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Stochastic volatility models for financial data

» Presence of jumps in the price and the volatility process

Merton (1976)

Lee and Mykland (2008)
Ait-Sahalia and Jacod (2009)

» Do price and volatility jump together?
Jacod and Todorov (2010)
» Are common jumps in price and volatility correlated?

Jacod, Kliippelberg and Miiller (2012a,b)
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Prominent continuous-time models

Consider any model for (log) price X and squared volatility V = 2.
All prominent models satisfy a relationship between their jump sizes:

fXo, X)) =yg(Vie, Vi)

for known functions f, g and one fixed parameter y € R.
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Prominent continuous-time models

e Linear models: CARMA (the OU process is a CAR(1) model):

Jearma(X,Y) = gearma(X,y) =y — X AX; = yAV,

(in these models, joint jumps of X and V are always positive).
e COGARCH models:

feos@, ) = (=% ges(r, ) =y—x  (AX)* =yAV,
¢ ECOGARCH models:
Jecos(X,y) =y — x, 8rcoc(X,y) = \/)_C(logy —logx)

Such relationships seem too strong, but we can ask:
are jump sizes in price and squared volatility correlated?
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Semimartingale framework

X (log-)price process, observed on a discrete time grid
with grid size A, — 0
V =02 squared volatility process (cadlag), unobserved

! !
X, = X0+fbsds+f0'des
0 0
f fé(s 2) (u — v)(ds, dz)
vV, = V0+fbds+fa'de +fo-de
0
f f 5(s.2) (4 — v)(ds. d2)
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Assumptions

v

jumps of X have finite activity (otherwise rates change)

v

all moments of V are bounded in ¢, those of X are finite

the processes b, Z, o, ...are bounded

v

v

some ergodicity property for jumps
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The Goal

» Goal: Tests based on data within [0, T']
for non-correlation of f(AX) and g(AV)

using observations from a discrete time grid with A, — 0

» Define for joint jump times S,

U(f.8)s, = E[f(AXs,)g(AVs,) | Fs,,-]

» Null hypothesis: jump sizes are uncorrelated, i.e.

Ho: U(f,8)s, = U(f, 1)s, U(1, g)s, forallm
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Log-price process: continuously observed
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Local volatility estimation

Local volatility estimates [Mancini (2001)]:

k,
—_ 1 n

n o _ n ’ )
Vi - knAn ]:Zl |Al+_]X| 1{|Ai+jX|Sun}

uy,: threshold used to identify the jumps of X

k,: number of observations used for volatility estimation
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The test statistic (1)

Recall:
U(f.8)s, = E[f(AXs,)g(AVs,) | Fs,-]

Define

[7/An]—ky
Uf.of = Y FAX) V=V, ) ljnrxiou
i=k,+1
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The test statistic (2)
SetT, = U(L, )} U(f, )5 = U(f, D} UL, ).

As test statistic take

—_

¥ Ly

NN s

@, = (UL, D} ) UG )
+U(L, D} (U D} ) UL g5,
+U(1, D)}, (UL, g7 > U, D,
+AU(1, 1)}, U(L, )y U, 1, U(f, 8)f.
=201, Dy U, D U895,
—20(1, 1) UL, g)y. UG, 8)},
=3(UGF, D, ) (UL )7 )

where
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Theorem 1

Let
> T, — oo and A, — 0s.t. T,AY*™ — 0 for some 1 € (0, b,
> u, — 0 more slowly than A,l,/ ? and
> k, — co more slowly than A,_ll/ 2,

Under the assumptions for the stochastic volatility model and the test
functions f and g, we have, as n — oo,

under Hy: P, 4 N(@,1)

~ P
under H; : |¥,|] — .
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Theorem 2

Under the assumptions of Theorem 1 the critical regions

Cn =¥l > zo}

(P(N(O, 1) > zo) = )
have the asymptotic size a for testing Hy and are consistent for H.
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Conclusions from an extended simulation study

v

for a substantial number of jumps the test works very well

\{

the more jumps are considered, the bigger is the power of the test

> sensitivity on k,, is weak

v

test works better for lower values of u,
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The data

» 1-minute data of the SPDR S&P 500 ETF (SPY)
from 2005 to 2011 traded at NASDAQ

» use data between 9:30 am and 4:00 pm
= 390 observations per day

» days with periods of more than 60 consecutive seconds without
trades deleted
» choice of parameters:
length of volatility window:
k* = 3.00, leading to k,, = 56 [minutes]

price jump detection:
u* = 3.89 (99.995% quantile of standard normal)

Claudia Kliippelberg, Technische Universitit Miinchen



Stochastic Volatility Models Construction of Tests Local Volatility Estimation Data Analysis Superpositioned

Selection of jumps

» the threshold u, is locally adapted to the current volatility level
calculated as a moving average over 20 days (10 before, 10 after)

» the threshold u, is locally adapted to the daily volatility smile
(taken from Mykland, Shephard and Sheppard (2012))

» only isolated jumps: for the test statistic we only use jumps,
where within 56 minutes before and 56 minutes after no other
jump(s) occurred

» no overnight jumps for volatility estimation: we account only
for jumps between 10:26 am and 3:04 pm

» thresholds for volatility jumps: at least 10% upwards or 9%
downwards from current volatility level

» this way, 330 jumps are selected
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Price jumps AX versus volatility jumps Ao
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Results
SPY data set
S(AX) vs. g(AV)
S =x Jx) = |xl fx) =x*
gv)y=v -1.4213 0.8859 1.1421
gv) =v| -0.3561 1.7766 2.0007
gv) = V2 -0.6019 1.0949 1.2920
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Are jump sizes in price and volatility correlated?

For the SPY data set:

» on a 10% level, the test rejects the null hypothesis of
no correlation between price and volatility jump sizes,
for 2 out of 9 choices of (f, g)

Claudia Kliippelberg, Technische Universitit Miinchen
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Superpositioned COGARCH model (supCOGARCH)

[Kliippelberg, Lindner, Maller (2004)]
Let L be a Lévy process with discrete quadratic variation S = [L, L]¢.
The COGARCH squared volatility V¥ is the solution of the SDE

dvy =B -nV)dt+ VEedS, t>0.

It admits the integral representation

V;":V(‘)/’+,Bt—nf vEds + Z VEQAS; t>0.
(0.1]

0O<s<t
The integrated COGARCH price process is then

1
X;":fo Ve dL,, t>0.

Stationary solutions exist for all ¢ € © = (0, Ypax) With Qpax < 00
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supCOGARCH: [Behme, Chong and Kliippelberg (2013)]

Replace L by an independently scattered infinitely divisible random
measure A such that L, := A((0, ] X @), ¢ > 0 and

AS :=[A, A]4 is the jump part of the quadratic variation measure.
Let AS have characteristics (0, 0, df vs(dy) (de)),

where 7 is a probability measure on @ = (0, ¢max)-

We define a supCOGARCH squared volatility process by
Vi=Vy+ B-nVyds + f f V¢ AS(ds,dp), 120,
0.1] O] JO

where V) is independent of the restriction of A to Ry x ®.
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The stochastic integral: [Chong and Kliippelberg (2013)]

» We work in Ly (space of all P-a.s. finite random variables X)
with [|X]lo = E[IX| A 1], and
» we do not require independence of integrand and integrator;
A is an independently scattered infinitely divisible random measure
and we have to combine this with an adaptedness concept;
cf. Bichteler and Jacod (1983);

i.e. A is afiltration-based Lévy basis on R x ®.
In particular, we want

AA X (5, 1] X D) =14(L, — L;) s<tandA € F.
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Example: The two-factor suypCOGARCH

Letm = p15¢1 +p25¢,2 Withpl +pr=1 and QL. €D = o, Pmax)-

The subordinator S drives two COGARCH processes V¥! and V¥2:
when S jumps, a value is randomly chosen from {1, ¢ }:
© takes the value ¢; with prob. p; and the value ¢, with prob. p,.

The jump size of V is the jump size of the COGARCH with this .
If (T})ien denote the jump times of S, we have

AVr, = AVY! = @V} AST, i€N,

and (¢;)ien 1S an i.i.d. sequence with distribution m, independent of S.
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Example: 7 = p16,, + p20,,, A 1s CPRM
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Figure: COGARCH V¥, V¥2 and supCOGARCH V.
B=1,n=1,¢; =0.5,1 =0.75,¢, = 0.95, 7, = 0.25,
Poisson rate A = 1, jumps are N(O, 1).
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The supCOGARCH price process

We define the integrated supCOGARCH price process by

Xt = f Vt— dL[ tZ O
(0]

X has stationary increments and jumps at exactly the times as V.
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