Optimal Investment with Illiquid Assets

Advances in Mathematics of Finance - 6th AMaMeF and Banach Center Conference Warsaw, June 10 - 15, 2013

Sascha Desmettre and Frank Thomas Seifried

1. Financial Market Model

- 2. Optimal Investment Problem with Illiquid Assets
 - Explain the differences to a classical investment problem
- 3. Solution by Duality Methods
- 4. Application: Investment with fixed Deposits

- 1. Financial Market Model
- 2. Optimal Investment Problem with Illiquid Assets
 - Explain the differences to a classical investment problem
- 3. Solution by Duality Methods
- 4. Application: Investment with fixed Deposits

- 1. Financial Market Model
- 2. Optimal Investment Problem with Illiquid Assets
 - Explain the differences to a classical investment problem
- 3. Solution by Duality Methods
- 4. Application: Investment with fixed Deposits

- 1. Financial Market Model
- 2. Optimal Investment Problem with Illiquid Assets
 - Explain the differences to a classical investment problem
- 3. Solution by Duality Methods
- 4. Application: Investment with fixed Deposits

• Money market account $B = \{B_t\}$ with

$$dB_t = B_t r_t dt \tag{1}$$

with an \mathfrak{F} -progressively measurable interest rate process $r = \{r_t\}$ Risky asset $P = \{P_t\}$, a stock or stock index with

$$dP_{t} = P_{t}[(r_{t} + \eta_{t})dt + \sigma_{t}dW_{t}]$$
(2)

with \mathfrak{F} -progressively measurable excess return and volatility processes $\eta = \{\eta_t\}$ and $\sigma = \{\sigma_t\}$, W Wiener process.

The financial market is then \mathfrak{F}_{T} -complete.

We denote the corresponding state-price deflator by $Z = \{Z_t\},\$

$$Z_t \triangleq \exp\left\{-\int_0^t \theta_s dW_s - \int_0^t (r_s + \frac{1}{2}\theta_s^2) ds\right\} \text{ for } t \in [0, T]$$
(3)

where $\theta = \{\theta_t\}, \ \theta_t \triangleq \frac{\eta_t}{\sigma_t}$ is the market price of risk process.

• Money market account $B = \{B_t\}$ with

$$dB_t = B_t r_t dt \tag{1}$$

with an \mathfrak{F} -progressively measurable interest rate process $r = \{r_t\}$ Risky asset $P = \{P_t\}$, a stock or stock index with

$$dP_{t} = P_{t}[(r_{t} + \eta_{t})dt + \sigma_{t}dW_{t}]$$
(2)

with \mathfrak{F} -progressively measurable excess return and volatility processes $\eta = \{\eta_t\}$ and $\sigma = \{\sigma_t\}$, W Wiener process.

The financial market is then $\mathfrak{F}_{\mathrm{T}}$ -complete.

We denote the corresponding state-price deflator by $Z = \{Z_t\},\$

$$Z_t \triangleq \exp\left\{-\int_0^t \theta_s dW_s - \int_0^t (r_s + \frac{1}{2}\theta_s^2) ds\right\} \text{ for } t \in [0, T]$$
(3)

where $\theta = \{\theta_t\}, \ \theta_t \triangleq \frac{\eta_t}{\sigma_t}$ is the market price of risk process.

• Money market account $B = \{B_t\}$ with

$$dB_t = B_t r_t dt \tag{1}$$

with an \mathfrak{F} -progressively measurable interest rate process $r = \{r_t\}$ Risky asset $P = \{P_t\}$, a stock or stock index with

$$dP_{t} = P_{t}[(r_{t} + \eta_{t})dt + \sigma_{t}dW_{t}]$$
(2)

with \mathfrak{F} -progressively measurable excess return and volatility processes $\eta = \{\eta_t\}$ and $\sigma = \{\sigma_t\}$, W Wiener process.

The financial market is then \$\vec{F}_T\$-complete.
 We denote the corresponding state-price deflator by Z = {Z_t

$$Z_t \triangleq \exp\left\{-\int_0^t \theta_s dW_s - \int_0^t (r_s + \frac{1}{2}\theta_s^2) ds\right\} \text{ for } t \in [0, T]$$
(3)

where $\theta = \{\theta_t\}, \ \theta_t \triangleq \frac{\eta_t}{\sigma_t}$ is the market price of risk process.

• Money market account $B = \{B_t\}$ with

$$dB_t = B_t r_t dt \tag{1}$$

with an \mathfrak{F} -progressively measurable interest rate process $r = \{r_t\}$ Risky asset $P = \{P_t\}$, a stock or stock index with

$$dP_{t} = P_{t}[(r_{t} + \eta_{t})dt + \sigma_{t}dW_{t}]$$
(2)

with \mathfrak{F} -progressively measurable excess return and volatility processes $\eta = \{\eta_t\}$ and $\sigma = \{\sigma_t\}$, W Wiener process.

- The financial market is then \mathfrak{F}_{T} -complete.
- We denote the corresponding state-price deflator by $Z = \{Z_t\}$,

$$Z_{t} \triangleq \exp\left\{-\int_{0}^{t} \theta_{s} dW_{s} - \int_{0}^{t} (r_{s} + \frac{1}{2}\theta_{s}^{2}) ds\right\} \text{ for } t \in [0, T]$$
(3)

where $\theta = \{\theta_t\}, \ \theta_t \triangleq \frac{\eta_t}{\sigma_t}$ is the market price of risk process.

Illiquid Asset

Additionally there is an illiquid asset which offers

- a random payoff F_T at time T and
- a continuous coupon payment at a rate $\delta = \{\delta_t\}$.

We suppose that \mathbf{F}_{T} admits the representation

$$F_{T}(\omega) = F(M(\omega), N(\omega)) \text{ with } \begin{cases} M \ \mathfrak{F}_{T}\text{-measurable}, \\ N \text{ independent of } \mathfrak{F}_{T}. \end{cases}$$

 \rightarrow M and N represent, respectively, the marketed (observable) and non-marketed (unobservable) components of the risk inherent in F_T.

Illiquid Asset

Additionally there is an illiquid asset which offers

- a random payoff F_T at time T and
- a continuous coupon payment at a rate $\delta = \{\delta_t\}$.

We suppose that F_{T} admits the representation

$$F_{T}(\omega) = F(M(\omega), N(\omega))$$
 with $\begin{cases} M \ \mathfrak{F}_{T}\text{-measurable}, \\ N \text{ independent of } \mathfrak{F}_{T}. \end{cases}$

 \rightarrow M and N represent, respectively, the marketed (observable) and non-marketed (unobservable) components of the risk inherent in F_T.

Illiquid Asset

Additionally there is an illiquid asset which offers

- a random payoff F_T at time T and
- a continuous coupon payment at a rate $\delta = \{\delta_t\}$.

We suppose that F_T admits the representation

$$F_{T}(\omega) = F(M(\omega), N(\omega))$$
 with $\begin{cases} M \ \mathfrak{F}_{T}\text{-measurable}, \\ N \text{ independent of } \mathfrak{F}_{T}. \end{cases}$

 \rightarrow M and N represent, respectively, the marketed (observable) and non-marketed (unobservable) components of the risk inherent in F_T.

We assume that δ is \mathfrak{F} -progressively measurable.

- The illiquid asset is traded at a price of F_0 at time 0.
- The investor obtains a payment ψF_T at time T and receives a continuous coupon $\psi \delta_t dt$ between time t and time t + dt, if she decides to buy ψ illiquid assets at time 0.
- The money market account and the stock are liquidly traded.
- But it is not possible to buy or sell the illiquid asset after time 0.
 - Agreed contractually as in the case of a fixed deposit.
 - Inherent illiquidity and intermediate usage of the illiquid investment (for instance, housing).
- Short positions in the illiquid asset are prohibited.

• We assume that δ is \mathfrak{F} -progressively measurable.

• The illiquid asset is traded at a price of F_0 at time 0.

- The investor obtains a payment ψF_T at time T and receives a continuous coupon $\psi \delta_t dt$ between time t and time t + dt, if she decides to buy ψ illiquid assets at time 0.
- The money market account and the stock are liquidly traded.
- But it is not possible to buy or sell the illiquid asset after time 0.
 - Agreed contractually as in the case of a fixed deposit.
 - Inherent illiquidity and intermediate usage of the illiquid investment (for instance, housing).
- Short positions in the illiquid asset are prohibited.

- We assume that δ is \mathfrak{F} -progressively measurable.
- The illiquid asset is traded at a price of F_0 at time 0.
- The investor obtains a payment ψF_T at time T and receives a continuous coupon $\psi \delta_t dt$ between time t and time t + dt, if she decides to buy ψ illiquid assets at time 0.
- The money market account and the stock are liquidly traded.
- But it is not possible to buy or sell the illiquid asset after time 0.
 - Agreed contractually as in the case of a fixed deposit.
 - Inherent illiquidity and intermediate usage of the illiquid investment (for instance, housing).
- Short positions in the illiquid asset are prohibited.

- We assume that δ is \mathfrak{F} -progressively measurable.
- The illiquid asset is traded at a price of F_0 at time 0.
- The investor obtains a payment ψF_T at time T and receives a continuous coupon $\psi \delta_t dt$ between time t and time t + dt, if she decides to buy ψ illiquid assets at time 0.
- The money market account and the stock are liquidly traded.
- But it is not possible to buy or sell the illiquid asset after time 0.
 - Agreed contractually as in the case of a fixed deposit.
 - Inherent illiquidity and intermediate usage of the illiquid investment (for instance, housing).
- Short positions in the illiquid asset are prohibited.

- We assume that δ is \mathfrak{F} -progressively measurable.
- The illiquid asset is traded at a price of F_0 at time 0.
- The investor obtains a payment ψF_T at time T and receives a continuous coupon $\psi \delta_t dt$ between time t and time t + dt, if she decides to buy ψ illiquid assets at time 0.
- The money market account and the stock are liquidly traded.
- But it is not possible to buy or sell the illiquid asset after time 0.
 - Agreed contractually as in the case of a fixed deposit.
 - Inherent illiquidity and intermediate usage of the illiquid investment (for instance, housing).
- Short positions in the illiquid asset are prohibited.

- We assume that δ is \mathfrak{F} -progressively measurable.
- The illiquid asset is traded at a price of F_0 at time 0.
- The investor obtains a payment ψF_T at time T and receives a continuous coupon $\psi \delta_t dt$ between time t and time t + dt, if she decides to buy ψ illiquid assets at time 0.
- The money market account and the stock are liquidly traded.
- But it is not possible to buy or sell the illiquid asset after time 0.
 - Agreed contractually as in the case of a fixed deposit.
 - Inherent illiquidity and intermediate usage of the illiquid investment (for instance, housing).
- Short positions in the illiquid asset are prohibited.

x_0 : initial wealth

ψF_0 : time-0 value of the illiquid investment

Investor can borrow - a the interest rate r - against a fraction $\alpha \in [0, 1)$ of the face value of her illquid wealth and against the total value of the outstanding coupon payments $\psi \mathbb{E}_t [\int_t^T Z_s \delta_s ds]$ at time t.

In general, $\alpha < 1$ and the divident stream is sold completely. $\pi = {\pi_t}$: fraction of liquid wealth invested into the stock at time t and α : investor's consumption rate. Investor's liquid wealth $\{X^{\psi,\pi,c}\}$ is

$$dX_{t}^{\psi,\pi,c} = X_{t}^{\psi,\pi,c} [(r_{t} + \pi_{t}\eta_{t})dt + \pi_{t}\sigma_{t}dW_{t}] - c_{t}dt,$$

$$X_{0}^{\psi,\pi,c} = x_{0} - \psi F_{0} + \alpha \psi F_{0} + \psi \mathbb{E} \Big[\int_{0}^{T} Z_{t} \delta_{t}dt \Big] = x_{0} - \psi [(1-\alpha)F_{0} - \bar{\delta}],$$
and $\bar{\delta} \triangleq \mathbb{E} [\int_{0}^{T} Z_{t} \delta_{t}dt].$
Solvency requirement: $X_{t}^{\psi,\pi,c} > 0, t \in [0,T], a.s.$

Fraunhofer

\mathbf{x}_0 : initial wealth

• ψF_0 : time-0 value of the illiquid investment

- Investor can borrow a the interest rate r against a fraction $\alpha \in [0, 1)$ of the face value of her illquid wealth and against the total value of the outstanding coupon payments $\psi \mathbb{E}_t [\int_t^T Z_s \delta_s ds]$ at time t.
- In general, $\alpha < 1$ and the divident stream is sold completely.
 - c_t : investor's consumption rate. Investor's liquid wealth $\{X_t^{\psi,\pi,c}\}$ is

$$dX_{t}^{\psi,\pi,c} = X_{t}^{\psi,\pi,c}[(r_{t} + \pi_{t}\eta_{t})dt + \pi_{t}\sigma_{t}dW_{t}] - c_{t}dt,$$

$$X_{0}^{\psi,\pi,c} = x_{0} - \psi F_{0} + \alpha \psi F_{0} + \psi \mathbb{E}\left[\int_{0}^{T} Z_{t}\delta_{t}dt\right] = x_{0} - \psi[(1-\alpha)F_{0} - \bar{\delta}],$$

and $\bar{\delta} \triangleq \mathbb{E}[\int_{0}^{T} Z_{t}\delta_{t}dt].$
Solvency requirement: $X_{t}^{\psi,\pi,c} \ge 0, t \in [0,T], \text{ a.s.}$

Fraunhofer

- x_0 : initial wealth
- ψF_0 : time-0 value of the illiquid investment
- Investor can borrow a the interest rate r against a fraction $\alpha \in [0, 1)$ of the face value of her illquid wealth and against the total value of the outstanding coupon payments $\psi \mathbb{E}_t [\int_t^T Z_s \delta_s ds]$ at time t.
- In general, α < 1 and the divident stream is sold completely.
 π = {π_t}: fraction of liquid wealth invested into the stock at time t and c_t: investor's consumption rate. Investor's liquid wealth {X_t^{ψ,π,c}} is

$$dX_t^{\psi,\pi,c} = X_t^{\psi,\pi,c} [(r_t + \pi_t \eta_t) dt + \pi_t \sigma_t dW_t] - c_t dt,$$

 $\mathbf{X}_0^{\psi,\pi,\mathrm{c}} = \mathrm{x}_0 - \psi \mathrm{F}_0 + lpha \psi \mathrm{F}_0 + \psi \mathbb{E} \Big[\int_0^\mathrm{T} \mathrm{Z}_t \delta_t \mathrm{d}t \Big] = \mathrm{x}_0 - \psi [(1-lpha) \mathrm{F}_0 - ar{\delta}] \,,$

and
$$\bar{\delta} \triangleq \mathbb{E}[\int_0^T \mathbf{Z}_t \delta_t dt].$$

Solvency requirement: $X_t^{\psi,\pi,c} \ge 0, t \in [0,T]$, a.s.

- x_0 : initial wealth
- ψF_0 : time-0 value of the illiquid investment
- Investor can borrow a the interest rate r against a fraction $\alpha \in [0, 1)$ of the face value of her illquid wealth and against the total value of the outstanding coupon payments $\psi \mathbb{E}_t [\int_t^T Z_s \delta_s ds]$ at time t.
- In general, $\alpha < 1$ and the divident stream is sold completely.

 $= \pi = \{\pi_t\}: \text{ fraction of liquid wealth invested into the stock at time t and } c_t: \text{ investor's consumption rate. Investor's liquid wealth } \{X_t^{\psi,\pi,c}\} \text{ is }$

$$dX_t^{\psi,\pi,c} = X_t^{\psi,\pi,c} [(r_t + \pi_t \eta_t) dt + \pi_t \sigma_t dW_t] - c_t dt,$$

 $\mathrm{X}^{\psi,\pi,\mathrm{c}}_{0} = \mathrm{x}_{0} - \psi\mathrm{F}_{0} + lpha\psi\mathrm{F}_{0} + \psi\mathbb{E}\Big[\int_{0}^{\mathrm{T}}\mathrm{Z}_{\mathrm{t}}\delta_{\mathrm{t}}\mathrm{dt}\Big] = \mathrm{x}_{0} - \psi[(1-lpha)\mathrm{F}_{0} - ar{\delta}]\,,$

and
$$\bar{\delta} \triangleq \mathbb{E}[\int_0^T \mathbf{Z}_t \delta_t dt].$$

Solvency requirement: $X_t^{\psi,\pi,c} \ge 0, t \in [0,T]$, a.s.

- x_0 : initial wealth
- ψF_0 : time-0 value of the illiquid investment
- Investor can borrow a the interest rate r against a fraction $\alpha \in [0, 1)$ of the face value of her illquid wealth and against the total value of the outstanding coupon payments $\psi \mathbb{E}_t [\int_t^T Z_s \delta_s ds]$ at time t.
- In general, $\alpha < 1$ and the divident stream is sold completely.
- $\pi = {\pi_t}$: fraction of liquid wealth invested into the stock at time t and c_t : investor's consumption rate. Investor's liquid wealth ${X_t^{\psi,\pi,c}}$ is

$$dX_{t}^{\psi,\pi,c} = X_{t}^{\psi,\pi,c}[(r_{t} + \pi_{t}\eta_{t})dt + \pi_{t}\sigma_{t}dW_{t}] - c_{t}dt,$$

$$X_{0}^{\psi,\pi,c} = x_{0} - \psi F_{0} + \alpha \psi F_{0} + \psi \mathbb{E}\left[\int_{0}^{T} Z_{t}\delta_{t}dt\right] = x_{0} - \psi[(1-\alpha)F_{0} - \bar{\delta}],$$

and $\bar{\delta} \triangleq \mathbb{E}[\int_{0}^{T} Z_{t}\delta_{t}dt].$

- x_0 : initial wealth
- ψF_0 : time-0 value of the illiquid investment
- Investor can borrow a the interest rate r against a fraction $\alpha \in [0, 1)$ of the face value of her illquid wealth and against the total value of the outstanding coupon payments $\psi \mathbb{E}_t [\int_t^T Z_s \delta_s ds]$ at time t.
- In general, $\alpha < 1$ and the divident stream is sold completely.
- $\pi = {\pi_t}$: fraction of liquid wealth invested into the stock at time t and c_t : investor's consumption rate. Investor's liquid wealth ${X_t^{\psi,\pi,c}}$ is

$$dX_t^{\psi,\pi,c} = X_t^{\psi,\pi,c} [(r_t + \pi_t \eta_t) dt + \pi_t \sigma_t dW_t] - c_t dt,$$

$$X_0^{\psi,\pi,c} = x_0 - \psi F_0 + \alpha \psi F_0 + \psi \mathbb{E} \left[\int_0^T Z_t \delta_t dt \right] = x_0 - \psi [(1-\alpha)F_0 - \bar{\delta}],$$

and $\bar{\delta} \triangleq \mathbb{E} [\int_0^T Z_t \delta_t dt].$
Solvency requirement: $X_t^{\psi,\pi,c} > 0, t \in [0,T]$, a.s.

٤

Optimal Portfolio Problem

 $\mathcal{A}(\mathbf{x}_0)$: Class of admissible strategies (ψ, π, \mathbf{c}) for initial wealth $\mathbf{x}_0 > 0$. In particular, we must have $\psi \leq \psi_{\max} \triangleq \frac{\mathbf{x}_0}{(1-\alpha)F_0-\overline{\delta}} \iff \mathbf{X}_0^{\psi,\pi,\mathbf{c}} \geq 0$. The investor's total terminal wealth is then given by

$$X_{T}^{\psi,\pi,c} + \psi F_{T} - \alpha \psi F_{0} e^{\int_{0}^{T} r_{s} ds} = X_{T}^{\psi,\pi,c} + \psi (F_{T} - \alpha F_{0} e^{\int_{0}^{T} r_{s} ds}).$$

Optimal Portfolio Problem with Illiquid Assets

$$\max_{(\psi,\pi,c)\in\mathcal{A}(x_0)} \mathbb{E}\left[\int_0^T u_t(c_t)dt + u\left(X_T^{\psi,\pi,c} + \psi(F_T - \alpha F_0 e^{\int_0^T r_s ds})\right)\right] \quad (P)$$

Note that by choosing $u_t = 0$ for all $t \in [0, T]$ we obtain the corresponding optimal terminal wealth problem.

Optimal Portfolio Problem

 $\mathcal{A}(\mathbf{x}_0)$: Class of admissible strategies (ψ, π, \mathbf{c}) for initial wealth $\mathbf{x}_0 > 0$. In particular, we must have $\psi \leq \psi_{\max} \triangleq \frac{\mathbf{x}_0}{(1-\alpha)F_0-\delta} \iff \mathbf{X}_0^{\psi,\pi,\mathbf{c}} \geq 0$. The investor's total terminal wealth is then given by

$$X_{T}^{\psi,\pi,c} + \psi F_{T} - \alpha \psi F_{0} e^{\int_{0}^{T} r_{s} ds} = X_{T}^{\psi,\pi,c} + \psi (F_{T} - \alpha F_{0} e^{\int_{0}^{T} r_{s} ds}).$$

Optimal Portfolio Problem with Illiquid Assets

$$\max_{(\psi,\pi,c)\in\mathcal{A}(x_0)} \mathbb{E}\left[\int_0^T u_t(c_t)dt + u\left(X_T^{\psi,\pi,c} + \psi(F_T - \alpha F_0 e^{\int_0^T r_s ds})\right)\right] \quad (P)$$

Note that by choosing $u_t = 0$ for all $t \in [0, T]$ we obtain the corresponding optimal terminal wealth problem.

Optimal Portfolio Problem

 $\mathcal{A}(\mathbf{x}_0)$: Class of admissible strategies (ψ, π, \mathbf{c}) for initial wealth $\mathbf{x}_0 > 0$. In particular, we must have $\psi \leq \psi_{\max} \triangleq \frac{\mathbf{x}_0}{(1-\alpha)F_0-\overline{\delta}} \iff \mathbf{X}_0^{\psi,\pi,\mathbf{c}} \geq 0$). The investor's total terminal wealth is then given by

$$X_{T}^{\psi,\pi,c} + \psi F_{T} - \alpha \psi F_{0} e^{\int_{0}^{T} r_{s} ds} = X_{T}^{\psi,\pi,c} + \psi (F_{T} - \alpha F_{0} e^{\int_{0}^{T} r_{s} ds}).$$

Optimal Portfolio Problem with Illiquid Assets

$$\max_{(\psi,\pi,c)\in\mathcal{A}(x_0)} \mathbb{E}\left[\int_0^T u_t(c_t)dt + u(X_T^{\psi,\pi,c} + \psi(F_T - \alpha F_0 e^{\int_0^T r_s ds}))\right] \quad (P)$$

Note that by choosing $u_t = 0$ for all $t \in [0, T]$ we obtain the corresponding optimal terminal wealth problem.

Optimal Investment with a Given Fixed Deposit

In the following, we fix the investment $\psi \in [0, \psi_{\max}]$ into illiquid assets. The portfolio problem (P) rewrites as

$$\max_{(\pi,c)} \mathbb{E}\left[\int_0^T u_t(c_t) dt + \bar{u}(\bar{X}_T^{\pi,c})\right] \text{ with } (\psi,\pi,c) \in \mathcal{A}(x_0).$$
 (P_{\u03c6})

Here the random utility function \bar{u}_{ω} : $(0,\infty) \to \mathbb{R}$ is given by

$$\mathbf{\tilde{u}}_{\omega}(\mathbf{\tilde{x}}) \triangleq \mathbf{u}(\mathbf{\bar{x}} + \psi(\mathbf{F}_{\mathrm{T}}(\omega) - \alpha \mathbf{F}_{0} \mathbf{e}^{\int_{0}^{\mathrm{T}} \mathbf{r}_{\mathrm{s}} \mathrm{ds}})) \text{ for } \mathbf{\bar{x}} \in (0, \infty),$$

and the liquid wealth $\bar{X}^{\pi,c} = \{\bar{X}^{\pi,c}_t\}$ satisfies

$$d\bar{X}_{t}^{\pi,c} = \bar{X}_{t}^{\pi,c}[(r_{t} + \pi_{t}\eta_{t})dt + \pi_{t}\sigma_{t}dW_{t}] - c_{t}dt,$$

$$\bar{X}_{0}^{\pi,c} = x_{0} - \psi[(1-\alpha)F_{0} - \bar{\delta}], \ \bar{\delta} \triangleq \mathbb{E}[\int_{0}^{T} Z_{t}\delta_{t}dt].$$
(4)

Optimal Investment with a Given Fixed Deposit

In the following, we fix the investment $\psi \in [0, \psi_{\max}]$ into illiquid assets. The portfolio problem (P) rewrites as

$$\max_{(\pi,c)} \mathbb{E}\left[\int_0^T u_t(c_t) dt + \bar{u}(\bar{X}_T^{\pi,c})\right] \text{ with } (\psi,\pi,c) \in \mathcal{A}(x_0).$$
 (P_{\u03c6})

Here the random utility function \bar{u}_{ω} : $(0,\infty) \to \mathbb{R}$ is given by

$$ar{\mathrm{u}}_\omega(ar{\mathrm{x}}) riangleq \mathrm{u}ig(ar{\mathrm{x}}+\psi(\mathrm{F}_\mathrm{T}(\omega)-lpha\mathrm{F}_0\mathrm{e}^{\int_0^\mathrm{T}\mathrm{r_s}\mathrm{ds}})ig) ext{ for }ar{\mathrm{x}}\in(0,\infty)\,,$$

and the liquid wealth $\bar{X}^{\pi,c} = \{\bar{X}^{\pi,c}_t\}$ satisfies

$$d\bar{X}_{t}^{\pi,c} = \bar{X}_{t}^{\pi,c}[(r_{t} + \pi_{t}\eta_{t})dt + \pi_{t}\sigma_{t}dW_{t}] - c_{t}dt,$$

$$\bar{X}_{0}^{\pi,c} = x_{0} - \psi[(1 - \alpha)F_{0} - \bar{\delta}], \ \bar{\delta} \triangleq \mathbb{E}[\int_{0}^{T} Z_{t}\delta_{t}dt].$$
(4)

Optimal Investment with a Given Fixed Deposit

In the following, we fix the investment $\psi \in [0, \psi_{\max}]$ into illiquid assets. The portfolio problem (P) rewrites as

$$\max_{(\pi,c)} \mathbb{E}\left[\int_0^T u_t(c_t) dt + \bar{u}(\bar{X}_T^{\pi,c})\right] \text{ with } (\psi,\pi,c) \in \mathcal{A}(x_0).$$
 (P_{\u03c6})

Here the random utility function \bar{u}_{ω} : $(0,\infty) \to \mathbb{R}$ is given by

$$ar{\mathrm{u}}_\omega(ar{\mathrm{x}}) riangleq \mathrm{u}ig(ar{\mathrm{x}}+\psi(\mathrm{F}_\mathrm{T}(\omega)-lpha\mathrm{F}_0\mathrm{e}^{\int_0^\mathrm{T}\mathrm{r_s}\mathrm{ds}})ig) ext{ for }ar{\mathrm{x}}\in(0,\infty)\,,$$

and the liquid wealth $\bar{X}^{\pi,c} = \{\bar{X}^{\pi,c}_t\}$ satisfies

$$d\bar{X}_{t}^{\pi,c} = \bar{X}_{t}^{\pi,c}[(r_{t} + \pi_{t}\eta_{t})dt + \pi_{t}\sigma_{t}dW_{t}] - c_{t}dt,$$

$$\bar{X}_{0}^{\pi,c} = x_{0} - \psi[(1-\alpha)F_{0} - \bar{\delta}], \ \bar{\delta} \triangleq \mathbb{E}[\int_{0}^{T} Z_{t}\delta_{t}dt].$$
(4)

Figure: (Power) utility function \bar{u} for given investment into illiquid assets.

- In general, the mapping ω → ū_ω need not be ℑ_T-measurable (recall F_T(ω) = F(M(ω), N(ω))).
 Hence conditioning on ℑ_T we rewrite the criterion of problem (P_ψ) as E [∫₀^Tu_t(c_t)dt + ū(X_T^π)] = E [∫₀^Tu_t(c_t)dt + û(X_T^π)] with an ℑ_T-measurable random utility function û_ω : (0,∞) → ℝ with û_ω(x) ≜ E[ū(x) | ℑ_T]_ω = E[u(x + ψ(F(M, N) - αF₀e∫₀^Tr_sds)) | ℑ_T]_ω = E[u(x + ψ(F(m, N) - αF₀e∫₀^Tℓ_sds))] |_{m=M(ω)}, ρ_t = r_t(ω), t∈[0,T],
- û is deterministic if F_T = F(N), i.e. the value of the illiquid asset is ind. of marketed prices, and either r is deterministic or α = 0.
 In particular, if F_T = e^{FT} represents a fixed deposit investment with a riskless interest rate r and α = 0, then û = ū with ū deterministic.
 → Later as application!
- On the other hand, observe that $\hat{u} = \bar{u}$ if $F_T = F(M)$, since F(M) is \mathfrak{F}_T -measurable. (\rightarrow A more explicit Theorem.)

Hence conditioning on $\mathfrak{F}_{\mathrm{T}}$ we rewrite the criterion of problem (\mathbf{P}_{ψ}) as

$$\mathbb{E}\Big[\int_0^T u_t(c_t)dt + \bar{u}(\bar{X}_T^{\pi})\Big] = \mathbb{E}\Big[\int_0^T u_t(c_t)dt + \hat{u}(\bar{X}_T^{\pi})\Big]$$

with an \mathfrak{F}_{T} -measurable random utility function $\hat{\mathbf{u}}_{\omega}$: $(0, \infty) \to \mathbb{R}$ with $\hat{\mathbf{u}}_{\omega}(\mathbf{x}) \triangleq \mathbb{E}[\bar{\mathbf{u}}(\mathbf{x}) \mid \mathfrak{F}_{T}]_{\omega} = \mathbb{E}[\mathbf{u}(\mathbf{x} + \psi(\mathbf{F}(\mathbf{M}, \mathbf{N}) - \alpha \mathbf{F}_{0}\mathbf{e}^{\int_{0}^{\mathrm{T}}\mathbf{r}_{s}\mathrm{ds}})) \mid \mathfrak{F}_{T}]_{\omega}$ $= \mathbb{E}[\mathbf{u}(\mathbf{x} + \psi(\mathbf{F}(\mathbf{m}, \mathbf{N}) - \alpha \mathbf{F}_{0}\mathbf{e}^{\int_{0}^{\mathrm{T}}\boldsymbol{\varrho}_{s}\mathrm{ds}}))] \upharpoonright_{\mathbf{m}=\mathbf{M}(\omega), \ \boldsymbol{\varrho}_{t}=\mathbf{r}_{t}(\omega), t \in [0, T]},$

- û is deterministic if F_T = F(N), i.e. the value of the illiquid asset is ind. of marketed prices, and either r is deterministic or α = 0.
 In particular, if F_T = e^{FT} represents a fixed deposit investment with a riskless interest rate r and α = 0, then û = ū with ū deterministic.
 → Later as application!
- On the other hand, observe that $\hat{u} = \bar{u}$ if $F_T = F(M)$, since F(M) is \mathfrak{F}_T -measurable. (\rightarrow A more explicit Theorem.)

Hence conditioning on $\mathfrak{F}_{\mathrm{T}}$ we rewrite the criterion of problem (\mathbf{P}_{ψ}) as

$$\mathbb{E}\Big[\int_0^T u_t(c_t)dt + \bar{u}(\bar{X}_T^\pi)\Big] = \mathbb{E}\Big[\int_0^T u_t(c_t)dt + \hat{u}(\bar{X}_T^\pi)\Big]$$

with an \mathfrak{F}_{T} -measurable random utility function \hat{u}_{ω} : $(0, \infty) \to \mathbb{R}$ with $\hat{u}_{\omega}(x) \triangleq \mathbb{E}[\bar{u}(x) | \mathfrak{F}_{T}]_{\omega} = \mathbb{E}[u(x + \psi(F(M, N) - \alpha F_{0}e^{\int_{0}^{T} r_{s}ds})) | \mathfrak{F}_{T}]_{\omega}$ $= \mathbb{E}[u(x + \psi(F(m, N) - \alpha F_{0}e^{\int_{0}^{T} \varrho_{s}ds}))]|_{m=M(\omega), \ \varrho_{t}=r_{t}(\omega), \ t \in [0, T]},$

û is deterministic if F_T = F(N), i.e. the value of the illiquid asset is ind. of marketed prices, and either r is deterministic or α = 0.
In particular, if F_T = e^{r̄T} represents a fixed deposit investment with a riskless interest rate r̄ and α = 0, then û = ū with ū deterministic.
→ Later as application!

• On the other hand, observe that $\hat{u} = \bar{u}$ if $F_T = F(M)$, since F(M) is \mathfrak{F}_T -measurable. (\rightarrow A more explicit Theorem.)

Hence conditioning on $\mathfrak{F}_{\mathrm{T}}$ we rewrite the criterion of problem (\mathbf{P}_{ψ}) as

$$\mathbb{E}\Big[\int_0^T u_t(c_t) dt + \bar{u}(\bar{X}_T^{\pi})\Big] = \mathbb{E}\Big[\int_0^T u_t(c_t) dt + \hat{u}(\bar{X}_T^{\pi})\Big]$$

with an \mathfrak{F}_{T} -measurable random utility function \hat{u}_{ω} : $(0, \infty) \to \mathbb{R}$ with $\hat{u}_{\omega}(x) \triangleq \mathbb{E}[\bar{u}(x) \mid \mathfrak{F}_{T}]_{\omega} = \mathbb{E}[u(x + \psi(F(M, N) - \alpha F_{0}e^{\int_{0}^{T} r_{s} ds})) \mid \mathfrak{F}_{T}]_{\omega}$

$$= \mathbb{E} \left[u \left(x + \psi (F(m, N) - \alpha F_0 e^{\int_0^{-} \varrho_s ds}) \right) \right] \upharpoonright_{m=M(\omega), \ \varrho_t = r_t(\omega), \ t \in [0, T]},$$

- û is deterministic if $F_T = F(N)$, i.e. the value of the illiquid asset is ind. of marketed prices, and either r is deterministic or $\alpha = 0$.
 - In particular, if $F_T = e^{\overline{r}T}$ represents a fixed deposit investment with a riskless interest rate \overline{r} and $\alpha = 0$, then $\hat{u} = \overline{u}$ with \overline{u} deterministic.
 - $\blacksquare \rightarrow$ Later as application!
- On the other hand, observe that $\hat{u} = \bar{u}$ if $F_T = F(M)$, since F(M) is \mathfrak{F}_T -measurable. (\rightarrow A more explicit Theorem.)

Hence conditioning on $\mathfrak{F}_{\mathrm{T}}$ we rewrite the criterion of problem (\mathbf{P}_{ψ}) as

$$\mathbb{E}\Big[\int_0^T u_t(c_t) dt + \bar{u}(\bar{X}_T^{\pi})\Big] = \mathbb{E}\Big[\int_0^T u_t(c_t) dt + \hat{u}(\bar{X}_T^{\pi})\Big]$$

with an \mathfrak{F}_{T} -measurable random utility function \hat{u}_{ω} : $(0, \infty) \to \mathbb{R}$ with $\hat{u}_{\omega}(x) \triangleq \mathbb{E}[\bar{u}(x) | \mathfrak{F}_{T}]_{\omega} = \mathbb{E}[u(x + \psi(F(M, N) - \alpha F_{0}e^{\int_{0}^{T} r_{s} ds})) | \mathfrak{F}_{T}]_{\omega}$

$$= \mathbb{E} \left[u \left(x + \psi (F(m, N) - \alpha F_0 e^{\int_0^T \varrho_s ds}) \right) \right] \upharpoonright_{m=M(\omega), \ \varrho_t = r_t(\omega), \ t \in [0, T]},$$

- û is deterministic if $F_T = F(N)$, i.e. the value of the illiquid asset is ind. of marketed prices, and either r is deterministic or $\alpha = 0$.
 - In particular, if $F_T = e^{\overline{r}T}$ represents a fixed deposit investment with a riskless interest rate \overline{r} and $\alpha = 0$, then $\hat{u} = \overline{u}$ with \overline{u} deterministic.
 - $\blacksquare \rightarrow$ Later as application!
- On the other hand, observe that $\hat{u} = \bar{u}$ if $F_T = F(M)$, since F(M) is \mathfrak{F}_T -measurable. (\rightarrow A more explicit Theorem.)

Problem (P_{ψ}) is similar to the standard utility maximization problem.

- → Solution with the help of the duality approach of Cox and Huang (1989, 1991), Karatzas, Lehoczky and Shreve (1991) and many others.
- But: ii can be random, and we may have $i'_{\omega}(0) < \infty$ while the solvency requirement imposes the constraint that $\bar{X}_t \ge 0$, $t \in [0, T]$, a.s.
- Thus some modifications become necessary...

Lemma

The function $\hat{\mathbf{u}}_{\omega}$ is differentiable for a.e. $\omega \in \Omega$ with

$$\hat{u}_{\omega}'(x) = \mathbb{E} \big[u' \big(x + \psi(F(m,N) - \alpha F_0 e^{\int_0^T \varrho_s ds}) \big) \big] \restriction_{m=M(\omega), \ \varrho_t = r_t(\omega), \ t \in [0,T]}.$$

Moreover, \hat{u}'_{ω} is strictly decreasing, $\hat{u}'_{\omega}(0) \in (0, \infty]$, $\hat{u}'_{\omega}(x) > 0$ for all x > 0, and $\hat{u}'_{\omega}(x) \to 0$ as $x \to \infty$.

Problem (P_ψ) is similar to the standard utility maximization problem.
→ Solution with the help of the duality approach of Cox and Huang (1989, 1991), Karatzas, Lehoczky and Shreve (1991) and many others.
But: û can be random, and we may have û'_ω(0) < ∞ while the solvency requirement imposes the constraint that X
_t ≥ 0, t ∈ [0, T], a.s.
Thus some modifications become necessary...

Lemma

The function $\hat{\mathbf{u}}_{\omega}$ is differentiable for a.e. $\omega \in \Omega$ with

 $\hat{u}_{\omega}'(x) = \mathbb{E} \big[u' \big(x + \psi(F(m,N) - \alpha F_0 e^{\int_0^T \varrho_s ds}) \big) \big] \restriction_{m=M(\omega), \ \varrho_t = r_t(\omega), \ t \in [0,T]}.$

Moreover, \hat{u}'_{ω} is strictly decreasing, $\hat{u}'_{\omega}(0) \in (0, \infty]$, $\hat{u}'_{\omega}(x) > 0$ for all x > 0, and $\hat{u}'_{\omega}(x) \to 0$ as $x \to \infty$.

Problem (P_ψ) is similar to the standard utility maximization problem.
 → Solution with the help of the duality approach of Cox and Huang (1989, 1991), Karatzas, Lehoczky and Shreve (1991) and many others.

But: \hat{u} can be random, and we may have $\hat{u}'_{\omega}(0) < \infty$ while the solvency requirement imposes the constraint that $\bar{X}_t \ge 0$, $t \in [0, T]$, a.s.

Thus some modifications become necessary...

Lemma

The function $\hat{\mathbf{u}}_{\omega}$ is differentiable for a.e. $\omega \in \Omega$ with

$$\hat{u}_{\omega}'(x) = \mathbb{E} \big[u' \big(x + \psi(F(m,N) - \alpha F_0 e^{\int_0^T \varrho_s ds}) \big) \big] \restriction_{m=M(\omega), \ \varrho_t = r_t(\omega), \ t \in [0,T]}.$$

Moreover, \hat{u}'_{ω} is strictly decreasing, $\hat{u}'_{\omega}(0) \in (0, \infty]$, $\hat{u}'_{\omega}(x) > 0$ for all x > 0, and $\hat{u}'_{\omega}(x) \to 0$ as $x \to \infty$.

- Problem (P_ψ) is similar to the standard utility maximization problem.
 → Solution with the help of the duality approach of Cox and Huang (1989, 1991), Karatzas, Lehoczky and Shreve (1991) and many others.
- But: \hat{u} can be random, and we may have $\hat{u}'_{\omega}(0) < \infty$ while the solvency requirement imposes the constraint that $\bar{X}_t \ge 0$, $t \in [0, T]$, a.s.
- Thus some modifications become necessary...

Lemma

The function \hat{u}_{ω} is differentiable for a.e. $\omega \in \Omega$ with

 $\hat{u}_{\omega}'(x) = \mathbb{E} \big[u' \big(x + \psi \big(F(m, N) - \alpha F_0 e^{\int_0^T \varrho_s ds} \big) \big] \big|_{m=M(\omega), \ \varrho_t = r_t(\omega), \ t \in [0, T]} \cdot \big]$

Moreover, \hat{u}'_{ω} is strictly decreasing, $\hat{u}'_{\omega}(0) \in (0, \infty]$, $\hat{u}'_{\omega}(x) > 0$ for all x > 0, and $\hat{u}'_{\omega}(x) \to 0$ as $x \to \infty$.

- Problem (P_ψ) is similar to the standard utility maximization problem.
 → Solution with the help of the duality approach of Cox and Huang (1989, 1991), Karatzas, Lehoczky and Shreve (1991) and many others.
- But: \hat{u} can be random, and we may have $\hat{u}'_{\omega}(0) < \infty$ while the solvency requirement imposes the constraint that $\bar{X}_t \ge 0$, $t \in [0, T]$, a.s.
- Thus some modifications become necessary...

Lemma

The function $\hat{\mathbf{u}}_{\omega}$ is differentiable for a.e. $\omega \in \Omega$ with

$$\hat{u}_{\omega}'(x) = \mathbb{E} \big[u' \big(x + \psi(F(m,N) - \alpha F_0 e^{\int_0^T \varrho_s ds}) \big) \big] \upharpoonright_{m=M(\omega), \ \varrho_t = r_t(\omega), \ t \in [0,T]}.$$

Moreover, \hat{u}'_{ω} is strictly decreasing, $\hat{u}'_{\omega}(0) \in (0, \infty]$, $\hat{u}'_{\omega}(x) > 0$ for all x > 0, and $\hat{u}'_{\omega}(x) \to 0$ as $x \to \infty$.

- Denote by $\hat{\iota}_{\omega}$ the (unique) inverse of \hat{u}'_{ω} , where it is understood that $\hat{\iota}_{\omega}(\lambda) = 0$ if $\lambda > \hat{u}'_{\omega}(0)$.
- Budget constraint: $\mathbb{E}\left[\int_0^T Z_t c_t^* dt + Z_T \bar{X}_T^*\right] = x_0 \psi[(1-\alpha)F_0 \bar{\delta}]$ Apply the pointwise Lagrangian, then we have the candidates

$$\bar{X}_{T}^{\star} = \hat{\iota}(\gamma^{\star}Z_{T}), \quad c_{t}^{\star} = \iota_{t}(\gamma^{\star}Z_{t}), \ t \in [0, T].$$

$$\hat{u}_{\omega}(x) \leq \hat{u}_{\omega}(\hat{\iota}_{\omega}(\lambda)) + \lambda [x - \hat{\iota}_{\omega}(\lambda)] \text{ for all } \lambda > 0, \ x > 0,$$

and the conditions

$$\begin{split} & \mathbb{E}\Big[\int_{0}^{T} Z_{t} \iota_{t}(\gamma Z_{t}) dt + Z_{T} \iota(\gamma Z_{T})\Big] < \infty \text{ for all } \gamma > 0, \\ & \mathbb{E}\Big[\int_{0}^{T} u_{t}\big(\iota_{t}(\gamma Z_{t})\big) dt + u\big(\iota(\gamma Z_{T})\big)\Big] < \infty \text{ for all } \gamma > 0, \end{split}$$

we can then get our first main Theorem:

Fraunhofer

- Denote by $\hat{\iota}_{\omega}$ the (unique) inverse of \hat{u}'_{ω} , where it is understood that $\hat{\iota}_{\omega}(\lambda) = 0$ if $\lambda > \hat{u}'_{\omega}(0)$.
- Budget constraint: $\mathbb{E}\left[\int_{0}^{T} Z_{t} c_{t}^{\star} dt + Z_{T} \bar{X}_{T}^{\star}\right] = x_{0} \psi[(1-\alpha)F_{0} \bar{\delta}]$ Apply the pointwise Lagrangian, then we have the candidates

$$\bar{X}_{T}^{\star} = \hat{\iota}(\gamma^{\star}Z_{T}), \quad c_{t}^{\star} = \iota_{t}(\gamma^{\star}Z_{t}), \ t \in [0, T].$$

$$\hat{u}_{\omega}(x) \leq \hat{u}_{\omega}(\hat{\iota}_{\omega}(\lambda)) + \lambda [x - \hat{\iota}_{\omega}(\lambda)] \text{ for all } \lambda > 0, \ x > 0,$$

and the conditions

$$\begin{split} & \mathbb{E}\Big[\int_{0}^{T} Z_{t} \iota_{t}(\gamma Z_{t}) dt + Z_{T} \iota(\gamma Z_{T})\Big] < \infty \text{ for all } \gamma > 0, \\ & \mathbb{E}\Big[\int_{0}^{T} u_{t}\big(\iota_{t}(\gamma Z_{t})\big) dt + u\big(\iota(\gamma Z_{T})\big)\Big] < \infty \text{ for all } \gamma > 0, \end{split}$$

we can then get our first main Theorem:

Fraunhofer

- Denote by $\hat{\iota}_{\omega}$ the (unique) inverse of \hat{u}'_{ω} , where it is understood that $\hat{\iota}_{\omega}(\lambda) = 0$ if $\lambda > \hat{u}'_{\omega}(0)$.
- Budget constraint: $\mathbb{E}\left[\int_{0}^{T} Z_{t} c_{t}^{\star} dt + Z_{T} \bar{X}_{T}^{\star}\right] = x_{0} \psi[(1-\alpha)F_{0} \bar{\delta}]$ Apply the pointwise Lagrangian, then we have the candidates

$$\bar{X}_{T}^{\star} = \hat{\iota}(\gamma^{\star}Z_{T}), \quad c_{t}^{\star} = \iota_{t}(\gamma^{\star}Z_{t}), \ t \in [0, T].$$

$$\hat{u}_{\omega}(x) \leq \hat{u}_{\omega}(\hat{\iota}_{\omega}(\lambda)) + \lambda [x - \hat{\iota}_{\omega}(\lambda)] \text{ for all } \lambda > 0, \ x > 0,$$

and the conditions

$$\begin{split} & \mathbb{E}\Big[\int_{0}^{T} Z_{t} \iota_{t}(\gamma Z_{t}) dt + Z_{T} \iota(\gamma Z_{T})\Big] < \infty \text{ for all } \gamma > 0, \\ & \mathbb{E}\Big[\int_{0}^{T} u_{t}(\iota_{t}(\gamma Z_{t})) dt + u(\iota(\gamma Z_{T}))\Big] < \infty \text{ for all } \gamma > 0, \end{split}$$

we can then get our first main Theorem:

Fraunhofer

- Denote by $\hat{\iota}_{\omega}$ the (unique) inverse of \hat{u}'_{ω} , where it is understood that $\hat{\iota}_{\omega}(\lambda) = 0$ if $\lambda > \hat{u}'_{\omega}(0)$.
- Budget constraint: $\mathbb{E}\left[\int_0^T Z_t c_t^* dt + Z_T \bar{X}_T^*\right] = x_0 \psi[(1-\alpha)F_0 \bar{\delta}]$
- Apply the pointwise Lagrangian, then we have the candidates

$$\bar{\mathrm{X}}_{\mathrm{T}}^{\star} = \hat{\iota}(\gamma^{\star} \mathrm{Z}_{\mathrm{T}}), \quad \mathrm{c}_{\mathrm{t}}^{\star} = \iota_{\mathrm{t}}(\gamma^{\star} \mathrm{Z}_{\mathrm{t}}), \ \mathrm{t} \in [0,\mathrm{T}].$$

$$\hat{u}_{\omega}(x) \leq \hat{u}_{\omega}(\hat{\iota}_{\omega}(\lambda)) + \lambda [x - \hat{\iota}_{\omega}(\lambda)] \text{ for all } \lambda > 0, \ x > 0,$$

and the conditions

$$\begin{split} & \mathbb{E}\Big[\int_0^T Z_t \iota_t(\gamma Z_t) dt + Z_T \iota(\gamma Z_T)\Big] < \infty \text{ for all } \gamma > 0, \\ & \mathbb{E}\Big[\int_0^T u_t \big(\iota_t(\gamma Z_t)\big) dt + u\big(\iota(\gamma Z_T)\big)\Big] < \infty \text{ for all } \gamma > 0, \end{split}$$

we can then get our first main Theorem:

Fraunhofer

- Denote by $\hat{\iota}_{\omega}$ the (unique) inverse of \hat{u}'_{ω} , where it is understood that $\hat{\iota}_{\omega}(\lambda) = 0$ if $\lambda > \hat{u}'_{\omega}(0)$.
- Budget constraint: $\mathbb{E}\left[\int_{0}^{T} Z_{t} c_{t}^{\star} dt + Z_{T} \bar{X}_{T}^{\star}\right] = x_{0} \psi[(1-\alpha)F_{0} \bar{\delta}]$
- Apply the pointwise Lagrangian, then we have the candidates

$$\bar{\mathrm{X}}_{\mathrm{T}}^{\star} = \hat{\iota}(\gamma^{\star}\mathrm{Z}_{\mathrm{T}}), \quad \mathrm{c}_{\mathrm{t}}^{\star} = \iota_{\mathrm{t}}(\gamma^{\star}\mathrm{Z}_{\mathrm{t}}), \ \mathrm{t} \in [0,\mathrm{T}].$$

$$\hat{u}_{\omega}(x) \leq \hat{u}_{\omega}(\hat{\iota}_{\omega}(\lambda)) + \lambda [x - \hat{\iota}_{\omega}(\lambda)] \text{ for all } \lambda > 0, \ x > 0,$$

and the conditions

$$\begin{split} & \mathbb{E}\Big[\int_{0}^{T} Z_{t} \iota_{t}(\gamma Z_{t}) dt + Z_{T} \iota(\gamma Z_{T})\Big] < \infty \text{ for all } \gamma > 0, \\ & \mathbb{E}\Big[\int_{0}^{T} u_{t}(\iota_{t}(\gamma Z_{t})) dt + u\big(\iota(\gamma Z_{T})\big)\Big] < \infty \text{ for all } \gamma > 0, \end{split}$$

we can then get our first main Theorem:

Fraunhofer

Theorem (Optimal Investment with Illiquid Assets I)

The portfolio problem with illiquid assets (P) has a solution (ψ^*, π^*, c^*) . With $\gamma^* = \gamma^*(\psi^*)$ the optimal terminal wealth and the optimal consumption rate are given by

$$\bar{\mathbf{X}}_{\mathbf{T}}^{\star} = \hat{\iota}(\gamma^{\star}\mathbf{Z}_{\mathbf{T}}), \quad \mathbf{c}_{\mathbf{t}}^{\star} = \iota_{\mathbf{t}}(\gamma^{\star}\mathbf{Z}_{\mathbf{t}}), \ \mathbf{t} \in [0, \mathbf{T}].$$

The optimal investment into the illiquid asset is given by

 $\psi^{\star} = \underset{\psi \in [0, \psi_{\max}]}{\operatorname{arg\,max}} v(\psi)$

where v is given by

$$\mathbf{v}(\psi) \triangleq \mathbb{E}\left[\int_0^T \mathbf{u}_t(\iota_t(\gamma^{\star}(\psi)\mathbf{Z}_t))dt + \mathbf{u}\left(\hat{\iota}(\gamma^{\star}(\psi)\mathbf{Z}_T)\right)\right].$$

Remarks

• v depends on ψ only via the Lagrange multiplier $\gamma^*(\psi)$ which was determined via the Budget constraint!

The solvency requirement $\bar{X}_{\pi}^{\pi} \geq 0$, $t \in [0, T]$, a.s. forces us to to set the inverse marginal utility $\hat{\iota}_{\omega}(\lambda) = 0$ if $\lambda > \hat{u}'_{\omega}(0)$ since the marginal utility function \hat{u}' is defined on the range $(0, \infty)$ with image $(0, \hat{u}'(0))$ and we have to ensure that the optimal final wealth $\bar{X}_{T}^{\star} = \hat{\iota}(\gamma^{\star}Z_{T})$ stays non-negative.

Problem: how to compute $\bar{X}_{T}^{\star} = \hat{\iota}(\gamma^{\star}Z_{T})$, i.e. $\hat{\iota}_{\omega}(\lambda)$

 \rightarrow Solution: numerics

Remarks

- v depends on ψ only via the Lagrange multiplier $\gamma^*(\psi)$ which was determined via the Budget constraint!
- The solvency requirement $\bar{X}_t^{\pi} \ge 0$, $t \in [0, T]$, a.s. forces us to to set the inverse marginal utility $\hat{\iota}_{\omega}(\lambda) = 0$ if $\lambda > \hat{u}'_{\omega}(0)$ since the marginal utility function \hat{u}' is defined on the range $(0, \infty)$ with image $(0, \hat{u}'(0))$ and we have to ensure that the optimal final wealth $\bar{X}_T^{\star} = \hat{\iota}(\gamma^{\star}Z_T)$ stays non-negative.

Problem: how to compute $\bar{X}_{T}^{\star} = \hat{\iota}(\gamma^{\star}Z_{T})$, i.e. $\hat{\iota}_{\omega}(\lambda)$ \rightarrow Solution: numerics

Remarks

- v depends on ψ only via the Lagrange multiplier $\gamma^*(\psi)$ which was determined via the Budget constraint!
- The solvency requirement $\bar{X}_t^{\pi} \ge 0$, $t \in [0, T]$, a.s. forces us to to set the inverse marginal utility $\hat{\iota}_{\omega}(\lambda) = 0$ if $\lambda > \hat{u}'_{\omega}(0)$ since the marginal utility function \hat{u}' is defined on the range $(0, \infty)$ with image $(0, \hat{u}'(0))$ and we have to ensure that the optimal final wealth $\bar{X}_T^{\star} = \hat{\iota}(\gamma^{\star}Z_T)$ stays non-negative.
- Problem: how to compute $\bar{X}_{T}^{\star} = \hat{\iota}(\gamma^{\star}Z_{T})$, i.e. $\hat{\iota}_{\omega}(\lambda)$
 - \blacksquare \rightarrow Solution: numerics

In general, \hat{u} and $\hat{\iota}$ must be computed numerically.

In the special case F_T = F(M), i.e. F_T is F_T-measurable, we have û = ū and the quantities of interest can be computed explicitly.
Since we have that

$$\bar{u}'(x) = u'(x + \bar{F}) \text{ with } \bar{F} \triangleq \psi(F_T - \alpha F_0 e^{\int_0^T r_s ds}),$$

it follows that $\overline{\iota}$ associated to $\overline{\mathbf{u}}$ is given as

$$\overline{\iota}: (0,\infty) \to [0,\infty), \quad \overline{\iota}(\lambda) = (\iota(\lambda) - \overline{F})^+$$

where ι denotes the inverse marginal utility of u.

- In particular, note that $\bar{\iota}(\lambda) = 0$ for $\lambda \ge \lambda_0 \triangleq \bar{\mathrm{u}}'(0) = \mathrm{u}'(\bar{\mathrm{F}})$.
- Defining $\bar{\iota}$ as above with image $[0, \infty)$ ensures that $\bar{\iota}(\gamma^*(\psi)Z_T)$ and thus the final wealth \bar{X}^*_{ψ} stays non-negative (\rightarrow solvency!).

Fraunhofer

In general, û and î must be computed numerically.
In the special case F_T = F(M), i.e. F_T is F_T-measurable, we have û = ū and the quantities of interest can be computed explicitly.
Since we have that

$$\bar{u}'(x) = u'(x + \bar{F}) \text{ with } \bar{F} \triangleq \psi(F_T - \alpha F_0 e^{\int_0^T r_s ds}),$$

it follows that $\overline{\iota}$ associated to \overline{u} is given as

$$\overline{\iota}: (0,\infty) \to [0,\infty), \quad \overline{\iota}(\lambda) = (\iota(\lambda) - \overline{F})^+$$

where ι denotes the inverse marginal utility of u.

- In particular, note that $\bar{\iota}(\lambda) = 0$ for $\lambda \ge \lambda_0 \triangleq \bar{u}'(0) = u'(\bar{F})$.
- Defining $\bar{\iota}$ as above with image $[0, \infty)$ ensures that $\bar{\iota}(\gamma^*(\psi)Z_T)$ and thus the final wealth \bar{X}^*_{ψ} stays non-negative (\rightarrow solvency!).

In general, \hat{u} and \hat{i} must be computed numerically.

In the special case F_T = F(M), i.e. F_T is \$\vec{v}\$_T-measurable, we have \$\u00fc\$ = \$\u00ec\$ and the quantities of interest can be computed explicitly.
 Since we have that

$$\bar{u}'(x) = u'(x + \bar{F}) \text{ with } \bar{F} \triangleq \psi(F_T - \alpha F_0 e^{\int_0^T r_s ds}),$$

it follows that $\overline{\iota}$ associated to \overline{u} is given as

$$\bar{\iota}: (0,\infty) \to [0,\infty), \quad \bar{\iota}(\lambda) = (\iota(\lambda) - \bar{F})^+$$

where ι denotes the inverse marginal utility of u.

- In particular, note that $\bar{\iota}(\lambda) = 0$ for $\lambda \ge \lambda_0 \triangleq \bar{u}'(0) = u'(\bar{F})$.
- Defining $\bar{\iota}$ as above with image $[0, \infty)$ ensures that $\bar{\iota}(\gamma^*(\psi)Z_T)$ and thus the final wealth \bar{X}^*_{ψ} stays non-negative (\rightarrow solvency!).

In general, \hat{u} and \hat{i} must be computed numerically.

In the special case F_T = F(M), i.e. F_T is \$\vec{v}_T\$-measurable, we have \$\u00fc = \u00fc and the quantities of interest can be computed explicitly.
 Since we have that

$$\bar{u}'(x) = u'(x + \bar{F}) \text{ with } \bar{F} \triangleq \psi(F_T - \alpha F_0 e^{\int_0^T r_s ds}),$$

it follows that $\overline{\iota}$ associated to $\overline{\mathbf{u}}$ is given as

$$\overline{\iota}: (0,\infty) \to [0,\infty), \quad \overline{\iota}(\lambda) = (\iota(\lambda) - \overline{F})^+$$

where ι denotes the inverse marginal utility of u.

In particular, note that *ī*(λ) = 0 for λ ≥ λ₀ ≜ *ū*'(0) = u'(F).
Defining *ī* as above with image [0,∞) ensures that *ī*(γ*(ψ)Z_T) and thus the final wealth X^{*}_ψ stays non-negative (→ solvency!).

In general, \hat{u} and \hat{i} must be computed numerically.

In the special case F_T = F(M), i.e. F_T is \$\vec{v}_T\$-measurable, we have \$\u00fc = \u00fc and the quantities of interest can be computed explicitly.
 Since we have that

$$\bar{u}'(x) = u'(x + \bar{F}) \text{ with } \bar{F} \triangleq \psi(F_T - \alpha F_0 e^{\int_0^T r_s ds}),$$

it follows that $\overline{\iota}$ associated to $\overline{\mathbf{u}}$ is given as

$$\overline{\iota}: (0,\infty) \to [0,\infty), \quad \overline{\iota}(\lambda) = (\iota(\lambda) - \overline{F})^+$$

where ι denotes the inverse marginal utility of u.

- In particular, note that $\bar{\iota}(\lambda) = 0$ for $\lambda \ge \lambda_0 \triangleq \bar{u}'(0) = u'(\bar{F})$.
- Defining $\bar{\iota}$ as above with image $[0, \infty)$ ensures that $\bar{\iota}(\gamma^*(\psi)Z_T)$ and thus the final wealth \bar{X}^*_{ψ} stays non-negative (\rightarrow solvency!).

In general, \hat{u} and $\hat{\iota}$ must be computed numerically.

In the special case F_T = F(M), i.e. F_T is \$\vec{v}_T\$-measurable, we have \$\u00fc = \u00fc and the quantities of interest can be computed explicitly.
 Since we have that

$$\bar{u}'(x) = u'(x + \bar{F}) \text{ with } \bar{F} \triangleq \psi(F_T - \alpha F_0 e^{\int_0^T r_s ds}),$$

it follows that $\bar{\iota}$ associated to \bar{u} is given as

$$\overline{\iota}: (0,\infty) \to [0,\infty), \quad \overline{\iota}(\lambda) = (\iota(\lambda) - \overline{F})^+$$

where ι denotes the inverse marginal utility of u.

- In particular, note that $\bar{\iota}(\lambda) = 0$ for $\lambda \ge \lambda_0 \triangleq \bar{u}'(0) = u'(\bar{F})$.
- Defining $\bar{\iota}$ as above with image $[0, \infty)$ ensures that $\bar{\iota}(\gamma^*(\psi)Z_T)$ and thus the final wealth \bar{X}^*_{ψ} stays non-negative (\rightarrow solvency!).

Figure: Inverse marginal (power) utility $\bar{\iota}$ corresponding to $\bar{u}.$

Theorem (Optimal Investment with Illiquid Assets II)

Suppose integrability conditions as before. Then the optimal portfolio problem with illiquid assets (P) has a solution (ψ^*, π^*, c^*). The optimal investment into the illiquid asset is given by

 $\psi^{\star} = \underset{\psi \in [0, \psi_{\max}]}{\operatorname{arg\,max}} v(\psi)$ with

$$v(\psi) \triangleq \mathbb{E} \Big[\int_0^T u_t \big(\iota_t(\gamma^{\star}(\psi) Z_t) \big) dt + u \Big(\iota(\gamma^{\star}(\psi) Z_T) \vee \bar{F} \Big) \Big].$$

The optimal terminal wealth and the optimal consumption rate are

 $\bar{\mathbf{X}}_{\psi}^{\star} \triangleq \bar{\iota}(\gamma^{\star}(\psi)\mathbf{Z}_{\mathrm{T}}) \text{ and } \mathbf{c}_{\mathrm{t}}^{\star} \triangleq \iota_{\mathrm{t}}(\gamma^{\star}(\psi)\mathbf{Z}_{\mathrm{t}}), \ \mathrm{t} \in [0, \mathrm{T}]$

where the Lagrange multiplier $\gamma^{\star}(\psi) \in (0, \infty)$ is determined by the BC

 $\mathbb{E}\left[\int_0^T Z_t \iota_t(\gamma^*(\psi) Z_t) dt + Z_T \overline{\iota}(\gamma^*(\psi) Z_T)\right] = x_0 - \psi[(1-\alpha)F_0 - \overline{\delta}].$

Theorem (Optimal Investment with Illiquid Assets II)

Suppose integrability conditions as before. Then the optimal portfolio problem with illiquid assets (P) has a solution (ψ^*, π^*, c^*). The optimal investment into the illiquid asset is given by

 $\psi^{\star} = \underset{\psi \in [0, \psi_{\max}]}{\operatorname{arg\,max}} v(\psi)$ with

$$\mathbf{v}(\psi) \triangleq \mathbb{E}\Big[\int_0^T u_t\big(\iota_t(\gamma^{\star}(\psi)\mathbf{Z}_t)\big)dt + u\Big(\iota(\gamma^{\star}(\psi)\mathbf{Z}_T) \vee \bar{F}\Big)\Big].$$

The optimal terminal wealth and the optimal consumption rate are

$$\bar{\mathbf{X}}_{\psi}^{\star} \triangleq \bar{\iota}(\gamma^{\star}(\psi)\mathbf{Z}_{\mathrm{T}}) \text{ and } \mathbf{c}_{\mathrm{t}}^{\star} \triangleq \iota_{\mathrm{t}}(\gamma^{\star}(\psi)\mathbf{Z}_{\mathrm{t}}), \ \mathrm{t} \in [0, \mathrm{T}]$$

where the Lagrange multiplier $\gamma^{\star}(\psi) \in (0, \infty)$ is determined by the BC $\mathbb{E}\left[\int_{0}^{T} Z_{t} \iota_{t}(\gamma^{\star}(\psi)Z_{t}) dt + Z_{T} \overline{\iota}(\gamma^{\star}(\psi)Z_{T})\right] = x_{0} - \psi[(1-\alpha)F_{0} - \overline{\delta}].$

Fraunhofer

Illiquid asset: fixed deposit investment with initial price $F_0 = 1$ with terminal payoff $F_T = e^{\bar{r}T}$, $\bar{r} > r$, $\alpha = 0$ (no borrowing)

- ut = 0 for all t ∈ [0, T], i.e. terminal wealth problem only
 ψ is optimal amount of wealth invested into fixed deposits.
 In view of the preceeding discussion, the portfolio problem (P) red
 - to the maximization of a continuous function on a compact interval,

i.e. to

maximize
$$v(\psi)$$
 over $\psi \in [0, \psi_{\max}]$, (5)

where

$$\mathbf{v}(\psi) \triangleq \mathbb{E}\Big[\mathbf{u}\Big(\iota(\gamma^{\star}(\psi)\mathbf{Z}_{\mathrm{T}}) \lor \psi(\mathbf{e}^{\mathrm{FT}}\Big)\Big].$$

Illiquid asset: fixed deposit investment with initial price $F_0 = 1$ with terminal payoff $F_T = e^{\bar{r}T}$, $\bar{r} > r$, $\alpha = 0$ (no borrowing)

- $u_t = 0$ for all $t \in [0, T]$, i.e. terminal wealth problem only
- ψ is optimal amount of wealth invested into fixed deposits.
 In view of the preceeding discussion, the portfolio problem (P) reduces to the maximization of a continuous function on a compact interval, i.e. to

maximize
$$v(\psi)$$
 over $\psi \in [0, \psi_{\max}]$, (5)

where

$$\mathbf{v}(\psi) \triangleq \mathbb{E}\Big[\mathbf{u}\Big(\iota(\gamma^{\star}(\psi)\mathbf{Z}_{\mathrm{T}}) \lor \psi(\mathbf{e}^{\mathrm{FT}}\Big)\Big].$$

- Illiquid asset: fixed deposit investment with initial price $F_0 = 1$ with terminal payoff $F_T = e^{\bar{r}T}$, $\bar{r} > r$, $\alpha = 0$ (no borrowing)
- $u_t = 0$ for all $t \in [0, T]$, i.e. terminal wealth problem only
- ψ is optimal amount of wealth invested into fixed deposits.
- In view of the preceeding discussion, the portfolio problem (P) reduces to the maximization of a continuous function on a compact interval, i.e. to

maximize
$$v(\psi)$$
 over $\psi \in [0, \psi_{\max}]$, (5)

where

$$\mathbf{v}(\psi) \triangleq \mathbb{E}\Big[\mathbf{u}\Big(\iota(\gamma^{\star}(\psi)\mathbf{Z}_{\mathrm{T}}) \lor \psi(\mathbf{e}^{\mathrm{FT}}\Big)\Big].$$

- Illiquid asset: fixed deposit investment with initial price $F_0 = 1$ with terminal payoff $F_T = e^{\bar{r}T}$, $\bar{r} > r$, $\alpha = 0$ (no borrowing)
- $\mathbf{u}_t = 0$ for all $t \in [0, T]$, i.e. terminal wealth problem only
- ψ is optimal amount of wealth invested into fixed deposits.
- In view of the preceeding discussion, the portfolio problem (P) reduces to the maximization of a continuous function on a compact interval, i.e. to

maximize
$$v(\psi)$$
 over $\psi \in [0, \psi_{\max}]$, (5)

where

$$\mathbf{v}(\psi) \triangleq \mathbb{E}\Big[\mathbf{u}\Big(\iota(\gamma^{\star}(\psi)\mathbf{Z}_{\mathrm{T}}) \lor \psi(\mathbf{e}^{\bar{\mathbf{r}}\mathrm{T}}\Big)\Big].$$

- Illiquid asset: fixed deposit investment with initial price $F_0 = 1$ with terminal payoff $F_T = e^{\bar{r}T}$, $\bar{r} > r$, $\alpha = 0$ (no borrowing)
- $u_t = 0$ for all $t \in [0, T]$, i.e. terminal wealth problem only
- ψ is optimal amount of wealth invested into fixed deposits.
- In view of the preceeding discussion, the portfolio problem (P) reduces to the maximization of a continuous function on a compact interval, i.e. to

maximize
$$v(\psi)$$
 over $\psi \in [0, \psi_{\max}]$, (5)

where

$$\mathbf{v}(\psi) \triangleq \mathbb{E}\Big[\mathbf{u}\Big(\iota(\gamma^{\star}(\psi)\mathbf{Z}_{\mathrm{T}}) \lor \psi(\mathbf{e}^{\overline{\mathbf{r}}\mathrm{T}}\Big)\Big].$$

Problem: Since $\mathbb{P}(\iota(\gamma^*(\psi)\mathbf{Z}_{\mathrm{T}}) = \psi \mathbf{e}^{\mathbf{\bar{r}}\mathbf{T}}) > 0$, it is not clear how to differentiate the function $\mathbf{v}(\psi)$ w.r.t. ψ to obtain a FOC!

• \rightarrow Compute the optimal fixed deposit investment ψ^* numerically.

The qualitative shapes of v(ψ) are robust so that the maximization can be performed efficiently with numerical methods.
 The shape seems to be even concave for suitable values of r and r̄.
 → Show concavity of v(ψ) in dependence of the parameters!

Unless stated otherwise, we use the parameter specifications

$$\rho = 3, T = 5, r = 4\%, \bar{r} = 5\%, \eta = 8\%, \sigma = 20\%.$$

- Problem: Since $\mathbb{P}(\iota(\gamma^*(\psi)Z_T) = \psi e^{\bar{r}T}) > 0$, it is not clear how to differentiate the function $v(\psi)$ w.r.t. ψ to obtain a FOC!
- \rightarrow Compute the optimal fixed deposit investment ψ^* numerically.
- The qualitative shapes of v(ψ) are robust so that the maximization can be performed efficiently with numerical methods.
 The shape seems to be even concave for suitable values of r and r̄.
 → Show concavity of v(ψ) in dependence of the parameters!
- Unless stated otherwise, we use the parameter specifications

$$\rho = 3, T = 5, r = 4\%, \bar{r} = 5\%, \eta = 8\%, \sigma = 20\%.$$

- Problem: Since $\mathbb{P}(\iota(\gamma^*(\psi)\mathbf{Z}_{\mathrm{T}}) = \psi \mathbf{e}^{\mathbf{\bar{r}}\mathbf{T}}) > 0$, it is not clear how to differentiate the function $\mathbf{v}(\psi)$ w.r.t. ψ to obtain a FOC!
- \blacksquare \rightarrow Compute the optimal fixed deposit investment ψ^{\star} numerically.
- The qualitative shapes of $v(\psi)$ are robust so that the maximization can be performed efficiently with numerical methods.
 - The shape seems to be even concave for suitable values of r and \bar{r} .
 - → Show concavity of $v(\psi)$ in dependence of the parameters!

Unless stated otherwise, we use the parameter specifications

$$\rho = 3, T = 5, r = 4\%, \bar{r} = 5\%, \eta = 8\%, \sigma = 20\%.$$

- Problem: Since $\mathbb{P}(\iota(\gamma^*(\psi)\mathbf{Z}_{\mathrm{T}}) = \psi \mathbf{e}^{\mathbf{\bar{r}}\mathbf{T}}) > 0$, it is not clear how to differentiate the function $\mathbf{v}(\psi)$ w.r.t. ψ to obtain a FOC!
- \blacksquare \rightarrow Compute the optimal fixed deposit investment ψ^{\star} numerically.
- The qualitative shapes of $v(\psi)$ are robust so that the maximization can be performed efficiently with numerical methods.
 - The shape seems to be even concave for suitable values of r and \bar{r} .
 - → Show concavity of $v(\psi)$ in dependence of the parameters!
- Unless stated otherwise, we use the parameter specifications

$$\rho = 3$$
, T = 5, r = 4%, $\bar{r} = 5\%$, $\eta = 8\%$, $\sigma = 20\%$.

Figure: Optimal terminal utility $v(\psi)$ as a function of fixed deposit investment ψ .

Figure: Optimal terminal utility $v(\psi)$ as a function of fixed deposit investment ψ for different levels of the riskless interest rate r.

Figure: Optimal fixed deposit investment ψ as a function of risk aversion ρ .

Figure: Optimal fixed deposit investment ψ as a function of the fixed interest rate $\overline{\mathbf{r}}.$

Thank You for Your Attention!

Questions/Remarks?

Optimal Investment with Illiquid Assets 23

