liquid wealth invested into the stock at time t and c_{t} : investor's consumption rate. Investor's liquid wealth $\left\{\mathrm{X}_{\mathrm{t}}^{\psi, \pi, c}\right\}$ is

$$
\mathrm{dX}_{\mathrm{t}}^{\psi, \pi, \mathrm{c}}=\mathrm{X}_{\mathrm{t}}^{\psi, \pi, \mathrm{c}}\left[\left(\mathrm{r}_{\mathrm{t}}+\pi_{\mathrm{t}} \eta_{\mathrm{t}}\right) \mathrm{dt}+\pi_{\mathrm{t}} \sigma_{\mathrm{t}} \mathrm{~d} \mathrm{~W}_{\mathrm{t}}\right]-\mathrm{c}_{\mathrm{t}} \mathrm{dt}
$$

and $\bar{\delta} \triangleq \mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{Z}_{\mathrm{t}} \delta_{\mathrm{t}} \mathrm{dt}\right]$.

- Solvency requirement: $X^{*, \pi, c} \geq 0, t \in[0, T]$, a.s.

Wealth Dynamics

- x_{0} : initial wealth
- $\psi \mathrm{F}_{0}$: time-0 value of the illiquid investment
- Investor can borrow - a the interest rate r-against a fraction $\alpha \in[0,1)$ of the face value of her illquid wealth and against the total value of the outstanding coupon payments $\psi \mathbb{E}_{\mathrm{t}}\left[\int_{\mathrm{t}}^{\mathrm{T}} \mathrm{Z}_{\mathrm{s}} \delta_{\mathrm{s}} \mathrm{ds}\right]$ at time t.
and $\bar{\delta} \triangleq \mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{Z}_{\mathrm{t}} \delta_{\mathrm{t}} \mathrm{dt}\right]$.
- Solvency requirement: $X^{\psi, \pi, c} \geq 0, t \in[0, T]$, a.s.

Wealth Dynamics

- x_{0} : initial wealth
- $\psi \mathrm{F}_{0}$: time-0 value of the illiquid investment
- Investor can borrow - a the interest rate r-against a fraction $\alpha \in[0,1)$ of the face value of her illquid wealth and against the total value of the outstanding coupon payments $\psi \mathbb{E}_{\mathrm{t}}\left[\int_{\mathrm{t}}^{\mathrm{T}} \mathrm{Z}_{\mathrm{s}} \delta_{\mathrm{s}} \mathrm{ds}\right]$ at time t .
- In general, $\alpha<1$ and the divident stream is sold completely.
and $\bar{\delta} \triangleq \mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{Z}_{\mathrm{t}} \delta_{\mathrm{t}} \mathrm{dt}\right]$.
- Solvency requirement: $X^{\mu, \pi, c} \geq 0, t \in[0, T]$, a.s.

Wealth Dynamics

- x_{0} : initial wealth
- $\psi \mathrm{F}_{0}$: time-0 value of the illiquid investment
- Investor can borrow - a the interest rate r - against a fraction $\alpha \in[0,1)$ of the face value of her illquid wealth and against the total value of the outstanding coupon payments $\psi \mathbb{E}_{\mathrm{t}}\left[\int_{\mathrm{t}}^{\mathrm{T}} \mathrm{Z}_{\mathrm{s}} \delta_{\mathrm{s}} \mathrm{ds}\right]$ at time t .
- In general, $\alpha<1$ and the divident stream is sold completely.
- $\pi=\left\{\pi_{\mathrm{t}}\right\}$: fraction of liquid wealth invested into the stock at time t and c_{t} : investor's consumption rate. Investor's liquid wealth $\left\{\mathrm{X}_{\mathrm{t}}^{\psi, \pi, \mathrm{c}}\right\}$ is

$$
\begin{gathered}
\mathrm{dX}_{\mathrm{t}}^{\psi, \pi, \mathrm{c}}=\mathrm{X}_{\mathrm{t}}^{\psi, \pi, \mathrm{c}}\left[\left(\mathrm{r}_{\mathrm{t}}+\pi_{\mathrm{t}} \eta_{\mathrm{t}}\right) \mathrm{dt}+\pi_{\mathrm{t}} \sigma_{\mathrm{t}} \mathrm{~d} \mathrm{~W}_{\mathrm{t}}\right]-\mathrm{c}_{\mathrm{t}} \mathrm{dt}, \\
\mathrm{X}_{0}^{\psi, \pi, \mathrm{c}}=\mathrm{x}_{0}-\psi \mathrm{F}_{0}+\alpha \psi \mathrm{F}_{0}+\psi \mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{Z}_{\mathrm{t}} \delta_{\mathrm{t}} \mathrm{dt}\right]=\mathrm{x}_{0}-\psi\left[(1-\alpha) \mathrm{F}_{0}-\bar{\delta}\right],
\end{gathered}
$$

$$
\text { and } \bar{\delta} \triangleq \mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{Z}_{\mathrm{t}} \delta_{\mathrm{t}} \mathrm{dt}\right] .
$$

Wealth Dynamics

- x_{0} : initial wealth
- $\psi \mathrm{F}_{0}$: time-0 value of the illiquid investment
- Investor can borrow - a the interest rate r - against a fraction $\alpha \in[0,1)$ of the face value of her illquid wealth and against the total value of the outstanding coupon payments $\psi \mathbb{E}_{\mathrm{t}}\left[\int_{\mathrm{t}}^{\mathrm{T}} \mathrm{Z}_{\mathrm{s}} \delta_{\mathrm{s}} \mathrm{ds}\right]$ at time t .
- In general, $\alpha<1$ and the divident stream is sold completely.
- $\pi=\left\{\pi_{\mathrm{t}}\right\}$: fraction of liquid wealth invested into the stock at time t and c_{t} : investor's consumption rate. Investor's liquid wealth $\left\{\mathrm{X}_{\mathrm{t}}^{\psi, \pi, \mathrm{c}}\right\}$ is

$$
\begin{gathered}
\mathrm{dX}_{\mathrm{t}}^{\psi, \pi, \mathrm{c}}=\mathrm{X}_{\mathrm{t}}^{\psi, \pi, \mathrm{c}}\left[\left(\mathrm{r}_{\mathrm{t}}+\pi_{\mathrm{t}} \eta_{\mathrm{t}}\right) \mathrm{dt}+\pi_{\mathrm{t}} \sigma_{\mathrm{t}} \mathrm{dW} \mathrm{~W}_{\mathrm{t}}\right]-\mathrm{c}_{\mathrm{t}} \mathrm{dt}, \\
\mathrm{X}_{0}^{\psi, \pi, \mathrm{c}}=\mathrm{x}_{0}-\psi \mathrm{F}_{0}+\alpha \psi \mathrm{F}_{0}+\psi \mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{Z}_{\mathrm{t}} \delta_{\mathrm{t}} \mathrm{dt}\right]=\mathrm{x}_{0}-\psi\left[(1-\alpha) \mathrm{F}_{0}-\bar{\delta}\right],
\end{gathered}
$$

and $\bar{\delta} \triangleq \mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{Z}_{\mathrm{t}} \delta_{\mathrm{t}} \mathrm{dt}\right]$.

- Solvency requirement: $\mathrm{X}_{\mathrm{t}}^{\psi, \pi, \mathrm{c}} \geq 0, \mathrm{t} \in[0, \mathrm{~T}]$, a.s.

Optimal Portfolio Problem

$\mathcal{A}\left(\mathrm{x}_{0}\right)$: Class of admissible strategies (ψ, π, c) for initial wealth $\mathrm{x}_{0}>0$. In particular, we must have $\psi \leq \psi_{\max } \triangleq \frac{\mathrm{x}_{0}}{(1-\alpha) \mathrm{F}_{0}-\bar{\delta}}\left(\Rightarrow \mathrm{X}_{0}^{\psi, \pi, \mathrm{c}} \geq 0\right)$.

Note that by choosing $u_{t}=0$ for all $t \in[0, T]$ we obtain the corresponding

Optimal Portfolio Problem

$\mathcal{A}\left(\mathrm{x}_{0}\right)$: Class of admissible strategies (ψ, π, c) for initial wealth $\mathrm{x}_{0}>0$. In particular, we must have $\psi \leq \psi_{\max } \triangleq \frac{\mathrm{x}_{0}}{(1-\alpha) \mathrm{F}_{0}-\bar{\delta}}\left(\Rightarrow \mathrm{X}_{0}^{\psi, \pi, \mathrm{c}} \geq 0\right)$. The investor's total terminal wealth is then given by

$$
\mathrm{X}_{\mathrm{T}}^{\psi, \pi, \mathrm{c}}+\psi \mathrm{F}_{\mathrm{T}}-\alpha \psi \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}} \mathrm{r}_{\mathrm{s}} \mathrm{ds}}=\mathrm{X}_{\mathrm{T}}^{\psi, \pi, \mathrm{c}}+\psi\left(\mathrm{F}_{\mathrm{T}}-\alpha \mathrm{F}_{0} \int^{\int_{0}^{\mathrm{T}} \mathrm{r}_{\mathrm{s}} \mathrm{ds}}\right) .
$$

Optimal Portfolio Problem

$\mathcal{A}\left(\mathrm{x}_{0}\right)$: Class of admissible strategies (ψ, π, c) for initial wealth $\mathrm{x}_{0}>0$. In particular, we must have $\psi \leq \psi_{\max } \triangleq \frac{\mathrm{x}_{0}}{(1-\alpha) \mathrm{F}_{0}-\bar{\delta}}\left(\Rightarrow \mathrm{X}_{0}^{\psi, \pi, \mathrm{c}} \geq 0\right)$. The investor's total terminal wealth is then given by

$$
\mathrm{X}_{\mathrm{T}}^{\psi, \pi, \mathrm{c}}+\psi \mathrm{F}_{\mathrm{T}}-\alpha \psi \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}} \mathrm{r}_{\mathrm{s}} \mathrm{ds}}=\mathrm{X}_{\mathrm{T}}^{\psi, \pi, \mathrm{c}}+\psi\left(\mathrm{F}_{\mathrm{T}}-\alpha \mathrm{F}_{0} \int^{\mathrm{e}_{0}^{\mathrm{T}} \mathrm{r}_{\mathrm{s}} \mathrm{ds}}\right) .
$$

Optimal Portfolio Problem with Illiquid Assets

$$
\begin{equation*}
\max _{(\psi, \pi, \mathrm{c}) \in \mathcal{A}\left(\mathrm{x}_{0}\right)} \mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\mathrm{c}_{\mathrm{t}}\right) \mathrm{dt}+\mathrm{u}\left(\mathrm{X}_{\mathrm{T}}^{\psi, \pi, \mathrm{c}}+\psi\left(\mathrm{F}_{\mathrm{T}}-\alpha \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}} \mathrm{r}_{\mathrm{s}} \mathrm{ds}}\right)\right)\right] \tag{P}
\end{equation*}
$$

Note that by choosing $u_{t}=0$ for all $t \in[0, T]$ we obtain the corresponding optimal terminal wealth problem.

Optimal Investment with a Given Fixed Deposit

In the following, we fix the investment $\psi \in\left[0, \psi_{\text {max }}\right]$ into illiquid assets. The portfolio problem (P) rewrites as

$$
\max _{(\pi, \mathrm{c})} \mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\mathrm{c}_{\mathrm{t}}\right) \mathrm{dt}+\overline{\mathrm{u}}\left(\overline{\mathrm{X}}_{\mathrm{T}}^{\pi, \mathrm{c}}\right)\right] \text { with }(\psi, \pi, \mathrm{c}) \in \mathcal{A}\left(\mathrm{x}_{0}\right) .
$$

Here the random utility function $\overline{\mathrm{u}}_{\omega}:(0, \infty) \rightarrow \mathbb{R}$ is given by
and the liquid wealth $\overline{\mathrm{X}}^{\pi, c}=\left\{\overline{\mathrm{X}}_{\mathrm{t}}^{\pi, c}\right\}$ satisfies

$$
\begin{aligned}
& =\overline{\mathrm{X}}_{\mathrm{t}}^{\pi, \mathrm{c}}\left[\left(\mathrm{r}_{\mathrm{t}}+\pi_{\mathrm{t}} \eta_{\mathrm{t}}\right) \mathrm{dt}+\pi_{\mathrm{t}} \sigma_{\mathrm{t}} \mathrm{dW} \mathrm{t}\right]-\mathrm{c}_{\mathrm{t}} \mathrm{dt}, \\
& =\mathrm{x}_{0}-\psi\left[(1-\alpha) \mathrm{F}_{0}-\bar{\delta}\right], \bar{\delta} \triangleq \mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{Z}_{\mathrm{t}} \delta_{\mathrm{t}} \mathrm{dt}\right] .
\end{aligned}
$$

Optimal Investment with a Given Fixed Deposit

In the following, we fix the investment $\psi \in\left[0, \psi_{\max }\right]$ into illiquid assets. The portfolio problem (P) rewrites as

$$
\max _{(\pi, \mathrm{c})} \mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\mathrm{c}_{\mathrm{t}}\right) \mathrm{dt}+\overline{\mathrm{u}}\left(\overline{\mathrm{X}}_{\mathrm{T}}^{\pi, \mathrm{c}}\right)\right] \text { with }(\psi, \pi, \mathrm{c}) \in \mathcal{A}\left(\mathrm{x}_{0}\right) .
$$

Here the random utility function $\overline{\mathrm{u}}_{\omega}:(0, \infty) \rightarrow \mathbb{R}$ is given by

$$
\overline{\mathrm{u}}_{\omega}(\overline{\mathrm{x}}) \triangleq \mathrm{u}\left(\overline{\mathrm{x}}+\psi\left(\mathrm{F}_{\mathrm{T}}(\omega)-\alpha \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}} \mathrm{r}_{\mathrm{s}} \mathrm{ds}}\right)\right) \text { for } \overline{\mathrm{x}} \in(0, \infty)
$$

and the liquid wealth $\overline{\mathrm{X}}^{\pi, c}=\left\{\overline{\mathrm{X}}_{\mathrm{t}}^{\pi, c}\right\}$ satisfies

Optimal Investment with a Given Fixed Deposit

In the following, we fix the investment $\psi \in\left[0, \psi_{\max }\right]$ into illiquid assets. The portfolio problem (P) rewrites as

$$
\max _{(\pi, \mathrm{c})} \mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\mathrm{c}_{\mathrm{t}}\right) \mathrm{dt}+\overline{\mathrm{u}}\left(\overline{\mathrm{X}}_{\mathrm{T}}^{\pi, \mathrm{c}}\right)\right] \text { with }(\psi, \pi, \mathrm{c}) \in \mathcal{A}\left(\mathrm{x}_{0}\right) .
$$

Here the random utility function $\overline{\mathrm{u}}_{\omega}:(0, \infty) \rightarrow \mathbb{R}$ is given by

$$
\overline{\mathrm{u}}_{\omega}(\overline{\mathrm{x}}) \triangleq \mathrm{u}\left(\overline{\mathrm{x}}+\psi\left(\mathrm{F}_{\mathrm{T}}(\omega)-\alpha \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}} \mathrm{r}_{\mathrm{s}} \mathrm{ds}}\right)\right) \text { for } \overline{\mathrm{x}} \in(0, \infty)
$$

and the liquid wealth $\overline{\mathrm{X}}^{\pi, \mathrm{c}}=\left\{\overline{\mathrm{X}}_{\mathrm{t}}^{\pi, \mathrm{c}}\right\}$ satisfies

$$
\begin{align*}
\mathrm{d} \overline{\mathrm{X}}_{\mathrm{t}}^{\pi, \mathrm{c}} & =\overline{\mathrm{X}}_{\mathrm{t}}^{\pi, \mathrm{c}}\left[\left(\mathrm{r}_{\mathrm{t}}+\pi_{\mathrm{t}} \eta_{\mathrm{t}}\right) \mathrm{dt}+\pi_{\mathrm{t}} \sigma_{\mathrm{t}} \mathrm{~d} \mathrm{~W}_{\mathrm{t}}\right]-\mathrm{c}_{\mathrm{t}} \mathrm{dt} \\
\overline{\mathrm{X}}_{0}^{\pi, \mathrm{c}} & =\mathrm{x}_{0}-\psi\left[(1-\alpha) \mathrm{F}_{0}-\bar{\delta}\right], \bar{\delta} \triangleq \mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{Z}_{\mathrm{t}} \delta_{\mathrm{t}} \mathrm{dt}\right] . \tag{4}
\end{align*}
$$

Figure: (Power) utility function $\overline{\mathrm{u}}$ for given investment into illiquid assets.

■ In general, the mapping $\omega \mapsto \overline{\mathrm{u}}_{\omega}$ need not be $\mathfrak{F}_{\mathrm{T}}$-measurable (recall $\left.\mathrm{F}_{\mathrm{T}}(\omega)=\mathrm{F}(\mathrm{M}(\omega), \mathrm{N}(\omega))\right)$.
Hence conditioning on \mathfrak{F}_{T} we rewrite the criterion of problem $\left(\mathrm{P}_{\psi}\right)$

$$
\mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\mathrm{c}_{\mathrm{t}}\right) \mathrm{dt}+\overline{\mathrm{u}}\left(\overline{\mathrm{X}}_{\mathrm{T}}^{\mathrm{T}}\right)\right]=\mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\mathrm{c}_{\mathrm{t}}\right) \mathrm{dt}+\hat{\mathrm{u}}\left(\overline{\mathrm{X}}_{\mathrm{T}}^{\pi}\right)\right]
$$

with an $\mathfrak{F}_{\mathrm{T}}$-measurable random utility function $\hat{\mathrm{u}}_{\omega}:(0, \infty) \rightarrow \mathbb{R}$ with
$\hat{\mathrm{u}}_{\omega}(\mathrm{x}) \triangleq \mathbb{E}\left[\overline{\mathrm{u}}(\mathrm{x}) \mid \mathfrak{F}_{\mathrm{T}}\right]_{\omega}=\mathbb{E}\left[\mathrm{u}\left(\mathrm{x}+\psi\left(\mathrm{F}(\mathrm{M} . \mathrm{N})-\alpha \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}} \mathrm{r}_{\mathrm{s}} \mathrm{ds}}\right)\right) \mid \mathfrak{F}_{\mathrm{T}}\right]$ $=\mathbb{E}\left[\mathrm{u}\left(\mathrm{x}+\psi\left(\mathrm{F}(\mathrm{m}, \mathrm{N})-\alpha \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}} e_{s} \mathrm{ds}}\right)\right)\right] \Gamma_{\mathrm{m}=\mathrm{M}(\omega), e_{\mathrm{t}}=\mathrm{r}_{\mathrm{t}}(\omega), \mathrm{t} \in[0, \mathrm{~T}]}$,

- $\hat{\mathrm{u}}$ is deterministic if $\mathrm{F}_{\mathrm{T}}=\mathrm{F}(\mathrm{N})$, i.e. the value of the illiquid asset is ind. of marketed prices, and either r is deterministic or $\alpha=0$. - In particular, if $\mathrm{F}_{\mathrm{T}}=e^{\overline{\mathrm{r}} \mathrm{T}}$ represents a fixed deposit investment with a riskless interest rate $\overline{\mathrm{r}}$ and $\alpha=0$, then $\hat{\mathrm{u}}=\overline{\mathrm{u}}$ with $\overline{\mathrm{u}}$ deterministic. - \rightarrow Later as application!

■ On the other hand, observe that $\hat{u}=\bar{u}$ if $F_{T}=F(M)$, since $F(M)$ is $\mathfrak{F}_{\mathrm{r} \text {-measurable. (} \rightarrow \text { A more explicit Theorem.) }}$

■ In general, the mapping $\omega \mapsto \overline{\mathrm{u}}_{\omega}$ need not be $\mathfrak{F}_{\mathrm{T}}$-measurable (recall $\left.\mathrm{F}_{\mathrm{T}}(\omega)=\mathrm{F}(\mathrm{M}(\omega), \mathrm{N}(\omega))\right)$.

- Hence conditioning on $\mathfrak{F}_{\text {T }}$ we rewrite the criterion of problem $\left(\mathrm{P}_{\psi}\right)$ as

$$
\mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\mathrm{c}_{\mathrm{t}}\right) \mathrm{dt}+\overline{\mathrm{u}}\left(\overline{\mathrm{X}}_{\mathrm{T}}^{\mathrm{T}}\right)\right]=\mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\mathrm{c}_{\mathrm{t}}\right) \mathrm{dt}+\hat{\mathrm{u}}\left(\overline{\mathrm{X}}_{\mathrm{T}}^{\pi}\right)\right]
$$

with an
\square

$$
=\mathbb{E}\left[\mathrm{u}\left(\mathrm{x}+\psi\left(\mathrm{F}(\mathrm{~m}, \mathrm{~N})-\alpha \mathrm{F}_{0} \int^{\int_{0}^{\mathrm{T}} \varrho_{\mathrm{s}} \mathrm{ds}}\right)\right)\right]
$$

$$
\begin{aligned}
& -\alpha \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}}} \\
&] \upharpoonright_{\mathrm{m}=\mathrm{M}(\omega),}
\end{aligned}
$$

ind. of marketed prices, and either r is deterministic or $\alpha=0$.
In particular, if $\mathrm{F}_{\mathrm{T}}=\mathrm{e}^{\overline{\mathrm{r}} \mathrm{T}}$ represents a fixed deposit investment with a riskless interest rate $\overline{\mathrm{r}}$ and $\alpha=0$, then $\hat{\mathrm{u}}=\overline{\mathrm{u}}$ with $\overline{\mathrm{u}}$ deterministic. - \rightarrow Later as application!
\square On the other hand, observe that $\hat{u}=\bar{u}$ if $F T=E(M)$, since $F(M)$ is $\mathfrak{F}_{\mathrm{T}}$-measurable. $(\rightarrow$ A more explicit Theorem. $)$

■ In general, the mapping $\omega \mapsto \overline{\mathrm{u}}_{\omega}$ need not be $\mathfrak{F}_{\mathrm{T}}$-measurable (recall $\left.\mathrm{F}_{\mathrm{T}}(\omega)=\mathrm{F}(\mathrm{M}(\omega), \mathrm{N}(\omega))\right)$.
■ Hence conditioning on $\mathfrak{F}_{\text {T }}$ we rewrite the criterion of problem $\left(\mathrm{P}_{\psi}\right)$ as

$$
\mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\mathrm{c}_{\mathrm{t}}\right) \mathrm{dt}+\overline{\mathrm{u}}\left(\overline{\mathrm{X}}_{\mathrm{T}}^{\pi}\right)\right]=\mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\mathrm{c}_{\mathrm{t}}\right) \mathrm{dt}+\hat{\mathrm{u}}\left(\overline{\mathrm{X}}_{\mathrm{T}}^{\pi}\right)\right]
$$

with an $\mathfrak{F}_{\mathrm{T}}$-measurable random utility function $\hat{\mathrm{u}}_{\omega}:(0, \infty) \rightarrow \mathbb{R}$ with

$$
\begin{aligned}
\hat{\mathrm{u}}_{\omega}(\mathrm{x}) & \triangleq \mathbb{E}\left[\overline{\mathrm{u}}(\mathrm{x}) \mid \mathfrak{F}_{\mathrm{T}}\right]_{\omega}=\mathbb{E}\left[\mathrm{u}\left(\mathrm{x}+\psi\left(\mathrm{F}(\mathrm{M}, \mathrm{~N})-\alpha \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}} \mathrm{r}_{\mathrm{s}} \mathrm{ds}}\right)\right) \mid \mathfrak{F}_{\mathrm{T}}\right]_{\omega} \\
& =\mathbb{E}\left[\mathrm{u}\left(\mathrm{x}+\psi\left(\mathrm{F}(\mathrm{~m}, \mathrm{~N})-\alpha \mathrm{F}_{0} \mathrm{e}_{0}^{\int_{0}^{\mathrm{T}} \varrho_{\mathrm{s}} \mathrm{ds}}\right)\right)\right] \Gamma_{\mathrm{m}=\mathrm{M}(\omega), \varrho_{\mathrm{t}}=\mathrm{r}_{\mathrm{t}}(\omega), \mathrm{t} \in[0, \mathrm{~T}]},
\end{aligned}
$$

ind. of marketed prices, and either r is deterministic or $\alpha=0$.
a riskless interest rate $\overline{\mathrm{r}}$ and $\alpha=0$, then $\hat{\mathrm{u}}=\overline{\mathrm{u}}$ with $\overline{\mathrm{u}}$ deterministic. - \rightarrow Later as application!
$\mathfrak{F}_{\mathrm{T} \text {-measurable. }}(\rightarrow \mathrm{A}$ more explicit Theorem.)

■ In general, the mapping $\omega \mapsto \overline{\mathrm{u}}_{\omega}$ need not be $\mathfrak{F}_{\mathrm{T}}$-measurable (recall $\left.\mathrm{F}_{\mathrm{T}}(\omega)=\mathrm{F}(\mathrm{M}(\omega), \mathrm{N}(\omega))\right)$.

- Hence conditioning on $\mathfrak{F}_{\text {T }}$ we rewrite the criterion of problem $\left(\mathrm{P}_{\psi}\right)$ as

$$
\mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\mathrm{c}_{\mathrm{t}}\right) \mathrm{dt}+\overline{\mathrm{u}}\left(\overline{\mathrm{X}}_{\mathrm{T}}^{\pi}\right)\right]=\mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\mathrm{c}_{\mathrm{t}}\right) \mathrm{dt}+\hat{\mathrm{u}}\left(\overline{\mathrm{X}}_{\mathrm{T}}^{\pi}\right)\right]
$$

with an $\mathfrak{F}_{\mathrm{T}}$-measurable random utility function $\hat{\mathrm{u}}_{\omega}:(0, \infty) \rightarrow \mathbb{R}$ with

$$
\begin{aligned}
\hat{\mathrm{u}}_{\omega}(\mathrm{x}) & \triangleq \mathbb{E}\left[\overline{\mathrm{u}}(\mathrm{x}) \mid \mathfrak{F}_{\mathrm{T}}\right]_{\omega}=\mathbb{E}\left[\mathrm{u}\left(\mathrm{x}+\psi\left(\mathrm{F}(\mathrm{M}, \mathrm{~N})-\alpha \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}} \mathrm{r}_{\mathrm{s}} \mathrm{ds}}\right)\right) \mid \mathfrak{F}_{\mathrm{T}}\right]_{\omega} \\
& =\mathbb{E}\left[\mathrm{u}\left(\mathrm{x}+\psi\left(\mathrm{F}(\mathrm{~m}, \mathrm{~N})-\alpha \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}} \varrho_{\mathrm{s}} \mathrm{ds}}\right)\right)\right] \upharpoonright_{\mathrm{m}=\mathrm{M}(\omega), \varrho_{\mathrm{t}}=\mathrm{r}_{\mathrm{t}}(\omega), \mathrm{t} \in[0, \mathrm{~T}]},
\end{aligned}
$$

■ \hat{u} is deterministic if $F_{T}=F(N)$, i.e. the value of the illiquid asset is ind. of marketed prices, and either r is deterministic or $\alpha=0$.

- In particular, if $\mathrm{F}_{\mathrm{T}}=\mathrm{e}^{\mathrm{TT}}$ represents a fixed deposit investment with a riskless interest rate $\overline{\mathrm{r}}$ and $\alpha=0$, then $\hat{\mathrm{u}}=\overline{\mathrm{u}}$ with $\overline{\mathrm{u}}$ deterministic.
- \rightarrow Later as application!
$\mathfrak{F}_{\mathrm{T}}$-measurable. $(\rightarrow$ A more explicit Theorem. $)$

■ In general, the mapping $\omega \mapsto \overline{\mathrm{u}}_{\omega}$ need not be $\mathfrak{F}_{\mathrm{T}}$-measurable (recall $\left.\mathrm{F}_{\mathrm{T}}(\omega)=\mathrm{F}(\mathrm{M}(\omega), \mathrm{N}(\omega))\right)$.

- Hence conditioning on $\mathfrak{F}_{\text {T }}$ we rewrite the criterion of problem $\left(\mathrm{P}_{\psi}\right)$ as

$$
\mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\mathrm{c}_{\mathrm{t}}\right) \mathrm{dt}+\overline{\mathrm{u}}\left(\overline{\mathrm{X}}_{\mathrm{T}}^{\pi}\right)\right]=\mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\mathrm{c}_{\mathrm{t}}\right) \mathrm{dt}+\hat{\mathrm{u}}\left(\overline{\mathrm{X}}_{\mathrm{T}}^{\pi}\right)\right]
$$

with an $\mathfrak{F}_{\mathrm{T}}$-measurable random utility function $\hat{\mathrm{u}}_{\omega}:(0, \infty) \rightarrow \mathbb{R}$ with

$$
\begin{aligned}
\hat{\mathrm{u}}_{\omega}(\mathrm{x}) & \triangleq \mathbb{E}\left[\overline{\mathrm{u}}(\mathrm{x}) \mid \mathfrak{F}_{\mathrm{T}}\right]_{\omega}=\mathbb{E}\left[\mathrm{u}\left(\mathrm{x}+\psi\left(\mathrm{F}(\mathrm{M}, \mathrm{~N})-\alpha \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}} \mathrm{r}_{\mathrm{s}} \mathrm{ds}}\right)\right) \mid \mathfrak{F}_{\mathrm{T}}\right]_{\omega} \\
& =\mathbb{E}\left[\mathrm{u}\left(\mathrm{x}+\psi\left(\mathrm{F}(\mathrm{~m}, \mathrm{~N})-\alpha \mathrm{F}_{0} \mathrm{e}_{0}^{\int_{0}^{\mathrm{T}} \varrho_{\mathrm{s}} \mathrm{ds}}\right)\right)\right] \Gamma_{\mathrm{m}=\mathrm{M}(\omega), \varrho_{\mathrm{t}}=\mathrm{r}_{\mathrm{t}}(\omega), \mathrm{t} \in[0, \mathrm{~T}]},
\end{aligned}
$$

■ \hat{u} is deterministic if $F_{T}=F(N)$, i.e. the value of the illiquid asset is ind. of marketed prices, and either r is deterministic or $\alpha=0$.

- In particular, if $\mathrm{F}_{\mathrm{T}}=\mathrm{e}^{\mathrm{TT}}$ represents a fixed deposit investment with a riskless interest rate $\overline{\mathrm{r}}$ and $\alpha=0$, then $\hat{\mathrm{u}}=\overline{\mathrm{u}}$ with $\overline{\mathrm{u}}$ deterministic.
- \rightarrow Later as application!

■ On the other hand, observe that $\hat{u}=\overline{\mathrm{u}}$ if $\mathrm{F}_{\mathrm{T}}=\mathrm{F}(\mathrm{M})$, since $\mathrm{F}(\mathrm{M})$ is $\mathfrak{F}_{\mathrm{T}}$-measurable. (\rightarrow A more explicit Theorem.)

Duality Approach

- Problem $\left(\mathrm{P}_{\psi}\right)$ is similar to the standard utility maximization problem.
$\square \rightarrow$ Solution with the help of the duality approach of Cox and Huang (1989, 1991), Karatzas, Lehoczky and Shreve (1991) and many others. - But: $\hat{\mathrm{u}}$ can be random, and we may have $\widehat{\mathrm{u}}_{\omega}^{\prime}(0)<\infty$ while the solvency requirement imposes the constraint that $\bar{X}_{t} \geq 0, t \in[0, T]$, a.s.
- Thus some modifications become necessary...

Duality Approach

■ Problem $\left(\mathrm{P}_{\psi}\right)$ is similar to the standard utility maximization problem.
■ \rightarrow Solution with the help of the duality approach of Cox and Huang (1989, 1991), Karatzas, Lehoczky and Shreve (1991) and many others.
requirement imposes the constraint that $\overline{\mathrm{X}}_{\mathrm{t}} \geq 0, \mathrm{t} \in[0, \mathrm{~T}]$, a.s.

- Thus some modifications become necessary.

Duality Approach

■ Problem $\left(\mathrm{P}_{\psi}\right)$ is similar to the standard utility maximization problem.
■ \rightarrow Solution with the help of the duality approach of Cox and Huang (1989, 1991), Karatzas, Lehoczky and Shreve (1991) and many others.

- But: $\hat{\mathrm{u}}$ can be random, and we may have $\hat{\mathrm{u}}_{\omega}^{\prime}(0)<\infty$ while the solvency requirement imposes the constraint that $\overline{\mathrm{X}}_{\mathrm{t}} \geq 0, \mathrm{t} \in[0, \mathrm{~T}]$, a.s.

[^0]
Duality Approach

■ Problem $\left(\mathrm{P}_{\psi}\right)$ is similar to the standard utility maximization problem.
■ \rightarrow Solution with the help of the duality approach of Cox and Huang (1989, 1991), Karatzas, Lehoczky and Shreve (1991) and many others.

- But: \hat{u} can be random, and we may have $\hat{u}_{\omega}^{\prime}(0)<\infty$ while the solvency requirement imposes the constraint that $\overline{\mathrm{X}}_{\mathrm{t}} \geq 0, \mathrm{t} \in[0, \mathrm{~T}]$, a.s.
■ Thus some modifications become necessary...

Duality Approach

■ Problem $\left(\mathrm{P}_{\psi}\right)$ is similar to the standard utility maximization problem.
■ \rightarrow Solution with the help of the duality approach of Cox and Huang (1989, 1991), Karatzas, Lehoczky and Shreve (1991) and many others.
■ But: ̂̂ can be random, and we may have $\hat{\mathbf{u}}_{\omega}^{\prime}(0)<\infty$ while the solvency requirement imposes the constraint that $\overline{\mathrm{X}}_{\mathrm{t}} \geq 0, \mathrm{t} \in[0, \mathrm{~T}]$, a.s.
■ Thus some modifications become necessary...

Lemma

The function \hat{u}_{ω} is differentiable for a.e. $\omega \in \Omega$ with
$\hat{\mathrm{u}}_{\omega}^{\prime}(\mathrm{x})=\mathbb{E}\left[\mathrm{u}^{\prime}\left(\mathrm{x}+\psi\left(\mathrm{F}(\mathrm{m}, \mathrm{N})-\alpha \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}} \varrho_{\mathrm{s}} \mathrm{ds}}\right)\right)\right] \Gamma_{\mathrm{m}=\mathrm{M}(\omega), \varrho_{\mathrm{t}}=\mathrm{r}_{\mathrm{t}}(\omega), \mathrm{t} \in[0, \mathrm{~T}]}$.
Moreover, $\hat{\mathrm{u}}_{\omega}^{\prime}$ is strictly decreasing, $\hat{\mathrm{u}}_{\omega}^{\prime}(0) \in(0, \infty], \hat{\mathrm{u}}_{\omega}^{\prime}(\mathrm{x})>0$ for all $\mathrm{x}>0$, and $\hat{\mathrm{u}}_{\omega}^{\prime}(\mathrm{x}) \rightarrow 0$ as $\mathrm{x} \rightarrow \infty$.

- Denote by $\hat{\iota}_{\omega}$ the (unique) inverse of $\hat{\mathbf{u}}_{\omega}^{\prime}$, where it is understood that $\hat{\iota}_{\omega}(\lambda)=0$ if $\lambda>\hat{\mathrm{u}}_{\omega}^{\prime}(0)$.
- Budget constraint: $\mathbb{E}\left[\int_{0}^{T} Z_{t} C_{t}^{*} d t+Z_{T} \bar{X}_{\mathrm{T}}^{*}\right]=x_{0}-\psi\left[(1-\alpha) \mathrm{F}_{0}-\bar{\delta}\right]$ - Apply the pointwise Lagrangian, then we have the candidates

$$
\overline{\mathrm{X}}_{\mathrm{T}}^{\star}=\hat{\iota}\left(\gamma^{\star} \mathrm{Z}_{\mathrm{T}}\right), \quad \mathrm{c}_{\mathrm{t}}^{\star}=\iota_{\mathrm{t}}\left(\gamma^{\star} \mathrm{Z}_{\star}\right), \mathrm{t} \in[0, \mathrm{~T}] .
$$

for the optimal terminal wealth and the optimal consumption rate. - With help of the identity (Young's inequality)

$$
\hat{u}_{\omega}(\mathrm{x})<\hat{\mathrm{u}}_{\omega}\left(\hat{\iota}_{\omega}(\lambda)\right)+\lambda\left[\mathrm{x}-\hat{\iota}_{\omega}(\lambda)\right] \text { for all } \lambda>0, \mathrm{x}>0
$$

- and the conditions

$$
\begin{aligned}
& \mathbb{E}\left[\int_{0}^{T} Z_{+t} \iota_{t}\left(\gamma Z_{t}\right) d t+Z_{T} u\left(\gamma Z_{T}\right)\right]<\infty \text { for all } \gamma>0, \\
& \mathbb{E}\left[\int_{0}^{T} u_{t}\left(u\left(\gamma Z_{t}\right)\right) d t+u\left(u\left(\gamma Z_{T}\right)\right)\right]<\infty \text { for all } \gamma>0,
\end{aligned}
$$

we can then get our first main Theorem:

- Denote by $\hat{\iota}_{\omega}$ the (unique) inverse of $\hat{\mathbf{u}}_{\omega}^{\prime}$, where it is understood that $\hat{\iota}_{\omega}(\lambda)=0$ if $\lambda>\hat{u}_{\omega}^{\prime}(0)$.
- Budget constraint: $\mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{Z}_{\mathrm{t}} \mathrm{c}_{\mathrm{t}}^{\star} \mathrm{dt}+\mathrm{Z}_{\mathrm{T}} \overline{\mathrm{X}}_{\mathrm{T}}^{\star}\right]=\mathrm{x}_{0}-\psi\left[(1-\alpha) \mathrm{F}_{0}-\bar{\delta}\right]$

$$
\overline{\mathrm{X}}_{\mathrm{T}}^{\star}=\hat{\iota}\left(\gamma^{\star} \mathrm{Z}_{\mathrm{T}}\right), \quad \mathrm{c}_{\mathrm{t}}^{\star}=\iota_{\mathrm{t}}\left(\gamma^{\star} \mathrm{Z}_{\mathrm{t}}\right), \mathrm{t} \in[0, \mathrm{~T}] .
$$

for the optimal terminal wealth and the optimal consumption rate. - With help of the identity (Young's inequality)

- and the conditions

we can then get our first main Theorem:
- Denote by $\hat{\iota}_{\omega}$ the (unique) inverse of $\hat{\mathbf{u}}_{\omega}^{\prime}$, where it is understood that $\hat{\iota}_{\omega}(\lambda)=0$ if $\lambda>\hat{\mathrm{u}}_{\omega}^{\prime}(0)$.
- Budget constraint: $\mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{Z}_{\mathrm{t}} \mathrm{c}_{\mathrm{t}}^{\star} \mathrm{dt}+\mathrm{Z}_{\mathrm{T}} \overline{\mathrm{X}}_{\mathrm{T}}^{\star}\right]=\mathrm{x}_{0}-\psi\left[(1-\alpha) \mathrm{F}_{0}-\bar{\delta}\right]$
- Apply the pointwise Lagrangian, then we have the candidates

$$
\overline{\mathrm{X}}_{\mathrm{T}}^{\star}=\hat{\iota}\left(\gamma^{\star} \mathrm{Z}_{\mathrm{T}}\right), \quad \mathrm{c}_{\mathrm{t}}^{\star}=\iota_{\mathrm{t}}\left(\gamma^{\star} \mathrm{Z}_{\mathrm{t}}\right), \mathrm{t} \in[0, \mathrm{~T}] .
$$

for the optimal terminal wealth and the optimal consumption rate.

- and the conditions

we can then get our first main Theorem:
- Denote by $\hat{\iota}_{\omega}$ the (unique) inverse of $\hat{\mathbf{u}}_{\omega}^{\prime}$, where it is understood that $\hat{\iota}_{\omega}(\lambda)=0$ if $\lambda>\hat{\mathrm{u}}_{\omega}^{\prime}(0)$.
- Budget constraint: $\mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{Z}_{\mathrm{t}} \mathrm{c}_{\mathrm{t}}^{\star} \mathrm{dt}+\mathrm{Z}_{\mathrm{T}} \overline{\mathrm{X}}_{\mathrm{T}}^{\star}\right]=\mathrm{x}_{0}-\psi\left[(1-\alpha) \mathrm{F}_{0}-\bar{\delta}\right]$
- Apply the pointwise Lagrangian, then we have the candidates

$$
\overline{\mathrm{X}}_{\mathrm{T}}^{\star}=\hat{\iota}\left(\gamma^{\star} \mathrm{Z}_{\mathrm{T}}\right), \quad \mathrm{c}_{\mathrm{t}}^{\star}=\iota_{\mathrm{t}}\left(\gamma^{\star} \mathrm{Z}_{\mathrm{t}}\right), \mathrm{t} \in[0, \mathrm{~T}] .
$$

for the optimal terminal wealth and the optimal consumption rate.
■ With help of the identity (Young's inequality)

$$
\hat{\mathrm{u}}_{\omega}(\mathrm{x}) \leq \hat{\mathrm{u}}_{\omega}\left(\hat{\iota}_{\omega}(\lambda)\right)+\lambda\left[\mathrm{x}-\hat{\iota}_{\omega}(\lambda)\right] \text { for all } \lambda>0, \mathrm{x}>0,
$$

- and the conditions

we can then get our first main Theorem:

■ Denote by $\hat{\iota}_{\omega}$ the (unique) inverse of $\hat{\mathbf{u}}_{\omega}^{\prime}$, where it is understood that $\hat{\iota}_{\omega}(\lambda)=0$ if $\lambda>\hat{u}_{\omega}^{\prime}(0)$.

- Budget constraint: $\mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{Z}_{\mathrm{t}} \mathrm{c}_{\mathrm{t}}^{\star} \mathrm{dt}+\mathrm{Z}_{\mathrm{T}} \overline{\mathrm{X}}_{\mathrm{T}}^{\star}\right]=\mathrm{x}_{0}-\psi\left[(1-\alpha) \mathrm{F}_{0}-\bar{\delta}\right]$
- Apply the pointwise Lagrangian, then we have the candidates

$$
\overline{\mathrm{X}}_{\mathrm{T}}^{\star}=\hat{\iota}\left(\gamma^{\star} \mathrm{Z}_{\mathrm{T}}\right), \quad \mathrm{c}_{\mathrm{t}}^{\star}=\iota_{\mathrm{t}}\left(\gamma^{\star} \mathrm{Z}_{\mathrm{t}}\right), \mathrm{t} \in[0, \mathrm{~T}] .
$$

for the optimal terminal wealth and the optimal consumption rate.
■ With help of the identity (Young's inequality)

$$
\hat{\mathrm{u}}_{\omega}(\mathrm{x}) \leq \hat{\mathrm{u}}_{\omega}\left(\hat{\imath}_{\omega}(\lambda)\right)+\lambda\left[\mathrm{x}-\hat{\imath}_{\omega}(\lambda)\right] \text { for all } \lambda>0, \mathrm{x}>0
$$

■ and the conditions

$$
\begin{gathered}
\mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{Z}_{\mathrm{t}} \iota_{\mathrm{t}}\left(\gamma \mathrm{Z}_{\mathrm{t}}\right) \mathrm{dt}+\mathrm{Z}_{\mathrm{T}} \iota\left(\gamma \mathrm{Z}_{\mathrm{T}}\right)\right]<\infty \text { for all } \gamma>0, \\
\mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\iota_{\mathrm{t}}\left(\gamma \mathrm{Z}_{\mathrm{t}}\right)\right) \mathrm{dt}+\mathrm{u}\left(\iota\left(\gamma \mathrm{Z}_{\mathrm{T}}\right)\right)\right]<\infty \text { for all } \gamma>0,
\end{gathered}
$$

we can then get our first main Theorem:

Theorem (Optimal Investment with Illiquid Assets I)

The portfolio problem with illiquid assets (P) has a solution $\left(\psi^{\star}, \pi^{\star}, \mathrm{c}^{\star}\right)$. With $\gamma^{\star}=\gamma^{\star}\left(\psi^{\star}\right)$ the optimal terminal wealth and the optimal consumption rate are given by

$$
\overline{\mathrm{X}}_{\mathrm{T}}^{\star}=\hat{\iota}\left(\gamma^{\star} \mathrm{Z}_{\mathrm{T}}\right), \quad \mathrm{c}_{\mathrm{t}}^{\star}=\iota_{\mathrm{t}}\left(\gamma^{\star} \mathrm{Z}_{\mathrm{t}}\right), \mathrm{t} \in[0, \mathrm{~T}] .
$$

The optimal investment into the illiquid asset is given by

$$
\psi^{\star}=\underset{\psi \in\left[0, \psi_{\max }\right]}{\arg \max } \mathrm{v}(\psi)
$$

where v is given by

$$
\mathrm{v}(\psi) \triangleq \mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\iota_{\mathrm{t}}\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{t}}\right)\right) \mathrm{dt}+\mathrm{u}\left(\hat{\iota}\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{T}}\right)\right)\right] .
$$

Remarks

■ v depends on ψ only via the Lagrange multiplier $\gamma^{\star}(\psi)$ which was determinded via the Budget constraint!

- The solvency requirement $\overline{\mathrm{X}}_{\mathrm{t}}^{\pi} \geq 0, \mathrm{t} \in[0, T]$, a.s. forces us to to set the inverse marginal utility $\hat{\iota}_{\omega}(\lambda)=0$ if $\lambda>\hat{\mathrm{u}}_{\omega}^{\prime}(0)$ since the marginal utility funtion $\hat{\mathrm{u}}^{\prime}$ is defined on the range $(0, \infty)$ with image $\left(0, \hat{\mathrm{u}}^{\prime}(0)\right)$ and we have to ensure that the optimal final wealth $\overline{\mathrm{X}}_{\mathrm{T}}^{*}=\hat{\imath}\left(\gamma^{*} \mathrm{Z}_{\mathrm{T}}\right)$ stays non-negative.
- Problem: how to compute $\overline{\mathrm{X}}_{\mathrm{T}}^{\star}=\hat{\iota}\left(\gamma^{\star} \mathrm{Z}_{\mathrm{T}}\right)$, i.e. $\hat{\iota}_{\omega}(\lambda)$ - \rightarrow Solution: numerics

Remarks

■ v depends on ψ only via the Lagrange multiplier $\gamma^{\star}(\psi)$ which was determinded via the Budget constraint!
■ The solvency requirement $\bar{X}_{t}^{\pi} \geq 0, t \in[0, T]$, a.s. forces us to to set the inverse marginal utility $\hat{\iota}_{\omega}(\lambda)=0$ if $\lambda>\hat{u}_{\omega}^{\prime}(0)$ since the marginal utility funtion $\hat{\mathrm{u}}^{\prime}$ is defined on the range $(0, \infty)$ with image ($0, \hat{\mathrm{u}}^{\prime}(0)$) and we have to ensure that the optimal final wealth $\overline{\mathrm{X}}_{\mathrm{T}}^{\star}=\hat{\iota}\left(\gamma^{\star} \mathrm{Z}_{\mathrm{T}}\right)$ stays non-negative.

- Problem: how to compute $\overline{\mathrm{X}}_{\mathrm{T}}^{\star}=\hat{\imath}\left(\gamma^{\star} \mathrm{Z}_{\mathrm{T}}\right)$, i.e. $\hat{\iota}_{\omega}(\lambda)$ \rightarrow Solution: numerics

Remarks

■ v depends on ψ only via the Lagrange multiplier $\gamma^{\star}(\psi)$ which was determinded via the Budget constraint!

■ The solvency requirement $\overline{\mathrm{X}}_{\mathrm{t}}^{\pi} \geq 0, \mathrm{t} \in[0, \mathrm{~T}]$, a.s. forces us to to set the inverse marginal utility $\hat{\iota}_{\omega}(\lambda)=0$ if $\lambda>\hat{u}_{\omega}^{\prime}(0)$ since the marginal utility funtion $\hat{\mathrm{u}}^{\prime}$ is defined on the range $(0, \infty)$ with image ($0, \hat{\mathrm{u}}^{\prime}(0)$) and we have to ensure that the optimal final wealth $\overline{\mathrm{X}}_{\mathrm{T}}^{\star}=\hat{\iota}\left(\gamma^{\star} \mathrm{Z}_{\mathrm{T}}\right)$ stays non-negative.

- Problem: how to compute $\overline{\mathrm{X}}_{\mathrm{T}}^{\star}=\hat{\iota}\left(\gamma^{\star} \mathrm{Z}_{\mathrm{T}}\right)$, i.e. $\hat{\iota}_{\omega}(\lambda)$
- \rightarrow Solution: numerics

Duality for $\mathrm{F}_{\mathrm{T}}=\mathrm{F}(\mathrm{M})$

■ In general, û and $\hat{\iota}$ must be computed numerically.

- In the special case $\mathrm{F}_{\mathrm{T}}=\mathrm{F}_{(\mathrm{M})}$, i.e. F_{T} is \mathfrak{F}_{T}-measurable, we have $\hat{\mathrm{u}}=\overline{\mathrm{u}}$ and the quantities of interest can be computed explicitly.
\| Since we have that

$$
\bar{u}^{\prime}(\mathrm{x})=\mathrm{u}^{\prime}(\mathrm{x}+\overline{\mathrm{F}}) \text { with } \overline{\mathrm{F}} \triangleq \psi\left(\mathrm{~F}_{\mathrm{T}}-\alpha \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}} \mathrm{r}_{\mathrm{s}} \mathrm{ds}}\right)
$$

- it follows that $\bar{\imath}$ associated to $\overline{\mathrm{u}}$ is given as

$$
\bar{\tau}:(0, \infty) \rightarrow[0, \infty), \quad \bar{u}(\lambda)=(u(\lambda)-\overline{\mathrm{F}})^{+}
$$

where ι denotes the inverse marginal utility of u.

- In particular, note that $\bar{\iota}(\lambda)=0$ for $\lambda \geq \lambda_{0} \triangleq \bar{u}^{\prime}(0)=u^{\prime}(\overline{\mathrm{F}})$.
- Defining $\bar{\iota}$ as above with image $[0, \infty)$ ensures that $\bar{\iota}\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{T}}\right)$ and thus the final wealth $\overline{\mathrm{X}}_{\psi}^{\star}$ stays non-negative $(\rightarrow$ solvency!).

Duality for $\mathrm{F}_{\mathrm{T}}=\mathrm{F}(\mathrm{M})$

■ In general, \hat{u} and $\hat{\iota}$ must be computed numerically.

- In the special case $\mathrm{F}_{\mathrm{T}}=\mathrm{F}(\mathrm{M})$, i.e. F_{T} is $\mathfrak{F}_{\mathrm{T}}$-measurable, we have $\hat{\mathrm{u}}=\overline{\mathrm{u}}$ and the quantities of interest can be computed explicitly.

- it follows that $\bar{\iota}$ associated to $\overline{\mathrm{u}}$ is given as

$$
\bar{\iota}:(0, \infty) \rightarrow[0, \infty) . \quad \bar{\iota}(\lambda)=(u(\lambda)-\overline{\mathrm{F}})^{+}
$$

where ι denotes the inverse marginal utility of u.

- In particular, note that $\bar{\iota}(\lambda)=0$ for $\lambda \geq \lambda_{0} \triangleq \overline{\mathrm{u}}^{\prime}(0)=\mathrm{u}^{\prime}(\overline{\mathrm{F}})$.
\square thus the final wealth \bar{X}_{\imath}, stays non-negative $(\rightarrow$ solvency!).

Duality for $\mathrm{F}_{\mathrm{T}}=\mathrm{F}(\mathrm{M})$

■ In general, \hat{u} and $\hat{\iota}$ must be computed numerically.
■ In the special case $\mathrm{F}_{\mathrm{T}}=\mathrm{F}(\mathrm{M})$, i.e. F_{T} is $\mathfrak{F}_{\mathrm{T}}$-measurable, we have $\hat{\mathrm{u}}=\overline{\mathrm{u}}$ and the quantities of interest can be computed explicitly.

- Since we have that

$$
\overline{\mathrm{u}}^{\prime}(\mathrm{x})=\mathrm{u}^{\prime}(\mathrm{x}+\overline{\mathrm{F}}) \text { with } \overline{\mathrm{F}} \triangleq \psi\left(\mathrm{~F}_{\mathrm{T}}-\alpha \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}} \mathrm{r}_{\mathrm{s}} \mathrm{ds}}\right),
$$

- it follows that $\bar{\iota}$ associated to $\overline{\mathrm{u}}$ is given as

$$
\bar{\iota}:(0, \infty) \rightarrow[0, \infty), \quad \bar{\iota}(\lambda)=(\iota(\lambda)-\overline{\mathrm{F}})^{+}
$$

where ι denotes the inverse marginal utility of u.

- In particular, note that $\bar{l}(\lambda)=0$ for $\lambda \geq \lambda_{0} \triangleq \overline{\mathrm{u}}^{\prime}(0)=\mathrm{u}^{\prime}(\overline{\mathrm{F}})$. thus the final wealth $\mathrm{X}_{\psi}^{\star}$ stays non-negative $(\rightarrow$ solvency!).

Duality for $\mathrm{F}_{\mathrm{T}}=\mathrm{F}(\mathrm{M})$

■ In general, \hat{u} and $\hat{\iota}$ must be computed numerically.
■ In the special case $\mathrm{F}_{\mathrm{T}}=\mathrm{F}(\mathrm{M})$, i.e. F_{T} is $\mathfrak{F}_{\mathrm{T}}$-measurable, we have $\hat{\mathrm{u}}=\overline{\mathrm{u}}$ and the quantities of interest can be computed explicitly.
■ Since we have that

$$
\overline{\mathrm{u}}^{\prime}(\mathrm{x})=\mathrm{u}^{\prime}(\mathrm{x}+\overline{\mathrm{F}}) \text { with } \overline{\mathrm{F}} \triangleq \psi\left(\mathrm{~F}_{\mathrm{T}}-\alpha \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}} \mathrm{r}_{\mathrm{s}} \mathrm{ds}}\right),
$$

- it follows that $\bar{\iota}$ associated to $\overline{\mathrm{u}}$ is given as

$$
\bar{\iota}:(0, \infty) \rightarrow[0, \infty), \quad \bar{\iota}(\lambda)=(\iota(\lambda)-\overline{\mathrm{F}})^{+}
$$

where ι denotes the inverse marginal utility of u.

Duality for $\mathrm{F}_{\mathrm{T}}=\mathrm{F}(\mathrm{M})$

- In general, \hat{u} and $\hat{\imath}$ must be computed numerically.

■ In the special case $\mathrm{F}_{\mathrm{T}}=\mathrm{F}(\mathrm{M})$, i.e. F_{T} is $\mathfrak{F}_{\mathrm{T}}$-measurable, we have $\hat{\mathrm{u}}=\overline{\mathrm{u}}$ and the quantities of interest can be computed explicitly.

- Since we have that

$$
\overline{\mathrm{u}}^{\prime}(\mathrm{x})=\mathrm{u}^{\prime}(\mathrm{x}+\overline{\mathrm{F}}) \text { with } \overline{\mathrm{F}} \triangleq \psi\left(\mathrm{~F}_{\mathrm{T}}-\alpha \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}} \mathrm{r}_{\mathrm{s}} \mathrm{ds}}\right)
$$

- it follows that $\bar{\imath}$ associated to $\overline{\mathrm{u}}$ is given as

$$
\bar{\iota}:(0, \infty) \rightarrow[0, \infty), \quad \bar{\iota}(\lambda)=(\iota(\lambda)-\overline{\mathrm{F}})^{+}
$$

where ι denotes the inverse marginal utility of u.

- In particular, note that $\bar{\imath}(\lambda)=0$ for $\lambda \geq \lambda_{0} \triangleq \overline{\mathrm{u}}^{\prime}(0)=\mathrm{u}^{\prime}(\overline{\mathrm{F}})$.

$$
\text { thus the final wealth } \bar{X}_{\psi}^{\star} \text { stays non-negative }(\rightarrow \text { solvency! })
$$

Duality for $\mathrm{F}_{\mathrm{T}}=\mathrm{F}(\mathrm{M})$

- In general, \hat{u} and $\hat{\imath}$ must be computed numerically.

■ In the special case $\mathrm{F}_{\mathrm{T}}=\mathrm{F}(\mathrm{M})$, i.e. F_{T} is $\mathfrak{F}_{\mathrm{T}}$-measurable, we have $\hat{\mathrm{u}}=\overline{\mathrm{u}}$ and the quantities of interest can be computed explicitly.

- Since we have that

$$
\overline{\mathrm{u}}^{\prime}(\mathrm{x})=\mathrm{u}^{\prime}(\mathrm{x}+\overline{\mathrm{F}}) \text { with } \overline{\mathrm{F}} \triangleq \psi\left(\mathrm{~F}_{\mathrm{T}}-\alpha \mathrm{F}_{0} \mathrm{e}^{\int_{0}^{\mathrm{T}} \mathrm{r}_{\mathrm{s}} \mathrm{ds}}\right)
$$

- it follows that $\bar{\imath}$ associated to $\overline{\mathrm{u}}$ is given as

$$
\bar{\iota}:(0, \infty) \rightarrow[0, \infty), \quad \bar{\iota}(\lambda)=(\iota(\lambda)-\overline{\mathrm{F}})^{+}
$$

where ι denotes the inverse marginal utility of u.

- In particular, note that $\bar{\imath}(\lambda)=0$ for $\lambda \geq \lambda_{0} \triangleq \overline{\mathrm{u}}^{\prime}(0)=\mathrm{u}^{\prime}(\overline{\mathrm{F}})$.
- Defining $\bar{\imath}$ as above with image $[0, \infty)$ ensures that $\bar{\iota}\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{T}}\right)$ and thus the final wealth $\overline{\mathrm{X}}_{\psi}^{\star}$ stays non-negative $(\rightarrow$ solvency! $)$.

Figure: Inverse marginal (power) utility $\bar{\imath}$ corresponding to \bar{u}.

Theorem (Optimal Investment with Illiquid Assets II)

Suppose integrability conditions as before. Then the optimal portfolio problem with illiquid assets (P) has a solution ($\psi^{\star}, \pi^{\star}, \mathrm{c}^{\star}$). The optimal investment into the illiquid asset is given by

$$
\begin{gathered}
\psi^{\star}=\underset{\psi \in\left[0, \psi_{\max }\right]}{\arg \max } \mathrm{v}(\psi) \text { with } \\
\mathrm{v}(\psi) \triangleq \mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\iota_{\mathrm{t}}\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{t}}\right)\right) \mathrm{dt}+\mathrm{u}\left(\iota\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{T}}\right) \vee \overline{\mathrm{F}}\right)\right] .
\end{gathered}
$$

The optimal terminal wealth and the optimal consumption rate are

$$
\overline{\mathrm{X}}_{\psi}^{\star} \triangleq \bar{\iota}\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{T}}\right) \text { and } \mathrm{c}_{\mathrm{t}}^{\star} \triangleq \iota_{\mathrm{t}}\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{t}}\right), \mathrm{t} \in[0, \mathrm{~T}]
$$

Theorem (Optimal Investment with Illiquid Assets II)

Suppose integrability conditions as before. Then the optimal portfolio problem with illiquid assets (P) has a solution ($\psi^{\star}, \pi^{\star}, \mathrm{c}^{\star}$). The optimal investment into the illiquid asset is given by

$$
\begin{gathered}
\psi^{\star}=\underset{\psi \in\left[0, \psi_{\max }\right]}{\arg \max } \mathrm{v}(\psi) \text { with } \\
\mathrm{v}(\psi) \triangleq \mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{u}_{\mathrm{t}}\left(\iota_{\mathrm{t}}\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{t}}\right)\right) \mathrm{dt}+\mathrm{u}\left(\iota\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{T}}\right) \vee \overline{\mathrm{F}}\right)\right] .
\end{gathered}
$$

The optimal terminal wealth and the optimal consumption rate are

$$
\overline{\mathrm{X}}_{\psi}^{\star} \triangleq \bar{\iota}\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{T}}\right) \text { and } \mathrm{c}_{\mathrm{t}}^{\star} \triangleq \iota_{\mathrm{t}}\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{t}}\right), \mathrm{t} \in[0, \mathrm{~T}]
$$

where the Lagrange multiplier $\gamma^{\star}(\psi) \in(0, \infty)$ is determined by the BC

$$
\mathbb{E}\left[\int_{0}^{\mathrm{T}} \mathrm{Z}_{\mathrm{t}} \iota_{\mathrm{t}}\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{t}}\right) \mathrm{dt}+\mathrm{Z}_{\mathrm{T}} \bar{\iota}\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{T}}\right)\right]=\mathrm{x}_{0}-\psi\left[(1-\alpha) \mathrm{F}_{0}-\bar{\delta}\right] .
$$

Application: Optimal Investment with Fixed Deposits

- Illiquid asset: fixed deposit investment with initial price $\mathrm{F}_{0}=1$ with terminal payoff $\mathrm{F}_{\mathrm{T}}=\mathrm{e}^{\overline{\mathrm{T}}}, \overline{\mathrm{r}}>\mathrm{r}, \alpha=0$ (no borrowing)
$u_{t}=0$ for all $t \in[0, T]$, i.e. terminal wealth problem only
ψ is optimal amount of wealth invested into fixed deposits.
In view of the preceeding discussion, the portfolio problem (P) reduces to the maximization of a continuous function on a compact interval, i.e. to

$$
\text { maximize } \mathrm{v}(\psi) \text { over } \psi \in\left[0, \psi_{\max }\right]
$$

$$
\mathrm{v}(\psi) \triangleq \mathbb{E}\left[\mathrm{u}\left(\iota\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{T}}\right) \vee \psi\left(\mathrm{e}^{\overline{\mathrm{r}} \mathrm{~T}}\right)\right]\right.
$$

Application: Optimal Investment with Fixed Deposits

- Illiquid asset: fixed deposit investment with initial price $\mathrm{F}_{0}=1$ with terminal payoff $\mathrm{F}_{\mathrm{T}}=\mathrm{e}^{\overline{\mathrm{T}}}, \overline{\mathrm{r}}>\mathrm{r}, \alpha=0$ (no borrowing)
- $u_{t}=0$ for all $t \in[0, T]$, i.e. terminal wealth problem only

 i.e. to

$$
\operatorname{maximize} \mathrm{v}(\psi) \text { over } \psi \in\left[0, \psi_{\max }\right] \text {, }
$$

where

$$
\mathrm{v}(\psi) \triangleq \mathbb{E}\left[\mathrm{u}\left(\iota\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{T}}\right) \vee \psi\left(\mathrm{e}^{\overline{\mathrm{T}} \mathrm{~T}}\right)\right]\right.
$$

Application: Optimal Investment with Fixed Deposits

- Illiquid asset: fixed deposit investment with initial price $\mathrm{F}_{0}=1$ with terminal payoff $\mathrm{F}_{\mathrm{T}}=\mathrm{e}^{\overline{\mathrm{T}}}, \overline{\mathrm{r}}>\mathrm{r}, \alpha=0$ (no borrowing)
- $u_{t}=0$ for all $t \in[0, T]$, i.e. terminal wealth problem only
- ψ is optimal amount of wealth invested into fixed deposits.
to the maximization of a continuous function on a compact interval, i.e. to

$$
\operatorname{maximize} \mathrm{v}(\psi) \text { over } \psi \in\left[0, \psi_{\max }\right],
$$

where

$$
\mathrm{v}(\psi) \triangleq \mathbb{E}\left[\mathrm{u}\left(\iota\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{T}}\right) \vee \psi\left(\mathrm{e}^{\overline{\mathrm{T}} \mathrm{~T}}\right)\right]\right.
$$

Application: Optimal Investment with Fixed Deposits

- Illiquid asset: fixed deposit investment with initial price $\mathrm{F}_{0}=1$ with terminal payoff $\mathrm{F}_{\mathrm{T}}=\mathrm{e}^{\overline{\mathrm{T}}}, \overline{\mathrm{r}}>\mathrm{r}, \alpha=0$ (no borrowing)
- $u_{t}=0$ for all $t \in[0, T]$, i.e. terminal wealth problem only
- ψ is optimal amount of wealth invested into fixed deposits.
- In view of the preceeding discussion, the portfolio problem (P) reduces to the maximization of a continuous function on a compact interval, i.e. to

$$
\begin{equation*}
\operatorname{maximize} \mathrm{v}(\psi) \text { over } \psi \in\left[0, \psi_{\max }\right] \tag{5}
\end{equation*}
$$

where

$$
\mathrm{v}(\psi) \triangleq \mathbb{E}\left[\mathrm{u}\left(\iota\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{T}}\right) \vee \psi\left(\mathrm{e}^{\mathrm{rT}}\right)\right] .\right.
$$

Application: Optimal Investment with Fixed Deposits

- Illiquid asset: fixed deposit investment with initial price $\mathrm{F}_{0}=1$ with terminal payoff $\mathrm{F}_{\mathrm{T}}=\mathrm{e}^{\overline{\mathrm{T}}}, \overline{\mathrm{r}}>\mathrm{r}, \alpha=0$ (no borrowing)
- $u_{t}=0$ for all $t \in[0, T]$, i.e. terminal wealth problem only
- ψ is optimal amount of wealth invested into fixed deposits.
- In view of the preceeding discussion, the portfolio problem (P) reduces to the maximization of a continuous function on a compact interval, i.e. to

$$
\begin{equation*}
\operatorname{maximize} \mathrm{v}(\psi) \text { over } \psi \in\left[0, \psi_{\max }\right] \tag{5}
\end{equation*}
$$

where

$$
\mathrm{v}(\psi) \triangleq \mathbb{E}\left[\mathrm{u}\left(\iota\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{T}}\right) \vee \psi\left(\mathrm{e}^{\mathrm{rT}}\right)\right] .\right.
$$

\square CRRA: $\mathrm{u}(\mathrm{x}) \triangleq \frac{1}{1-\rho} \mathrm{x}^{1-\rho} \quad$ and $\quad \iota(\lambda)=\lambda^{-\frac{1}{\rho}}$.

Numerical Solution

- Problem: Since $\mathbb{P}\left(\iota\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{T}}\right)=\psi \mathrm{e}^{\mathrm{TT}}\right)>0$, it is not clear how to differentiate the function $\mathrm{v}(\psi)$ w.r.t. ψ to obtain a FOC!
$\square \rightarrow$ Compute the optimal fixed deposit investment ψ^{\star} numerically.
■ The qualitative shapes of $\mathrm{v}(\psi)$ are robust so that the maximization can be performed efficiently with numerical methods.

The shape seems to be even concave for suitable values of r and \bar{r}. - \rightarrow Show concavity of $\mathrm{v}(\psi)$ in dependence of the parameters!

- Unless stated otherwise, we use the parameter specifications

$$
\rho=3, \mathrm{~T}=5, \mathrm{r}=4 \%, \overline{\mathrm{r}}=5 \%, \eta=8 \%, \sigma=20 \%
$$

Numerical Solution

■ Problem: Since $\mathbb{P}\left(\iota\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{T}}\right)=\psi \mathrm{e}^{\mathrm{T} \mathrm{T}}\right)>0$, it is not clear how to differentiate the function $\mathrm{v}(\psi)$ w.r.t. ψ to obtain a FOC!

■ \rightarrow Compute the optimal fixed deposit investment ψ^{\star} numerically.

- The qualitative shapes of $\mathrm{v}(\psi)$ are robust so that the maximization can be performed efficiently with numerical methods.
- The shape seems to be even concave for suitable values of r and $\overline{\mathrm{r}}$. - \rightarrow Show concavity of $\mathrm{v}(\psi)$ in dependence of the parameters!
- Unless stated otherwise, we use the parameter specifications

$$
\rho=3, \mathrm{~T}=5, \mathrm{r}=4 \%, \overline{\mathrm{r}}=5 \%, \quad \eta=8 \%, \sigma=20 \% .
$$

Numerical Solution

■ Problem: Since $\mathbb{P}\left(\iota\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{T}}\right)=\psi \mathrm{e}^{\mathrm{T} T}\right)>0$, it is not clear how to differentiate the function $\mathrm{v}(\psi)$ w.r.t. ψ to obtain a FOC!

■ \rightarrow Compute the optimal fixed deposit investment ψ^{\star} numerically.

- The qualitative shapes of $\mathrm{v}(\psi)$ are robust so that the maximization can be performed efficiently with numerical methods.
- The shape seems to be even concave for suitable values of r and $\overline{\mathrm{r}}$.
$\square \rightarrow$ Show concavity of $\mathrm{v}(\psi)$ in dependence of the parameters!
- Unless stated otherwise, we use the parameter specifications

$$
\rho=3, \mathrm{~T}=5, \mathrm{r}=4 \%, \overline{\mathrm{r}}=5 \%, \eta=8 \%, \sigma=20 \% .
$$

Numerical Solution

■ Problem: Since $\mathbb{P}\left(\iota\left(\gamma^{\star}(\psi) \mathrm{Z}_{\mathrm{T}}\right)=\psi \mathrm{e}^{\mathrm{T} T}\right)>0$, it is not clear how to differentiate the function $\mathrm{v}(\psi)$ w.r.t. ψ to obtain a FOC!

■ \rightarrow Compute the optimal fixed deposit investment ψ^{\star} numerically.

- The qualitative shapes of $\mathrm{v}(\psi)$ are robust so that the maximization can be performed efficiently with numerical methods.
- The shape seems to be even concave for suitable values of r and $\overline{\mathrm{r}}$.
$\square \rightarrow$ Show concavity of $\mathrm{v}(\psi)$ in dependence of the parameters!
- Unless stated otherwise, we use the parameter specifications

$$
\rho=3, \mathrm{~T}=5, \mathrm{r}=4 \%, \overline{\mathrm{r}}=5 \%, \eta=8 \%, \sigma=20 \% .
$$

Figure: Optimal terminal utility $\mathrm{v}(\psi)$ as a function of fixed deposit investment ψ.

Figure: Optimal terminal utility $\mathrm{v}(\psi)$ as a function of fixed deposit investment ψ for different levels of the riskless interest rate r .

Figure: Optimal fixed deposit investment ψ as a function of risk aversion ρ.

Figure: Optimal fixed deposit investment ψ as a function of the fixed interest rate $\overline{\mathrm{r}}$.

Thank You for Your Attention!

Questions/Remarks?

[^0]: - Thus some modifications become necessary.

