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Financial Market Model

■ Money market account B = {Bt} with

dBt = Btrtdt (1)

with an F-progressively measurable interest rate process r = {rt}
■ Risky asset P = {Pt}, a stock or stock index with

dPt = Pt[(rt + ηt)dt+ σtdWt] (2)

with F-progressively measurable excess return and volatility processes
η = {ηt} and σ = {σt}, W Wiener process.

■ The financial market is then FT-complete.
■ We denote the corresponding state-price deflator by Z = {Zt},

Zt , exp
{

−
∫ t

0
θsdWs −

∫ t

0
(rs +

1

2
θ2s )ds

}

for t ∈ [0,T] (3)

where θ = {θt}, θt ,
ηt
σt

is the market price of risk process.
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Illiquid Asset

Additionally there is an illiquid asset which offers

■ a random payoff FT at time T and

■ a continuous coupon payment at a rate δ = {δt}.

We suppose that FT admits the representation

FT(ω) = F(M(ω),N(ω)) with











M FT-measurable ,

N independent of FT .

→ M and N represent, respectively, the marketed (observable) and
non-marketed (unobservable) components of the risk inherent in FT.
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■ We assume that δ is F-progressively measurable.

■ The illiquid asset is traded at a price of F0 at time 0.

■ The investor obtains a payment ψFT at time T and receives a
continuous coupon ψδtdt between time t and time t+ dt, if she decides
to buy ψ illiquid assets at time 0.

■ The money market account and the stock are liquidly traded.

■ But it is not possible to buy or sell the illiquid asset after time 0.

■ Agreed contractually as in the case of a fixed deposit.
■ Inherent illiquidity and intermediate usage of the illiquid investment

(for instance, housing).

■ Short positions in the illiquid asset are prohibited.
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Wealth Dynamics

■ x0 : initial wealth
■ ψF0 : time-0 value of the illiquid investment
■ Investor can borrow - a the interest rate r - against a fraction α ∈ [0, 1)

of the face value of her illquid wealth and against the total value of the

outstanding coupon payments ψEt[
∫ T

t
Zsδsds] at time t.

■ In general, α < 1 and the divident stream is sold completely.
■ π = {πt}: fraction of liquid wealth invested into the stock at time t and

ct: investor’s consumption rate. Investor’s liquid wealth {Xψ,π,ct } is

dXψ,π,ct = Xψ,π,ct [(rt + πtηt)dt+ πtσtdWt]− ctdt,

Xψ,π,c
0

= x0 − ψF0 + αψF0 + ψE
[

∫ T

0
Ztδtdt

]

= x0 − ψ[(1− α)F0 − δ̄] ,

and δ̄ , E[
∫ T

0
Ztδtdt].

■ Solvency requirement: Xψ,π,ct ≥ 0, t ∈ [0,T], a.s.
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Optimal Portfolio Problem

A(x0) : Class of admissible strategies (ψ, π, c) for initial wealth x0 > 0. In

particular, we must have ψ ≤ ψmax , x0

(1−α)F0−δ̄
(⇒ Xψ,π,c

0
≥ 0).

The investor’s total terminal wealth is then given by

Xψ,π,c
T

+ ψFT − αψF0e
∫

T

0
rsds = Xψ,π,c

T
+ ψ(FT − αF0e

∫
T

0
rsds).

Optimal Portfolio Problem with Illiquid Assets

max (ψ,π,c)∈A(x0)E

[

∫ T

0
ut(ct)dt+ u

(

Xψ,π,c
T

+ ψ(FT − αF0e
∫

T

0
rsds)

)

]

(P)

Note that by choosing ut = 0 for all t ∈ [0,T] we obtain the corresponding
optimal terminal wealth problem.
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Optimal Investment with a Given Fixed Deposit

In the following, we fix the investment ψ ∈ [0, ψmax] into illiquid assets.
The portfolio problem (P) rewrites as

max (π,c)E

[

∫ T

0
ut(ct)dt+ ū(X̄π,c

T
)
]

with (ψ, π, c) ∈ A(x0). (Pψ)

Here the random utility function ūω : (0,∞) → R is given by

ūω(x̄) , u
(

x̄+ ψ(FT(ω)− αF0e
∫

T

0
rsds)

)

for x̄ ∈ (0,∞) ,

and the liquid wealth X̄π,c = {X̄π,ct } satisfies

dX̄π,ct = X̄π,ct [(rt + πtηt)dt+ πtσtdWt]− ctdt,

X̄π,c
0

= x0 − ψ[(1− α)F0 − δ̄], δ̄ , E[

∫ T

0

Ztδtdt] .
(4)
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0 f0 x0

utility for given fixed deposit
utility without fixed deposit

Figure: (Power) utility function ū for given investment into illiquid assets.
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■ In general, the mapping ω 7→ ūω need not be FT-measurable (recall
FT(ω) = F(M(ω),N(ω))).

■ Hence conditioning on FT we rewrite the criterion of problem (Pψ) as

E

[

∫ T

0
ut(ct)dt+ ū(X̄πT)

]

= E

[

∫ T

0
ut(ct)dt+ û(X̄πT)

]

with an FT-measurable random utility function ûω : (0,∞) → R with

ûω(x) , E[ū(x) |FT]ω = E
[

u
(

x+ ψ(F(M,N)− αF0e
∫

T

0
rsds)

)

|FT

]

ω

= E
[

u
(

x+ ψ(F(m,N)− αF0e
∫

T

0
̺sds)

)]

↾m=M(ω), ̺t=rt(ω), t∈[0,T],

■ û is deterministic if FT = F(N), i.e. the value of the illiquid asset is
ind. of marketed prices, and either r is deterministic or α = 0.
■ In particular, if FT = er̄T represents a fixed deposit investment with

a riskless interest rate r̄ and α = 0, then û = ū with ū deterministic.
■ → Later as application!

■ On the other hand, observe that û = ū if FT = F(M), since F(M) is
FT-measurable. (→ A more explicit Theorem.)
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■ → Later as application!

■ On the other hand, observe that û = ū if FT = F(M), since F(M) is
FT-measurable. (→ A more explicit Theorem.)
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]

with an FT-measurable random utility function ûω : (0,∞) → R with
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Duality Approach

■ Problem (Pψ) is similar to the standard utility maximization problem.
■ → Solution with the help of the duality approach of Cox and Huang

(1989, 1991), Karatzas, Lehoczky and Shreve (1991) and many others.
■ But: û can be random, and we may have û′ω(0) <∞ while the solvency

requirement imposes the constraint that X̄t ≥ 0, t ∈ [0,T], a.s.
■ Thus some modifications become necessary...

Lemma

The function ûω is differentiable for a.e. ω ∈ Ω with

û′ω(x) = E
[

u′
(

x+ ψ(F(m,N)− αF0e
∫

T

0
̺sds)

)]

↾m=M(ω), ̺t=rt(ω), t∈[0,T] .

Moreover, û′ω is strictly decreasing, û′ω(0) ∈ (0,∞], û′ω(x) > 0 for all
x > 0, and û′ω(x) → 0 as x → ∞.
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requirement imposes the constraint that X̄t ≥ 0, t ∈ [0,T], a.s.
■ Thus some modifications become necessary...

Lemma
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■ Denote by ι̂ω the (unique) inverse of û′ω, where it is understood that
ι̂ω(λ) = 0 if λ > û′ω(0).

■ Budget constraint: E
[

∫ T

0
Ztc

⋆
tdt+ ZTX̄

⋆
T

]

= x0 − ψ[(1− α)F0 − δ̄]

■ Apply the pointwise Lagrangian, then we have the candidates

X̄⋆T = ι̂(γ⋆ZT), c⋆t = ιt(γ
⋆Zt), t ∈ [0,T].

for the optimal terminal wealth and the optimal consumption rate.
■ With help of the identity (Young’s inequality)

ûω(x) ≤ ûω(ι̂ω(λ)) + λ
[

x− ι̂ω(λ)
]

for all λ > 0, x > 0,

■ and the conditions

E

[

∫ T

0
Ztιt(γZt)dt+ ZTι(γZT)

]

<∞ for all γ > 0,

E

[

∫ T

0
ut
(

ιt(γZt)
)

dt+ u
(

ι(γZT)
)]

<∞ for all γ > 0,

we can then get our first main Theorem:
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■ Budget constraint: E
[

∫ T

0
Ztc

⋆
tdt+ ZTX̄

⋆
T

]

= x0 − ψ[(1− α)F0 − δ̄]

■ Apply the pointwise Lagrangian, then we have the candidates

X̄⋆T = ι̂(γ⋆ZT), c⋆t = ιt(γ
⋆Zt), t ∈ [0,T].

for the optimal terminal wealth and the optimal consumption rate.
■ With help of the identity (Young’s inequality)
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Theorem (Optimal Investment with Illiquid Assets I)

The portfolio problem with illiquid assets (P) has a solution (ψ⋆, π⋆, c⋆).
With γ⋆ = γ⋆(ψ⋆) the optimal terminal wealth and the optimal
consumption rate are given by

X̄⋆T = ι̂(γ⋆ZT), c⋆t = ιt(γ
⋆Zt), t ∈ [0,T].

The optimal investment into the illiquid asset is given by

ψ⋆ = argmax
ψ∈[0,ψmax]

v(ψ)

where v is given by

v(ψ) , E

[

∫ T

0
ut
(

ιt(γ
⋆(ψ)Zt)

)

dt+ u
(

ι̂(γ⋆(ψ)ZT)
)]

.
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Remarks

■ v depends on ψ only via the Lagrange multiplier γ⋆(ψ) which was
determinded via the Budget constraint!

■ The solvency requirement X̄πt ≥ 0, t ∈ [0,T], a.s. forces us to to set the
inverse marginal utility ι̂ω(λ) = 0 if λ > û′ω(0) since the marginal
utility funtion û′ is defined on the range (0,∞) with image (0, û′(0))
and we have to ensure that the optimal final wealth X̄⋆

T
= ι̂(γ⋆ZT)

stays non-negative.

■ Problem: how to compute X̄⋆
T
= ι̂(γ⋆ZT), i.e. ι̂ω(λ)

■ → Solution: numerics
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Duality for FT = F(M)

■ In general, û and ι̂ must be computed numerically.
■ In the special case FT = F(M), i.e. FT is FT-measurable, we have

û = ū and the quantities of interest can be computed explicitly.
■ Since we have that

ū′(x) = u′(x+ F̄) with F̄ , ψ(FT − αF0e
∫

T

0
rsds) ,

■ it follows that ῑ associated to ū is given as

ῑ : (0,∞) → [0,∞), ῑ(λ) = (ι(λ)− F̄)+

where ι denotes the inverse marginal utility of u.
■ In particular, note that ῑ(λ) = 0 for λ ≥ λ0 , ū′(0) = u′(F̄).
■ Defining ῑ as above with image [0,∞) ensures that ῑ(γ⋆(ψ)ZT) and

thus the final wealth X̄⋆ψ stays non-negative (→ solvency!).
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ῑ : (0,∞) → [0,∞), ῑ(λ) = (ι(λ)− F̄)+

where ι denotes the inverse marginal utility of u.
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0 lambda0

inverse marginal utility for given fixed deposit
inverse marginal utility without fixed deposit

Figure: Inverse marginal (power) utility ῑ corresponding to ū.
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Theorem (Optimal Investment with Illiquid Assets II)

Suppose integrability conditions as before. Then the optimal portfolio
problem with illiquid assets (P) has a solution (ψ⋆, π⋆, c⋆). The optimal
investment into the illiquid asset is given by

ψ⋆ = argmax
ψ∈[0,ψmax]

v(ψ) with

v(ψ) , E

[

∫ T

0
ut
(

ιt(γ
⋆(ψ)Zt)

)

dt+ u
(

ι(γ⋆(ψ)ZT) ∨ F̄
)]

.

The optimal terminal wealth and the optimal consumption rate are

X̄⋆ψ , ῑ(γ⋆(ψ)ZT) and c⋆t , ιt(γ
⋆(ψ)Zt), t ∈ [0,T]

where the Lagrange multiplier γ⋆(ψ) ∈ (0,∞) is determined by the BC

E
[∫ T

0
Ztιt(γ

⋆(ψ)Zt)dt+ ZTῑ(γ
⋆(ψ)ZT)

]

= x0 − ψ[(1− α)F0 − δ̄].
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Application: Optimal Investment with Fixed Deposits

■ Illiquid asset: fixed deposit investment with initial price F0 = 1 with
terminal payoff FT = er̄T, r̄ > r, α = 0 (no borrowing)

■ ut = 0 for all t ∈ [0,T], i.e. terminal wealth problem only
■ ψ is optimal amount of wealth invested into fixed deposits.
■ In view of the preceeding discussion, the portfolio problem (P) reduces

to the maximization of a continuous function on a compact interval,
i.e. to

maximize v(ψ) over ψ ∈ [0, ψmax] , (5)

where
v(ψ) , E

[

u
(

ι(γ⋆(ψ)ZT) ∨ ψ(e
r̄T

)]

.

■ CRRA: u(x) , 1

1−ρ
x1−ρ and ι(λ) = λ−

1
ρ .
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Numerical Solution

■ Problem: Since P(ι(γ⋆(ψ)ZT) = ψer̄T) > 0, it is not clear how to
differentiate the function v(ψ) w.r.t. ψ to obtain a FOC!

■ → Compute the optimal fixed deposit investment ψ⋆ numerically.

■ The qualitative shapes of v(ψ) are robust so that the maximization
can be performed efficiently with numerical methods.

■ The shape seems to be even concave for suitable values of r and r̄.
■ → Show concavity of v(ψ) in dependence of the parameters!

■ Unless stated otherwise, we use the parameter specifications

ρ = 3, T = 5, r = 4%, r̄ = 5%, η = 8%, σ = 20%.
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optimal utility as a function of fixed deposit

Figure: Optimal terminal utility v(ψ) as a function of fixed deposit investment
ψ.
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Figure: Optimal terminal utility v(ψ) as a function of fixed deposit investment
ψ for different levels of the riskless interest rate r.
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Figure: Optimal fixed deposit investment ψ as a function of risk aversion ρ.
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Figure: Optimal fixed deposit investment ψ as a function of the fixed interest
rate r̄.
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Thank You for Your Attention!

Questions/Remarks?
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