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Motivations : Selling an illiquid asset

An investor selling an illiquid asset,

1 "Impatient" trader

- Finds a buyer for the asset
- Immediately sells even at a discounted price w.r.t. the theoritical/fair price

2 "Patient" trader

- Continuously estimates the theoritical/fair price
- Waits for a buyer at that price

3 "Mixed" trading strategy

- Continuously estimates the theoritical/fair price
- Waits a buyer at that price
- If a buyer proposes an "acceptable" discounted price, immediately sell
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Motivations : Selling an illiquid asset

I "Impatient" trading : Optimal portfolio selection with transaction costs, Optimal
portfolio liquidation,..

→ the trader pays liquidity costs.

I "Patient" trading : Optimal portfolio liquidation with limit orders (Bayraktar, Ludkowski
2012)

→ the asset is sold at a random time τ (execution and inventory risks).

I "Mixed" trading : Market making (Guilbaud, Pham 2011)

→ tradeoff between liquidation costs and execution risks
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Motivations : Optimal stopping problem

To address liquidation problem of an asset :

I Determine the optimal stopping time to sell one asset at a discounted price.

→ Optimal stopping problem with random maturity :
Carr (98) and Bouchard, El Karoui, Touzi (05)

I Incorporate a diffusion process for liquidity discount.
→ Multi-dimensional optimal stopping problem
Broadie, Detemple (97),...

I Incorporate regime switching for the intensity of buy orders arrival.
→ Optimal stopping problem with regime switching
Guo, Zhang (04)

Related papers on Optimal liquidation include : Schied (09), Bouchard and Dang (11),
and Guéant and Lehalle (12).
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1 Model and problem formulation
Model
An optimal stopping problem with regime switching

2 Dynamic programming system and properties of the value functions
Properties of the value functions
DPP and associated VI system

3 Logarithmic utility
Application to logarithmic utility
The case with no regime switch
The case with two regimes

4 Power utility
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Model
An optimal stopping problem with regime switching

The financial market

We consider a probability space (Ω,F ,P) with a filtration F = (Ft )t≥0 satisfying
the usual conditions.

Let W and B be two correlated (Ft )-Brownian motions, with correlation ρ.

Theoretical/fair value of an illiquid asset evolving according a positive process S,
which may be written as St := exp(Xt ), where the process X is governed by the
following s.d.e.

dXt = µ(Xt )dt + σ(Xt )dBt

X0 = x ,

where µ and σ are two Lipschitz functions with linear growth conditions.
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Model
An optimal stopping problem with regime switching

Liquidity costs

(Il)liquidity process Y , is a mean-reverting non-negative process and governed
by the following s.d.e.

dYt = α(Yt )dt + γ(Yt )dWt ,

Y0 = y ,

where α and γ are locally Lipschitz function on R+, more precisely, they may be
Lipschitz on [ε,∞), for any ε > 0.

Liquidity discount factor : (f (Yt ))t≥0, where f is a positive, continuous and
decreasing function defined on R+ → [0, 1], and satisfies the following
conditions :

f (0) = 1

lim
y→∞

f (y) = 0

Discounted price : Should the investor decide to sell immediately the assets at
the highest available bid price, i.e. at a discounted price, he would obtain a
cash-flow of St f (Yt ).
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Model
An optimal stopping problem with regime switching

Liquidity regimes

Liquidity regimes :
Let L be a continuous time, time homogenous, irreductible Markov chain,
independent of W and B, with m + 1 states.
The generator of the chain L under P is denoted by A = (ϑi,j )i,j=0,...n. Here ϑi,j is
the constant intensity of transition of the chain L from state i to state j .

Market orders arrival :
The market order arrival time, denoted by τ , is defined as the first jump time of a
Cox process with an intensity

(
λLt

)
t≥0.

τ is independent of W and B and, without lost of generality we assume

λ0 ≥ λ1 ≥ . . . ≥ λm > 0
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Model
An optimal stopping problem with regime switching

Utility function

Classical assumptions :
- U : R+ → R, is non-decreasing, concave and belongs to C2(R+).
- U has the following behavior

lims→0 s U′(s) < +∞

Supermeanvalued utility : (Dinkyn, Oksendal) The investor is coherent and
rationnal : we suppose that U is supermeanvalued w.r.t. S, i.e.

U(s) ≥ Es[U(Sθ)]

for s ≥ 0 and any stopping time θ ∈ T where T is the collection of all F−stopping
times.
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Model
An optimal stopping problem with regime switching

An optimal stopping problem with regime switching

I Maximizing the expected utility of the wealth received from the sales of the illiquid
assets.

Objective function : For x ∈ R, y ∈ R+, i ∈ {0, . . . ,m}, we set

v(i, x , y) := sup
θ∈T

Ei,x,y
[
h(Xθ,Yθ) Iθ≤τ + U(eXτ ) Iθ>τ

]
,

where Ei,x,y denotes the flow with initial condition X0 = x , Y0 = y and L0 = i and
h(x , y) = U(exp(x)f (y)).
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Continuity of the objective functions

Continuity of the objective functions

The value functions vi are continuous on R× R+ and satisfy :

lim
(u,y)→(x,0+)

vi (u, y) = vi (x , 0) = U(ex ).

Proof
Continuity of stochastic flows (up to ξy := inf{t > 0,Y y

t = 0}).

Lemma

There exists an optimal stopping time θ∗i,x,y such that

v(i, x , y) = Ei,x,y
[
h(Xθ∗i,x,y ,Yθ∗i,x,y )1θ∗i,x,y≤τ∧ξy + U(eXτ )1θ∗i,x,y>τ∧ξy

]
. (1)

Moreover, on {ξy ≤ τ}, we have θ∗i,x,y ≤ ξy .

Supermeanvalue assumption
lims→0 s U′(s) < +∞
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Viscosity Characterization of objective function

Theorem

The value functions vi , i ∈ {0, . . . ,m}, are the unique continuous viscosity solutions on
R× R+ with growth condition |vi (x , y)| ≤ |U(ex )|+ |U(ex f (y)|, and boundary data
limy↓0 vi (x , y) = U(ex ), to the system of variational inequalities :

min
[
− Lv(i, x , y)− Gi v(., x , y)− Ji v(., x , y) , v(i, x , y)− h(x , y)

]
= 0,

where, for functions ϕ : {0, . . . ,m} × R× R+ → R with ϕ(i, ·, ·) ∈ C2(R× R+) for all
i ∈ {0, . . . ,m}, we have set

Lφ(x , y) = µ(x)
∂φ

∂x
+ α(y)

∂φ

∂y
+

1
2
σ2(x)

∂2φ

∂x2
+ ργ(y)σ(x)

∂2φ

∂x∂y
+

1
2
γ2(y)

∂2φ

∂y2
.

and Gi and Ji act on functions ϕ :

Giϕ(., x , y) =
∑
j 6=i

ϑi,j (ϕ(j, x , y)− ϕ(i, x , y))

Jiϕ(., x , y) = λi
(
U(ex )− ϕ(i, x , y)

)
.
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Dynamic Programming Principle

We deduce from the following Dynamic Programming Principle (DPP) that the objective
functions are solution of the previous variationnal inequalities system :

Dynamic Programming Principle

For any (i, x , y) ∈ {0, . . . , n} × R× (0,∞), for all ν ∈ T , we have

v(i, x , y) = sup
θ∈T

Ei,x,y
[
h(Xθ,Yθ)1θ≤τ∧ν + U(eXτ )1τ<θ∧ν + v(Lν ,Xν ,Yν)1ν<θ1ν≤τ

]
.
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Proof of uniqueness

Comparaison principle

Let (φi )0≤i≤m (resp. (ψi )0≤i≤m) a family of continuous subsolution (resp. super
solution) of the VI system on R× R+ satisfying the following growth conditions on
{0, ..,m} × R× R+

|φ(i, x , y)|+ |ψ(i, x , y)| ≤ |U(ex )|+ |U(ex )f (y)| on R× R+

and limy→0+ φi (x , y) ≤ limy→0+ ψi (x , y). We have φ ≤ ψ on {0, ..,m} × R× R+
∗ .

Proof.
Step 1. Construction of strict super-solutions to the system with suitable
perturbations of ψi :
-

ψγi = (1− γ)ψi + γηi

- (ψγi )(i=1,...,n) is a strict super-solution to the VI system.

Step 2. It suffices to show (by contradiction) that for all γ ∈ (0, 1) :

max
i∈{0,..,m}

sup
R×R+

∗

(φi − ψγi ) ≤ 0,
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Proof of uniqueness

I Technical point : Construct a strict super solution which dominates φi and ψi .

→ The following function is a strict super solution which dominates U(ex )

g(x , y) =

{
ax4 + byn + k + U(1)θ(0) + A1x + 1

2 A2x2 x ≤ 0
ax4 + byn + k + U(ex )θ(x) x > 0.

→ Existence of such strict super solution follows from characterization of
Ei,x [U(eXτ )] as solution of a system of PDE.
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Execution and continuation regions

Execution and continuation regions

E =
{

(i, x , y) ∈ {0, ...,m} × R× R+ | v(i, x , y) = h(x , y)
}

C = {0, ...,m} × R× R+ \ E.

We also define the (i, x)−sections for every (i, x) ∈ {0, ...,m} × R by

E(i,x) = {y ∈ (0,+∞) | v(i, x , y) = h(x , y)} and C(i,x) = R+ \ E(i,x).

Optimal execution time : θ∗ixy = inf
{

u ≥ 0 |
(
Li

u ,X x
u ,Y

y
u
)
∈ E
}

.

Properties of execution region

Let (i, x) ∈ {0, ...,m} × R.

If Ei,x [U(eXτ )] = U(ex ), then, for all y ∈ R+, v(i, x , y) = U(ex ) and E(i,x) = {0}.

If Ei,x [U(eXτ )] < U(ex ), then ∃x0 such that E(i,x0 ) \ {0} 6= ∅ and
ȳ∗(i, x) := sup E(i,x) < +∞.
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Logarithmic utility

Throughout this section we assume that

U(s) = ln(s) on R+
∗ .

X and Y solutions of the following SDEs :

dXt = µdt + σ(Xt )dBt ; X0 = x
dYt = κ (β − Yt ) dt + γ

√
Yt dWt ; Y0 = y

Remarks

The supermean value assumption implies that µ ≤ 0.

If µ = 0, we have seen that v(i, x , y) = U(ex ) and E(i,x) = {0}
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Dimension reduction

Proposition

For (i, y) ∈ {1, ...,m} × R+ we define the function :

w(i, y) = sup
θ∈TL,W

Ei,y [µ(θ ∧ τ) + ln (f (Yθ)) I{θ≤τ}],

where TL,W is the set of stopping times with respect to the filtration generated by
(L,W ). We have

v(i, x , y) = x + w(i, y) on {1, ...,m} × R× R+.

Proof.
On {0, ...,m} × R× R+, we have

v(i, x , y) = sup
θ∈T

Ei,x,y [Xθ∧τ + ln (f (Yθ)) I{θ≤τ}].

We prove that ∂v
∂x (i, x , y) = 1 then v(i, x , y) = x + φ(i, y)

An optimal stopping time is θ∗ixy = inf{t ≥ 0 : φ(Li
t ,Y

y
t ) = ln(f (Y y

t ))}, which
belongs to TL,W . We obtain φ = w .
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Viscosity characterization

Corollary

(w(i, ·))0≤i≤m are the unique continuous viscosity solutions of the following system of
equation which satisfy ln(f (y)) ≤ w(i, y) ≤ 0 :

min
[
− Lw(i, y) + λi w(i, y)−

∑
j 6=i

ϑi,j (w(j, y)− w(i, y)) , w(i, y)− ln(f (y))
]

= 0 .

where , for φ ∈ C1(R+),

Lφ(y) =
1
2
γ2y

∂2φ

∂y2
+ α(β − y)

∂φ

∂y
+ µ.

Smooth fit

For all i ∈ {0, ..,m}, w(i, ·) is continuously differentiable.
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Execution region

Proposition

Let i ∈ {0, ...,m} and g(y) = ln(f (y)) on R+
∗ . We set

ŷi = inf{y ≥ 0 : Hi g(y) ≥ 0} withHi g(y) = Lg(y)−λi g(y)+
∑
j 6=i

ϑi,j (w(j, y)− g(y)) .

There exists y∗i ≥ 0 such that for all x ∈ R, [0, y∗i ] = E(i,x) ∩ [0, ŷi ].

Moreover, if Hi g(y) > 0 on (ŷi ,+∞) then [0, y∗i ] = E(i,x).

Proposition

If the function y → Lg(y) is non-decreasing then w(i, ·)− g(·) is also non decreasing.
Consequently, there exists y∗i ≥ 0 such that for all x ∈ R, [0, y∗i ] = E(i,x).
Moreover, if µ < 0, y∗i > 0.

Exemple

If we set f (y) = e−y on R+, we have Lg(y) = α(y − β) and then [0, y∗i ] = E(i,x).
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No regime switch

Let i ∈ {1, ...,m}. Throughout this section, we shall assume that ϑi,j = 0 ∀i 6= j and
that there exists 0 < y∗i such that E(i,x) = [0, y∗i ].

Proposition

y∗i is the solution of the following equation

g(y∗i )− µ
λi

g′(y∗i )
= −

γ2

2λi

Ψ
(
λi
α
, 2αβ
γ2 ,

2α
γ2 y∗i

)
Ψ
(
λi
α

+ 1, 2αβ
γ2 + 1, 2α

γ2 y∗i
) .

the function w(i, ·) is given by

w(i, y) =


g(y) y ≤ y∗i

g(y∗i )− µ
λi

Ψ
(
λi
α
, 2αβ
γ2 ,

2α
γ2 y∗i

)Ψ

(
λi

α
,

2αβ
γ2

,
2α
γ2

y
)

+
µ

λi
y > y∗i

where Ψ denotes the confluent hypergeometric function of second kind
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Two regimes

We assume that m = 1, ϑ0,1ϑ1,0 6= 0 and that, for i ∈ {0, 1}, there exists y∗i > 0 such
that E(i,s) = [0, y∗i ].

Proposition

We can show that y∗0 ≤ y∗1

Let Λ be the matrix

Λ =

(
λ0 + ϑ0,1 −ϑ0,1
−ϑ1,0 λ1 + ϑ1,0

)
As ϑ0,1ϑ1,0 > 0 it is easy to check that Λ has two eigenvalues λ̃0 and λ̃1 < λ̃0. Let
Λ̃ = P−1ΛP be the diagonal matrix with diagonal (λ̃0, λ̃1). The transition matrix P is
denoted by

P =

(
p0

0 p0
1

p1
0 p1

1

)
.
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Two regimes

Proposition

The function w(1, ·) is given by

w(1, y) =



g(y) y ∈ [0, y∗1 ]

p1
0

[
êΨ

(
λ̃0

α
,

2αβ
γ2

,
2α
γ2

x

)
+

µ

λ̃0

]
y ∈ (y∗1 ,∞)

+p1
1

[
f̂ Ψ

(
λ̃1

α
,

2αβ
γ2

,
2α
γ2

y

)
+

µ

λ̃1

]

where Ψ denotes the confluent hypergeometric function of second kind, I is a
particular solution to the non-homogeneous confluent differential equation.
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Two regimes

Proposition

The function w(0, ·) is given by

w(0, y) =



g(y) y ∈ [0, y∗0 ]

ĉΦ

(
λ0 + ϑ0,1

α
,

2αβ
γ2

,
2α
γ2

y
)

+ d̂Ψ

(
λ0 + ϑ0,1

α
,

2αβ
γ2

,
2α
γ2

y
)

y ∈ (y∗0 , y
∗
1 ]

+I
(

2α
γ2
, β,−2

λ0 + ϑ0,1

γ2
, 2
ϑ0,1g(·) + µ

γ2

)
(y)

p0
0

[
êΨ

(
λ̃0

α
,

2αβ
γ2

,
2α
γ2

y

)
+

µ

λ̃0

]
y ∈ (y∗1 ,∞)

+p0
1

[
f̂ Ψ

(
λ̃1

α
,

2αβ
γ2

,
2α
γ2

y

)
+

µ

λ̃1

]

where Φ and Ψ denote respectively the confluent hypergeometric function of first and
second kind, I is a particular solution to the non-homogeneous confluent differential
equation.
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Power utility

Throughout this section we assume that

U(s) = sa on R+
∗ with 0 < a ≤ 1.

There exists µ and σ in R s.t. X is solution of the following sde :

dXt = µdt + σdBt

Remarks

The supermean value assumption implies that µa + σ2

2 a2 ≤ 0.

If µa + σ2

2 a2 = 0, we have seen that v(i, x , y) = U(ex ) and E(i,x) = {0}
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Dimension reduction

Proposition

For (i, y) ∈ {1, ...,m} × R+ we define the function :

u(i, y) = sup
θ∈TL,W

Ei,y [e(µ+(1−ρ2)σ
2

2 )(θ∧τ)+ρσWθ∧τ
(
I{θ>τ} + g(Yθ)I{θ≤τ}

)
].

We have
v(i, x , y) = eax u(i, y) on {1, ...,m} × R× R+.

(u(i, ·))0≤i≤m are the unique continuously differentiable viscosity solutions of the
system of equation :

min
[
− L̃u(i, y)− λi (1− u(i, y))−

∑
j 6=i

ϑi,j (u(j, y)− u(i, y)) , u(i, y)− g(y)
]

= 0 .

where we have set g(y) = (f (y))a and, for φ ∈ C1(R+),

L̃φ(y) =
1
2
γ2y

∂2φ

∂y2
+
[
α(β − y) + ρσγa

√
y
]∂φ
∂y

+
[σ2a2

2
+ µa

]
φ(y).
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Conclusions

Study of a liquidation problem of an illiquid asset

Mathematical characterisation of the objective function

Explicit solutions for specific utility functions (power and exponential)
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Thank you for your attention !
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