Optimal Liquidation under stochastic liquidity and regime shifting

Vathana Ly Vath Université d'Evry

AMAMEF and BANACH Center CONFERENCE WARSAW 10-15 June 2013

Joint work with : Etienne Chevalier, Université d'Evry Alexandre Roch, UQAM Simone Scotti, Université Paris Diderot

< ロ > < 同 > < 回 > < 回 >

Introduction

Model and problem formulation Dynamic programming system and properties of the value functions Logarithmic utility Power utility

Motivations : Selling an illiquid asset

An investor selling an illiquid asset,

- Impatient" trader
 - Finds a buyer for the asset
 - Immediately sells even at a discounted price w.r.t. the theoritical/fair price

Patient" trader

- Continuously estimates the theoritical/fair price
- Waits for a buyer at that price
- Image: "Mixed" trading strategy
 - Continuously estimates the theoritical/fair price
 - Waits a buyer at that price
 - If a buyer proposes an "acceptable" discounted price, immediately sell

Motivations : Selling an illiquid asset

► "Impatient" trading : Optimal portfolio selection with transaction costs, Optimal portfolio liquidation,..

 \rightarrow the trader pays liquidity costs.

▶ "Patient" trading : Optimal portfolio liquidation with limit orders (Bayraktar, Ludkowski 2012)

 \rightarrow the asset is sold at a random time τ (execution and inventory risks).

▶ "Mixed" trading : Market making (Guilbaud, Pham 2011)

 \rightarrow tradeoff between liquidation costs and execution risks

< ロ > < 同 > < 回 > < 回 > .

Motivations : Optimal stopping problem

To address liquidation problem of an asset :

▶ Determine the optimal stopping time to sell one asset at a discounted price.

 \rightarrow Optimal stopping problem with random maturity : Carr (98) and Bouchard, El Karoui, Touzi (05)

► Incorporate a diffusion process for liquidity discount. → Multi-dimensional optimal stopping problem Broadie, Detemple (97),...

► Incorporate regime switching for the intensity of buy orders arrival. → Optimal stopping problem with regime switching Guo, Zhang (04)

Related papers on Optimal liquidation include : Schied (09), Bouchard and Dang (11), and Guéant and Lehalle (12).

Introduction

Model and problem formulation Dynamic programming system and properties of the value functions Logarithmic utility Power utility

Model and problem formulation

- Model
- An optimal stopping problem with regime switching

Dynamic programming system and properties of the value functions

- Properties of the value functions
- DPP and associated VI system

3 Logarithmic utility

- Application to logarithmic utility
- The case with no regime switch
- The case with two regimes

Power utility

・ 同 ト ・ ヨ ト ・ ヨ

- We consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration $\mathcal{F} = (\mathcal{F}_t)_{t \ge 0}$ satisfying the usual conditions.
- Let W and B be two correlated (\mathcal{F}_t) -Brownian motions, with correlation ρ .
- Theoretical/fair value of an illiquid asset evolving according a positive process *S*, which may be written as *S*_t := exp(*X*_t), where the process *X* is governed by the following s.d.e.

$$dX_t = \mu(X_t)dt + \sigma(X_t)dB_t$$

$$X_0 = x,$$

where μ and σ are two Lipschitz functions with linear growth conditions.

< ロ > < 同 > < 回 > < 回 > .

• (II)liquidity process *Y*, is a mean-reverting non-negative process and governed by the following s.d.e.

$$\begin{aligned} dY_t &= \alpha(Y_t)dt + \gamma(Y_t)dW_t, \\ Y_0 &= y, \end{aligned}$$

where α and γ are locally Lipschitz function on \mathbb{R}^+ , more precisely, they may be Lipschitz on $[\epsilon, \infty)$, for any $\epsilon > 0$.

Liquidity discount factor : (f(Y_t))_{t≥0}, where f is a positive, continuous and decreasing function defined on ℝ⁺ → [0, 1], and satisfies the following conditions :

$$f(0) = 1$$
$$\lim_{y \to \infty} f(y) = 0$$

• **Discounted price** : Should the investor decide to sell immediately the assets at the highest available bid price, i.e. at a discounted price, he would obtain a cash-flow of $S_t f(Y_t)$.

• Liquidity regimes :

Let *L* be a continuous time, time homogenous, irreductible Markov chain, independent of *W* and *B*, with m + 1 states. The generator of the chain *L* under \mathbb{P} is denoted by $A = (\vartheta_{i,j})_{i,j=0,...n}$. Here $\vartheta_{i,j}$ is the constant intensity of transition of the chain *L* from state *i* to state *j*.

• Market orders arrival :

The market order arrival time, denoted by τ , is defined as the first jump time of a Cox process with an intensity $(\lambda_{L_r})_{r>0}$.

au is independent of W and B and, without lost of generality we assume

$$\lambda_0 \geq \lambda_1 \geq \ldots \geq \lambda_m > 0$$

Classical assumptions :

- $U : \mathbb{R}^+ \to \mathbb{R}$, is non-decreasing, concave and belongs to $\mathcal{C}^2(\mathbb{R}^+)$.
- U has the following behavior

$$\lim_{s \to 0} s U'(s) < +\infty$$

• **Supermeanvalued utility** : (Dinkyn, Oksendal) The investor is coherent and rationnal : we suppose that *U* is supermeanvalued w.r.t. *S*, i.e.

$$U(s) \geq \mathbb{E}^{s}[U(S_{\theta})]$$

for $s \ge 0$ and any stopping time $\theta \in T$ where T is the collection of all \mathcal{F} -stopping times.

Model An optimal stopping problem with regime switching

An optimal stopping problem with regime switching

Maximizing the expected utility of the wealth received from the sales of the illiquid assets.

Objective function : For $x \in \mathbb{R}$, $y \in \mathbb{R}^+$, $i \in \{0, ..., m\}$, we set

$$v(i, x, y) \quad := \quad \sup_{\theta \in \mathcal{T}} \mathbb{E}^{i, x, y} \left[h(X_{\theta}, Y_{\theta}) \mathbb{I}_{\theta \leq \tau} + U(e^{X_{\tau}}) \mathbb{I}_{\theta > \tau} \right] \,,$$

where $\mathbb{E}^{i,x,y}$ denotes the flow with initial condition $X_0 = x$, $Y_0 = y$ and $L_0 = i$ and $h(x,y) = U(\exp(x)f(y))$.

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Model and problem formulation Dynamic programming system and properties of the value functions

Properties of the value functions DPP and associated VI system

Logarithmic utility Power utility

Continuity of the objective functions

Continuity of the objective functions

The value functions v_i are continuous on $\mathbb{R} \times \mathbb{R}^+$ and satisfy :

$$\lim_{(u,y)\to(x,0^+)}v_i(u,y)=v_i(x,0)=U(e^x).$$

Proof

• Continuity of stochastic flows (up to $\xi_y := \inf\{t > 0, Y_t^y = 0\}$).

Lemma

There exists an optimal stopping time $\theta_{i,x,y}^*$ such that

$$\nu(i,x,y) = \mathbb{E}^{i,x,y} \left[h(X_{\theta^*_{i,x,y}}, Y_{\theta^*_{i,x,y}}) \mathbb{1}_{\theta^*_{i,x,y} \le \tau \land \xi_y} + U(e^{X_{\tau}}) \mathbb{1}_{\theta^*_{i,x,y} > \tau \land \xi_y} \right].$$
(1)

Moreover, on $\{\xi_y \leq \tau\}$, we have $\theta_{i,x,y}^* \leq \xi_y$.

Supermeanvalue assumption

•
$$\lim_{s \to 0} s U'(s) < +\infty$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Properties of the value functions DPP and associated VI system

Viscosity Characterization of objective function

Theorem

The value functions v_i , $i \in \{0, ..., m\}$, are the unique continuous viscosity solutions on $\mathbb{R} \times \mathbb{R}^+$ with growth condition $|v_i(x, y)| \le |U(e^x)| + |U(e^x f(y))|$, and boundary data $\lim_{y \downarrow 0} v_i(x, y) = U(e^x)$, to the system of variational inequalities :

$$\min\left[-\mathcal{L}\mathbf{v}(i,x,y)-\mathcal{G}_i\mathbf{v}(.,x,y)-\mathcal{J}_i\mathbf{v}(.,x,y),\,\mathbf{v}(i,x,y)-\mathbf{h}(x,y)\right]=0,$$

where, for functions $\varphi : \{0, \ldots, m\} \times \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$ with $\varphi(i, \cdot, \cdot) \in C^2(\mathbb{R} \times \mathbb{R}^+)$ for all $i \in \{0, \ldots, m\}$, we have set

$$\mathcal{L}\phi(x,y) = \mu(x)\frac{\partial\phi}{\partial x} + \alpha(y)\frac{\partial\phi}{\partial y} + \frac{1}{2}\sigma^{2}(x)\frac{\partial^{2}\phi}{\partial x^{2}} + \rho\gamma(y)\sigma(x)\frac{\partial^{2}\phi}{\partial x\partial y} + \frac{1}{2}\gamma^{2}(y)\frac{\partial^{2}\phi}{\partial y^{2}}.$$

and \mathcal{G}_i and \mathcal{J}_i act on functions φ :

$$\begin{aligned} \mathcal{G}_i\varphi(.,x,y) &= \sum_{j\neq i} \vartheta_{i,j} \left(\varphi(j,x,y) - \varphi(i,x,y)\right) \\ \mathcal{J}_i\varphi(.,x,y) &= \lambda_i \left(U(e^x) - \varphi(i,x,y)\right). \end{aligned}$$

Properties of the value functions DPP and associated VI system

Dynamic Programming Principle

We deduce from the following Dynamic Programming Principle (**DPP**) that the objective functions are solution of the previous variationnal inequalities system :

Dynamic Programming Principle

For any $(i, x, y) \in \{0, \dots, n\} \times \mathbb{R} \times (0, \infty)$, for all $\nu \in \mathcal{T}$, we have

$$v(i, x, y) = \sup_{\theta \in \mathcal{T}} \mathbb{E}^{i, x, y} \left[h(X_{\theta}, Y_{\theta}) \mathbb{1}_{\theta \le \tau \land \nu} + U(\sigma^{X_{\tau}}) \mathbb{1}_{\tau < \theta \land \nu} + v(L_{\nu}, X_{\nu}, Y_{\nu}) \mathbb{1}_{\nu < \theta} \mathbb{1}_{\nu \le \tau} \right].$$

< ロ > < 同 > < 回 > < 回 > .

Proof of uniqueness

Comparaison principle

Let $(\phi_i)_{0 \leq i \leq m}$ (resp. $(\psi_i)_{0 \leq i \leq m}$) a family of continuous subsolution (resp. super solution) of the VI system on $\mathbb{R} \times \mathbb{R}^+$ satisfying the following growth conditions on $\{0, ..., m\} \times \mathbb{R} \times \mathbb{R}^+$

$$|\phi(i, x, y)| + |\psi(i, x, y)| \le |U(e^x)| + |U(e^x)f(y)| \text{ on } \mathbb{R} imes \mathbb{R}^+$$

and $\lim_{y\to 0^+} \phi_i(x,y) \leq \lim_{y\to 0^+} \psi_i(x,y)$. We have $\phi \leq \psi$ on $\{0,..,m\} \times \mathbb{R} \times \mathbb{R}^+_*$.

Proof.

• Step 1. Construction of strict super-solutions to the system with suitable perturbations of ψ_i :

$$\psi_i^{\gamma} = (1 - \gamma)\psi_i + \gamma\eta_i$$

- $(\psi_i^\gamma)_{(i=1,\ldots,n)}$ is a strict super-solution to the VI system.

• Step 2. It suffices to show (by contradiction) that for all $\gamma \in (0, 1)$:

$$\max_{i \in \{0,...,m\}} \sup_{\mathbb{R} \times \mathbb{R}^+_*} (\phi_i - \psi_i^{\gamma}) \leq 0,$$

Proof of uniqueness

► Technical point : Construct a strict super solution which dominates ϕ_i and ψ_i .

 \rightarrow The following function is a strict super solution which dominates $U(e^x)$

$$g(x,y) = \begin{cases} ax^4 + by^n + k + U(1)\theta(0) + A_1x + \frac{1}{2}A_2x^2 & x \le 0\\ ax^4 + by^n + k + U(e^x)\theta(x) & x > 0. \end{cases}$$

 \rightarrow Existence of such strict super solution follows from characterization of $\mathbb{E}^{i,x}[U(e^{\chi_{\tau}})]$ as solution of a system of PDE.

< ロ > < 同 > < 回 > < 回 > :

Properties of the value functions DPP and associated VI system

Execution and continuation regions

Execution and continuation regions

$$\begin{aligned} \mathcal{E} &= \left\{ (i, x, y) \in \{0, ..., m\} \times \mathbb{R} \times \mathbb{R}^+ \,|\, v(i, x, y) = h(x, y) \right\} \\ \mathcal{C} &= \left\{ 0, ..., m \right\} \times \mathbb{R} \times \mathbb{R}^+ \setminus \mathcal{E}. \end{aligned}$$

We also define the (i, x)-sections for every $(i, x) \in \{0, ..., m\} \times \mathbb{R}$ by

$$\mathcal{E}_{(i,x)} = \{ y \in (0, +\infty) \mid v(i, x, y) = h(x, y) \} \text{ and } \mathcal{C}_{(i,x)} = \mathbb{R}^+ \setminus \mathcal{E}_{(i,x)}.$$

• Optimal execution time : $\theta_{ixy}^* = \inf \{ u \ge 0 \mid (L_u^i, X_u^x, Y_u^y) \in \mathcal{E} \}.$

Properties of execution region

Let $(i, x) \in \{0, ..., m\} \times \mathbb{R}$.

- If $\mathbb{E}^{i,x}[U(e^{X_{\tau}})] = U(e^x)$, then, for all $y \in \mathbb{R}^+$, $v(i, x, y) = U(e^x)$ and $\mathcal{E}_{(i,x)} = \{0\}$.
- If $\mathbb{E}^{i,x}[U(e^{X_{\tau}})] < U(e^{x})$, then $\exists x_{0}$ such that $\mathcal{E}_{(i,x_{0})} \setminus \{0\} \neq \emptyset$ and $\bar{y}^{*}(i,x) := \sup \mathcal{E}_{(i,x)} < +\infty$.

Logarithmic utility

Application to logarithmic utility The case with no regime switch The case with two regimes

Throughout this section we assume that

- $U(s) = \ln(s)$ on \mathbb{R}^+_* .
- X and Y solutions of the following SDEs :

$$dX_t = \mu dt + \sigma(X_t) dB_t; X_0 = x$$

$$dY_t = \kappa (\beta - Y_t) dt + \gamma \sqrt{Y_t} dW_t; Y_0 = y$$

Remarks

• The supermean value assumption implies that $\mu \leq$ 0.

• If
$$\mu = 0$$
, we have seen that $v(i, x, y) = U(e^x)$ and $\mathcal{E}_{(i,x)} = \{0\}$

< ロ > < 同 > < 回 > < 回 > .

э

Application to logarithmic utility The case with no regime switch The case with two regimes

Dimension reduction

Proposition

For $(i, y) \in \{1, ..., m\} \times \mathbb{R}^+$ we define the function :

$$w(i, y) = \sup_{\theta \in \mathcal{T}_{L, W}} \mathbb{E}^{i, y} [\mu(\theta \wedge \tau) + \ln(f(Y_{\theta})) \mathbb{I}_{\{\theta \leq \tau\}}],$$

where $T_{L,W}$ is the set of stopping times with respect to the filtration generated by (L, W). We have

$$v(i, x, y) = x + w(i, y)$$
 on $\{1, ..., m\} \times \mathbb{R} \times \mathbb{R}^+$.

Proof.

• On $\{0, ..., m\} \times \mathbb{R} \times \mathbb{R}^+$, we have

$$v(i, x, y) = \sup_{\theta \in \mathcal{T}} \mathbb{E}^{i, x, y} [X_{\theta \wedge \tau} + \ln (f(Y_{\theta})) \mathbb{I}_{\{\theta \leq \tau\}}].$$

- We prove that $\frac{\partial v}{\partial x}(i, x, y) = 1$ then $v(i, x, y) = x + \phi(i, y)$
- An optimal stopping time is $\theta_{ixy}^* = \inf\{t \ge 0 : \phi(L_t^i, Y_t^y) = \ln(f(Y_t^y))\}$, which belongs to $\mathcal{T}_{L,W}$. We obtain $\phi = w$.

Application to logarithmic utility The case with no regime switch The case with two regimes

Viscosity characterization

Corollary

 $(w(i, \cdot))_{0 \le i \le m}$ are the unique continuous viscosity solutions of the following system of equation which satisfy $\ln(f(y)) \le w(i, y) \le 0$:

$$\min\left[-\overline{\mathcal{L}}w(i,y)+\lambda_iw(i,y)-\sum_{j\neq i}\vartheta_{i,j}\left(w(j,y)-w(i,y)\right),\ w(i,y)-\ln(f(y))\right]=0.$$

where , for $\phi \in \mathcal{C}^1(\mathbb{R}^+)$,

$$\overline{\mathcal{L}}\phi(\mathbf{y}) = \frac{1}{2}\gamma^2 \mathbf{y} \frac{\partial^2 \phi}{\partial \mathbf{y}^2} + \alpha(\beta - \mathbf{y}) \frac{\partial \phi}{\partial \mathbf{y}} + \mu.$$

Smooth fit

For all $i \in \{0, ..., m\}$, $w(i, \cdot)$ is continuously differentiable.

< ロ > < 同 > < 回 > < 回 > .

Execution region

Proposition

Let
$$i \in \{0, ..., m\}$$
 and $g(y) = \ln(f(y))$ on \mathbb{R}^+_* . We set

$$\hat{y}_i = \inf\{y \ge 0 : \mathcal{H}_i g(y) \ge 0\} \text{ with } \mathcal{H}_i g(y) = \overline{\mathcal{L}} g(y) - \lambda_i g(y) + \sum_{j \ne i} \vartheta_{i,j} \left(w(j, y) - g(y) \right).$$

Application to logarithmic utility

The case with no regime switch

The case with two regimes

There exists $y_i^* \ge 0$ such that for all $x \in \mathbb{R}$, $[0, y_i^*] = \mathcal{E}_{(i,x)} \cap [0, \hat{y}_i]$. Moreover, if $\mathcal{H}_i g(y) > 0$ on $(\hat{y}_i, +\infty)$ then $[0, y_i^*] = \mathcal{E}_{(i,x)}$.

Proposition

If the function $y \to \overline{\mathcal{L}}g(y)$ is non-decreasing then $w(i, \cdot) - g(\cdot)$ is also non decreasing. Consequently, there exists $y_i^* \ge 0$ such that for all $x \in \mathbb{R}$, $[0, y_i^*] = \mathcal{E}_{(i,x)}$. Moreover, if $\mu < 0$, $y_i^* > 0$.

Exemple

If we set
$$f(y) = e^{-y}$$
 on \mathbb{R}^+ , we have $\overline{\mathcal{L}}g(y) = \alpha(y - \beta)$ and then $[0, y_i^*] = \mathcal{E}_{(i,x)}$.

Application to logarithmic utility The case with no regime switch The case with two regimes

No regime switch

Let $i \in \{1, ..., m\}$. Throughout this section, we shall assume that $\vartheta_{i,j} = 0 \ \forall i \neq j$ and that there exists $0 < y_i^*$ such that $\mathcal{E}_{(i,x)} = [0, y_i^*]$.

Proposition

 y_i^* is the solution of the following equation

$$rac{g(y_i^*)-rac{\mu}{\lambda_i}}{g'(y_i^*)}=-rac{\gamma^2}{2\lambda_i}rac{\Psi\left(rac{\lambda_i}{lpha},rac{2lphaeta}{\gamma^2}y_i^pprox y_i^pprox
ight)}{\Psi\left(rac{\lambda_i}{lpha}+1,rac{2lphaeta}{\gamma^2}+1,rac{2lpha}{\gamma^2}y_i^pprox
ight)}$$

the function $w(i, \cdot)$ is given by

$$w(i, y) = \begin{cases} g(y) & y \leq y_i^* \\ \frac{g(y_i^*) - \frac{\mu}{\lambda_i}}{\Psi\left(\frac{\lambda_i}{\alpha}, \frac{2\alpha\beta}{\gamma^2}, \frac{2\alpha}{\gamma^2}y_i^*\right)} \Psi\left(\frac{\lambda_i}{\alpha}, \frac{2\alpha\beta}{\gamma^2}, \frac{2\alpha}{\gamma^2}y\right) + \frac{\mu}{\lambda_i} & y > y_i^* \end{cases}$$

where Ψ denotes the confluent hypergeometric function of second kind

< ロ > < 同 > < 回 > < 回 >

Two regimes

We assume that m = 1, $\vartheta_{0,1}\vartheta_{1,0} \neq 0$ and that, for $i \in \{0,1\}$, there exists $y_i^* > 0$ such that $\mathcal{E}_{(i,s)} = [0, y_i^*]$.

Proposition

We can show that $y_0^* \leq y_1^*$

Let A be the matrix

$$\Lambda = \begin{pmatrix} \lambda_0 + \vartheta_{0,1} & -\vartheta_{0,1} \\ -\vartheta_{1,0} & \lambda_1 + \vartheta_{1,0} \end{pmatrix}$$

As $\vartheta_{0,1}\vartheta_{1,0} > 0$ it is easy to check that Λ has two eigenvalues $\widetilde{\lambda}_0$ and $\widetilde{\lambda}_1 < \widetilde{\lambda}_0$. Let $\widetilde{\Lambda} = P^{-1}\Lambda P$ be the diagonal matrix with diagonal $(\widetilde{\lambda}_0, \widetilde{\lambda}_1)$. The transition matrix P is denoted by

$${\it P} = \left(egin{array}{cc} {\it p}_0^0 & {\it p}_1^0 \ {\it p}_0^1 & {\it p}_1^1 \end{array}
ight) \, .$$

< ロ > < 同 > < 回 > < 回 > .

Two regimes

Proposition

The function $w(1, \cdot)$ is given by

$$w(1,y) = \begin{cases} g(y) & y \in [0, y_1^*] \\ p_0^1 \left[\widehat{e} \Psi \left(\frac{\widetilde{\lambda}_0}{\alpha}, \frac{2\alpha\beta}{\gamma^2}, \frac{2\alpha}{\gamma^2} x \right) + \frac{\mu}{\widetilde{\lambda}_0} \right] & y \in (y_1^*, \infty) \\ + p_1^1 \left[\widehat{f} \Psi \left(\frac{\widetilde{\lambda}_1}{\alpha}, \frac{2\alpha\beta}{\gamma^2}, \frac{2\alpha}{\gamma^2} y \right) + \frac{\mu}{\widetilde{\lambda}_1} \right] \end{cases}$$

where Ψ denotes the confluent hypergeometric function of second kind, ${\cal I}$ is a particular solution to the non-homogeneous confluent differential equation.

< ロ > < 同 > < 回 > < 回 > .

э

Two regimes

Proposition

The function $w(0, \cdot)$ is given by

$$w(0,y) = \begin{cases} g(y) & y \in [0, y_0^*] \\ \widehat{c}\Phi\left(\frac{\lambda_0 + \vartheta_{0,1}}{\alpha}, \frac{2\alpha\beta}{\gamma^2}, \frac{2\alpha}{\gamma^2}y\right) + \widehat{d}\Psi\left(\frac{\lambda_0 + \vartheta_{0,1}}{\alpha}, \frac{2\alpha\beta}{\gamma^2}, \frac{2\alpha}{\gamma^2}y\right) & y \in (y_0^*, y_1^*] \\ + \mathcal{I}\left(\frac{2\alpha}{\gamma^2}, \beta, -2\frac{\lambda_0 + \vartheta_{0,1}}{\gamma^2}, 2\frac{\vartheta_{0,1}g(\cdot) + \mu}{\gamma^2}\right)(y) & \\ p_0^0\left[\widehat{e}\Psi\left(\frac{\widetilde{\lambda}_0}{\alpha}, \frac{2\alpha\beta}{\gamma^2}, \frac{2\alpha}{\gamma^2}y\right) + \frac{\mu}{\widetilde{\lambda}_0}\right] & y \in (y_1^*, \infty) \\ + p_1^0\left[\widehat{f}\Psi\left(\frac{\widetilde{\lambda}_1}{\alpha}, \frac{2\alpha\beta}{\gamma^2}, \frac{2\alpha}{\gamma^2}y\right) + \frac{\mu}{\widetilde{\lambda}_1}\right] & \end{cases}$$

where Φ and Ψ denote respectively the confluent hypergeometric function of first and second kind, \mathcal{I} is a particular solution to the non-homogeneous confluent differential equation.

・ロット (雪) (日) (日)

Throughout this section we assume that

- $U(s) = s^a$ on \mathbb{R}^+_* with $0 < a \le 1$.
- There exists μ and σ in \mathbb{R} s.t. X is solution of the following sde :

$$dX_t = \mu dt + \sigma dB_t$$

Remarks

- The supermean value assumption implies that $\mu a + \frac{\sigma^2}{2}a^2 \leq 0$.
- If $\mu a + \frac{\sigma^2}{2}a^2 = 0$, we have seen that $v(i, x, y) = U(e^x)$ and $\mathcal{E}_{(i,x)} = \{0\}$

Dimension reduction

Proposition

For $(i, y) \in \{1, ..., m\} \times \mathbb{R}^+$ we define the function :

$$u(i, y) = \sup_{\theta \in \mathcal{T}_{L, W}} \mathbb{E}^{i, y} [e^{(\mu + (1 - \rho^2) \frac{\sigma^2}{2})(\theta \wedge \tau) + \rho \sigma W_{\theta \wedge \tau}} (\mathbb{I}_{\{\theta > \tau\}} + g(Y_{\theta}) \mathbb{I}_{\{\theta \le \tau\}})].$$

We have

$$v(i, x, y) = e^{ax}u(i, y) \text{ on } \{1, ..., m\} \times \mathbb{R} \times \mathbb{R}^+.$$

 $(u(i, \cdot))_{0 \le i \le m}$ are the unique continuously differentiable viscosity solutions of the system of equation :

$$\min\left[-\tilde{\mathcal{L}}u(i,y)-\lambda_i(1-u(i,y))-\sum_{j\neq i}\vartheta_{i,j}\left(u(j,y)-u(i,y)\right),\ u(i,y)-g(y)\right]=0.$$

where we have set $g(y) = (f(y))^a$ and, for $\phi \in C^1(\mathbb{R}^+)$,

$$\tilde{\mathcal{L}}\phi(\mathbf{y}) = \frac{1}{2}\gamma^2 \mathbf{y} \frac{\partial^2 \phi}{\partial \mathbf{y}^2} + \left[\alpha(\beta - \mathbf{y}) + \rho \sigma \gamma \mathbf{a} \sqrt{\mathbf{y}}\right] \frac{\partial \phi}{\partial \mathbf{y}} + \left[\frac{\sigma^2 \mathbf{a}^2}{2} + \mu \mathbf{a}\right] \phi(\mathbf{y}).$$

ヘロン 人間 とくほ とくほう

Conclusions

- Study of a liquidation problem of an illiquid asset
- Mathematical characterisation of the objective function
- Explicit solutions for specific utility functions (power and exponential)

Thank you for your attention !

< D > < P > < E > < E</p>