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Introduction No-good-deal restriction Valuation and Hedging Explicit Results Model Ambiguity

Motivation and objective

In an arbitrage-free financial market.

Question: How to price and hedge a financial risk X?

Complete Market: unique no-arbitrage price obtained by
perfect hedging (replication). . . no problem.
Incomplete Market: infinitely many pricing measures  
interval of no-arbitrage prices:

I =
(

inf
Q∈Me

EQ [X ]︸ ︷︷ ︸
buyer’s price

, sup
Q∈Me

EQ [X ]︸ ︷︷ ︸
seller’s price

)
.

. . . super-hedging/super-replication.

Inconvenience: Price interval I typically too large for practical use

Aim: Obtain tighter interval of prices by ruling out not only
arbitrage opportunities but also ”good deals”. But HOW?
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Good-deal pricing and hedging idea

Pricing idea:

Price using only a subset Qngd of the set Me of equivalent
local martingale measures (ELMMs) with financial meaning.

For a financial risk X (derivatives, contingent claim,. . . etc),
the upper and lower good-deal bounds are

πlt(X ) := essinf
Q∈Qngd

EQ
t [X ] and πut (X ) := esssup

Q∈Qngd

EQ
t [X ].

Hedging idea: minimize over all trading strategies a suitable
dynamic risk measure (of no-good-deal type) such that at every
time, the minimal capital requirement to make the position
acceptable coincides with the good-deal bound.

K. Kentia Tonleu (HU Berlin) Good-Deal Bounds and Hedging under Uncertainty AMaMeF and B.C. Conf. 3 / 30
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Outline

1 No-Good-Deal Restriction

2 Good-Deal Valuation and Hedging

3 Explicit Results

4 Model Ambiguity
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Setup and assumptions

The setup is the following:

Filtered probability space (Ω,F ,F,P) with F = (FW
P

t )t≤T
and W an n-dimensional P-Brownian motion.

Financial market with interest rate r = 0 and d risky assets
with prices S = (S i )di=1.

S i are non-negative locally bounded (càdlàg) semimartingales.

Assume (d < n) and Me(S) 6= ∅  arbitrage-free and
incomplete market.
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Set Qngd of no-good-deal measures

Choose Qngd ⊂Me(S) s.t. Q ∈ Qngd with ZQ := dQ
dP

satisfies

EP
τ

[
− log

ZQ
σ

ZQ
τ

]
≤ EP

τ

[
1

2

∫ σ

τ

h2
sds

]
, τ ≤ σ ≤ T , (1)

where h > 0 is predictable and τ, σ are stopping times.

Using convex duality techniques one obtains from (1) that for
Q ∈ Qngd and for any Q-local martingale N > 0,

EP
τ

[
log

Nσ
Nτ

]
≤ EP

τ

[
− log

ZQ
σ

ZQ
τ

]
≤ EP

τ

[
1

2

∫ σ

τ
h2
sds

]
, ∀τ ≤ σ.
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Interpretation of a good-deal

So for Q ∈ Qngd and any Q-local martingale N > 0, we have

EP
τ

[
log

Nσ
Nτ

]
≤ EP

τ

[
− log

ZQ
σ

ZQ
τ

]
≤ EP

τ

[
1

2

∫ σ

τ
h2
sds

]
, ∀τ ≤ σ

. . . no-good-deal constraint is a bound on the conditional
expected growth rate of log-returns on any fair investment in
the whole financial market.

more specifically, a good-deal is an investment for which the
expected growth rate of returns exceeds 1

2h
2.
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No-good-deal restriction on the Girsanov kernels

Our no-good-deal restriction to Qngd is actually equivalent to
a bound on the Girsanov kernels of measures in Me(S):

Q ∈ Qngd iff Q ∈Me with ZQ = E
(
λQ ·W

)
, and |λQ | ≤ h

. . . Girsanov kernels λQ for Q ∈ Qngd are selections of the
correspondence (multivalued mapping) C : [0,T ]× Ω→ 2R

n

defined by C (t, ω) = B0(ht(ω)), ∀(t, ω).

Note:

We will consider more general correspondences C , yielding
more alternatives to no-good-deal constraints.

The values of C could be e.g. ellipsoids, polytopes, . . . etc

K. Kentia Tonleu (HU Berlin) Good-Deal Bounds and Hedging under Uncertainty AMaMeF and B.C. Conf. 8 / 30
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Generalized good-deal bounds via correspondences

Fix an arbitrary compact- and convex-valued, predictable
correspondence C : [0,T ]× Ω→ 2R

n
with 0 ∈ C .

Definition:

Qngd :=

{
Q ∈Me

∣∣∣∣ dQdP = E
(
λQ ·W

)
with λQ ∈ C

}
.

Qngd is multiplicatively stable, which implies nice dynamic
properties of πu· (X ) := esssup

Q∈Qngd

EQ
· [X ] as follows. . .

K. Kentia Tonleu (HU Berlin) Good-Deal Bounds and Hedging under Uncertainty AMaMeF and B.C. Conf. 9 / 30
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Dynamic properties of πu
· (·)

Theorem: The mappings X 7→ πut (X ) from L∞ → L∞(Ft) satisfy

(Nice paths) There exists a càdlàg version Y of πu· (X ) s.t.

Yτ = esssup
Q∈Qngd

EQ
τ [X ] =: πuτ (X ) ∀τ ≤ T stopping time.

(Dynamic coherent risk measure) For any stopping time
τ ≤ T , ∀X1,X2 ∈ L∞(F), mτ , λτ ∈ L∞(Fτ ) with λτ ≥ 0,

Monotonicity: X1 ≥ X2 implies πu
τ (X1) ≥ πu

τ (X2)
Subadditivity: πu

τ (X1 + X2) ≤ πu
τ (X1) + πu

τ (X2)
Positive Homogeneity: πu

τ (λτX ) = λτπ
u
τ (X )

Translation Invariance: πu
τ (X + mτ ) = πu

τ (X ) + mτ .

(Supermartingale property) ∀Q ∈ Qngd,

∀σ ≤ τ ≤ T stopping times, πuσ(X ) ≥ EQ
σ [πuτ (X )] .

K. Kentia Tonleu (HU Berlin) Good-Deal Bounds and Hedging under Uncertainty AMaMeF and B.C. Conf. 10 / 30
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Financial market model

More specific market model:

Stock price vector S = (S i )di=1 is a non-Markovian Itô process:{
dSt = diag(St)σt(ξtdt + dWt) =: diag(St)σtdŴt

S0 ∈ (0,∞)d

for bounded market price of risk ξ ∈ Im σtr, Rd×n-valued
volatility matrix σ of full rank ( incomplete market).

Q ∈Me iff λQ = −ξ + ηQ predictable and ηQt ∈ Ker σt .

. . . Q ∈ Qngd ⊆Me iff λQ ∈ Λ, where Λ is the
correspondence given by Λ(t, ·) = Ct ∩ (−ξt + Ker σt).

K. Kentia Tonleu (HU Berlin) Good-Deal Bounds and Hedging under Uncertainty AMaMeF and B.C. Conf. 11 / 30
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Admissible trading strategies

Trading strategies ϕ = (ϕi )di=1 are the amounts ϕi of wealth
invested into stocks of prices S i , i = 1 . . . , d .

Corresponding wealth process V ϕ for ϕ:

dV ϕ
t := ϕtr

t

dSt
St

= ϕtr
t σtdŴt .

Re-parameterize trading strategy ϕ as φ := σtrϕ ∈ Im σtr,
such that

V φ
t = V φ

0 +

∫ t

0
φtrt dŴt .

Set of admissible trading strategies:

Φ =

{
φ

∣∣∣∣ φ predictable, φ ∈ Im σtr and E

∫ T

0
|φt |2dt <∞

}
.

K. Kentia Tonleu (HU Berlin) Good-Deal Bounds and Hedging under Uncertainty AMaMeF and B.C. Conf. 12 / 30
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Good-deal valuation and hedging tools

Main tool: Use backward stochastic differential equations
(BSDEs) to describe good-deal valuation bounds and their
corresponding hedging strategies.

K. Kentia Tonleu (HU Berlin) Good-Deal Bounds and Hedging under Uncertainty AMaMeF and B.C. Conf. 13 / 30
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Good-deal valuation with C uniformly bounded

For X ∈ L2(F) and Q ∈ Qngd, the process Y = EQ
· [X ] solves

linear lipschitz BSDE

− dYt = Z tr
t λ

Q
t dt − Z tr

t dWt , YT = X .

Let (Y ,Z ) be the solution to the Lipschitz BSDE

−dYt = Z tr
t λ̄t(Z )dt − Z tr

t dWt , YT = X .

where λ̄ = λ̄(Z ) with Z tr
t λ̄t = esssup

Q∈Qngd

Z tr
t λ

Q
t .

By the comparison theorem for Lipschitz BSDEs, we have
πu· (X ) := esssup

Q∈Qngd

EQ
t [X ] = Y

. . . and there is a worst case measure Q̄ ∈ Qngd with
λQ̄ := λ̄(Z ) s.t. πut (X ) = E Q̄

t [X ] ∀t.

K. Kentia Tonleu (HU Berlin) Good-Deal Bounds and Hedging under Uncertainty AMaMeF and B.C. Conf. 14 / 30
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Good-deal hedging problem

Consider the set Pngd ⊇ Qngd defined by

Pngd :=

{
Q ∼ P

∣∣∣∣ dQdP = E
(
λQ ·W

)
, with λQ ∈ C

}
.

Associated upper bound is given by ρt(X ) = esssup
Q∈Pngd

EQ
t [X ].

Pngd is m-stable and convex =⇒ (ρt(·))t≤T is a dynamic
coherent time-consistent risk measure.

Hedging problem: Find an admissible strategy φ̄ ∈ Φ such that

πut (X ) = ρt

(
X −

∫ T

t
φ̄trs dŴs

)
= essinf

φ∈Φ
ρt

(
X −

∫ T

t
φtrs dŴs

)
.
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Ellipsoidal setting with bounded correspondence C

Beyond radial restrictions consider ellipsoid correspondences for
explicit results:

Bounded predictable process h > 0

Predictable Rn×n-valued process A, uniformly elliptic i.e.

∃c > 0 s.t. x trAt(ω)x ≥ c |x |2 P ⊗ dt-a.a.

Compact-convex-valued, predictable and uniformly bounded
correspondence C given by ellipsoids

C (t, ω) =
{
x ∈ Rn | x trAt(ω)x ≤ h2

t (ω)
}
.

Πt(·) and Π⊥t (·) denote resp. projections onto Im σtrt and
Ker σt = (Im σtrt )⊥

K. Kentia Tonleu (HU Berlin) Good-Deal Bounds and Hedging under Uncertainty AMaMeF and B.C. Conf. 16 / 30
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Good-deal valuation by BSDEs

Optimal Girsanov kernel λ̄t(Z ) := argmax
λt∈Λt

λtrt Zt is given by

λ̄t = −ξt +

√
h2
t − ξtrt Atξt√

Π⊥t (Zt)
tr
A−1
t Π⊥t (Zt)

A−1
t Π⊥t (Zt)

. . . hence πu· (X ) = Y for (Y ,Z ) solving the Lipschitz BSDE

−dYt = f λ̄(t,Zt)dt − Z tr
t dWt , YT = X ,

with

f λ̄(t,Zt) := −ξtrt Πt(Zt) +
√
h2
t − ξtrt Atξt

√
Π⊥t (Zt)

tr
A−1
t Π⊥t (Zt).
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Good-deal hedging strategy via BSDEs

Kuhn-Tucker arguments yields formula for the hedging
strategy:

φ̄t =

√
Π⊥t (Zt)

tr
A−1
t Π⊥t (Zt)

h2
t − ξtrt Atξt

Atξt + Πt(Zt),

for (Y ,Z ) solution to the πu-BSDE.

K. Kentia Tonleu (HU Berlin) Good-Deal Bounds and Hedging under Uncertainty AMaMeF and B.C. Conf. 18 / 30
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Robustness of the good-deal hedging strategy

For φ ∈ Φ, define the associated hedging (or tracking) error

Lφt := πu
t (X )− πu

0 (X )︸ ︷︷ ︸
capital requirement

−
∫ t

0

φtrs dŴs .︸ ︷︷ ︸
Gain/loss from trading

Super-mean-self-financing: hedging error Lφ̄ of the
good-deal hedging strategy φ̄ is a Q-supermartingale
∀Q ∈ Pngd

. . . “robustness” of hedging strategy w.r.t. generalized
scenarios corresponding to probability measures in Pngd.

K. Kentia Tonleu (HU Berlin) Good-Deal Bounds and Hedging under Uncertainty AMaMeF and B.C. Conf. 19 / 30
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Example: option on a non-tradable asset

Black-Scholes with one stock and a non-tradable asset:{
dSt

St
= σdW S

t , S0 > 0
dHt

Ht
= γdt + β

(
ρdW S

t +
√

1− ρ2dW H
t

)
, H0 > 0,

with correlation coefficient ρ ∈ (−1, 1) and volatility σ > 0.

Consider Call option X = (HT −K )+ on non-tradable asset H

. . . and ellipsoidal restriction Ct = {x : x trAx ≤ h2}, with
h = const > 0 and A = diag(a, b), with a, b > 0.

. . . then explicit form of the good-deal bound:

πut (X ) = α ∗ Black-Scholes-Call-Price

(
t, Strike:

K

α
, vol: β

)
,

where α = exp
(
T
(
γ + β

√
1− ρ2 h√

b

))
> 0

K. Kentia Tonleu (HU Berlin) Good-Deal Bounds and Hedging under Uncertainty AMaMeF and B.C. Conf. 20 / 30
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Example: option in the Hestion model

Heston model with stochastic volatility σt =
√
vt :{

dSt = St
√
vtdW

S
t , S0 > 0

dvt = (a− bvt)dt + β
√
vt
(
ρdW S

t +
√

1− ρ2dW v
t

)
, v0 > 0,

with MRL a, MRS b, volvol β and correlation ρ ∈ (−1, 1).

Good-deal radial constraint Ct = {x : |x | ≤ ht} with
ht := ε√

vt
, and Put option X = (K − ST )+.

Obtain pseudo-explicit solution for the good-deal bound:

πut (X ) = Heston-Put-Price(t, MRL : ā, MRS : b, volvol : β),

with increased MRL: ā := a + βε
√

1− ρ2 > a.
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Good-deal theory and model uncertainty

Model ambiguity:

Unknown real world measure P and market prices of risk

. . . model uncertainty.

Goal: robust valuation and hedging w.r.t uncertainty.

Approach:

Rather than single reference measure P = P0, consider
“confidence region” R of reference measures:

R :=
{
Pν | dPν = E(ν ·W 0)dP0, ν ∈ V

}
for some correspondence V .

Market price of risk under Pν : ξν = ξ0 + Π(ν) ∈ Im σtr.

Fix correspondences {C ν , ν ∈ V }. . . Qngd(Pν),

Definition:

Qngd := m-stable-convex-hull
(
∪ν∈VQngd(Pν)

)
K. Kentia Tonleu (HU Berlin) Good-Deal Bounds and Hedging under Uncertainty AMaMeF and B.C. Conf. 22 / 30
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Worst case valuation and hedging under uncertainty

Ellipsoid setting with Vt :=
{
x : x trAtx ≤ δ2

t

}
, δ > 0, predictable

bounded process and C νt =
{
x : x trAtx ≤ h2

t

}
− Π⊥t (νt):

∃ “worst case” reference measure P ν̄ , such that

Qngd =
⋃
ν∈V
Qngd(Pν) = Qngd(P ν̄)

The measure P ν̄ yields the largest good-deal bound, i.e.

πut (X ) = esssup
ν∈V

πu,νt [X ] = πu,ν̄t (X ),

. . . as in case without uncertainty, one derives a BSDE
(under P ν̄), the solution of which describes πu· (X ) = πu,ν̄· (X )
and the “worst case” hedging strategy φ̄ν̄ .

K. Kentia Tonleu (HU Berlin) Good-Deal Bounds and Hedging under Uncertainty AMaMeF and B.C. Conf. 23 / 30
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Worst case hedging is not robust

Inconvenience: hedging strategy φ̄ν̄ NOT robust w.r.t.
uncertainty, i.e. simultaneously w.r.t. all models under
Pν , ν ∈ V .

K. Kentia Tonleu (HU Berlin) Good-Deal Bounds and Hedging under Uncertainty AMaMeF and B.C. Conf. 24 / 30
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Robust hedging with respect to uncertainty

Definition: Pngd := ∪ν∈VPngd(Pν) (. . . m-stability)

obtain dynamic coherent risk measure ρt(X ) = esssup
ν∈V

ρνt (X ),

with ρνt (X ) = esssup
Q∈Pngd(Pν)

EQ
t [X ]

From hedging without uncertainty we have

πut (X ) = esssup
ν∈V

πu,νt [X ] = esssup
ν∈V

essinf
φ∈Φ

ρνt

(
X −

∫ T

t
φtrs dŴs

)
For robust hedging, consider the dual bound

π̄ut (X ) := essinf
φ∈Φ

esssup
ν∈V

ρνt

(
X −

∫ T

t
φtrs dŴs

)
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Robust hedging with respect to uncertainty. . . (Continued)

Dual good-deal bound is then obtained by π̄ut (X ) := Yt for
(Y ,Z ) solution to BSDE under P0 with parameters (f ,X ),
where

f (t,Zt) = −(ξ0
t )trΠt(Zt) + ht

√
Π⊥t (Zt)

tr
A−1
t Π⊥t (Zt)

. . . for robust hedging with respect to uncertainty uniformly
for generalized scenarios in Pngd, the strategy is given by
φ∗t = Πt(Zt)
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Comparison of πu
· (X ) and π̄u

· (X )

In general πu(X ) ≤ π̄u(X ), i.e. weak duality!

. . . but if Me(P0) ∩R 6= ∅, then πu(X ) = π̄u(X ) and
φ̄ν̄ = φ∗ = Π(Z ), i.e. strong duality!

Example: ξ0trAξ0 ≤ δ2 =⇒ P0 ∈Me(P0) ∩R
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Link to Föllmer-Schweizer risk minimization (Föllmer &
Schweizer (1991))

For a financial risk X , the strategy φ̂ is the Föllmer-Schweizer
(F-S) risk minimizing strategy for X w.r.t. Q ∈Me(S) if

φ̂t = argmin
φ

EQ
t

[
(LφT − Lφt )2

]
, t ≤ T .

If Me(P0) ∩R 6= ∅, then robust good-deal hedging ⇔
F-S risk minimization under some special measure Q̄ ∈ Qngd.
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Outlook

Possible extensions:

incorporation of predictable event-risk (jumps, default, ...etc)

robust good-deal hedging w.r.t. volatility uncertainty?
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