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Default Risk, Credit risk: The event in which companies or individuals will be
unable to make the required payments on their debt obligations. Lenders and
investors are exposed to default risk in virtually all forms of credit extensions.
The loss may be complete or partial and can arise in a number of circumstances.
For example:
• A consumer may fail to make a payment due on a mortgage loan, credit card, line
of credit, or other loan
• A business or consumer does not pay a trade invoice when due
• A business does not pay an employee’s earned wages when due
• A business or government bond issuer does not make a payment on a coupon or
principal payment when due
• An insolvent insurance company does not pay a policy obligation

http://www.investopedia.com and Wikipedia
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Measuring the risk: a Modern Approach J. Hilscher, R. A. Jarrow, and D. R.
van Deventer (2008)

• In structural models, the default is triggered when the firm value reaches a
predetermined level. The firm’s probability of default depends primarily on two
factors:
the size of the firm’s asset value relative to the face value of debt if the debt/equity
ratio is very high, default is likely;
and how volatile the firm’s asset value is
• The idea of the reduced-form approach is straightforward; corporate default
may be triggered by many different factors, and default may happen at any point in
time. The reduced-form probability of default is calculated using all available
information at a given point in time. An advantage of the reduced-form approach
is that it can be used to estimate the probability of default not only over the next
month but over any period of time; the next year or even the next five years.
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The common tool is the Probability of default (PD), i.e., the likelihood of a
default over a particular time horizon. It provides an estimate of the likelihood that
a client of a financial institution will be unable to meet its debt obligations.

PD is a key parameter used in the calculation of economic capital or regulatory
capital under Basel II for a banking institution.
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To date, the most successful use of credit spread data that we are aware of has been
in the cross-sectional estimation of credit spread curves. These curves describe the
typical market spread for a given level of credit quality. These data can be
combined with a structural model to estimate expected recovery in the event of
default. In this way, both modeling approaches can be used to produce better
credit analysis tools. Cross-sectional in this context means combining data from
many different firms and issues.

Moody’s KMV
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This presentation is devoted to modeling default risk. No calibration issues will be
discussed, even if this is a main issue.

1. Single Default

2. Multidefaults
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Defaultable Claims

Defaultable Claims

Let us first describe a generic defaultable claim on a single default (X, X̃, A, Z, τ) :

• Default of an entity occurs at time τ . Default may be bankruptcy or other
financial distress.

• At maturity T the promised payoff X is paid only if the default did not
occurred.

• The promised dividends A are paid up to default time.

• The recovery claim X̃ is received at time T, if default occurs prior to or at
the claim’s maturity date T .

• The recovery process Z: the r.v. Zτ specifies the recovery payoff at time of
default, if default occurs prior to or at the maturity date T.
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Defaultable Claims

The discounted (ex-dividend) price of the defaultable claim is

E(B−1
T (X11T<τ + X̃11t<τ≤T ) + (

∫ T∧τ

t

B−1
s dAs + (Bτ )−1Zτ )11t<τ≤T |Gt)

where Bt represents the value of the savings account Bt = exp
∫ t

0
rsds, the

expectation being under some e.m.m. and Gt the information available at time t.
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Single Default

Single Default

1. Structural Approach

2. Intensity Based Approach

3. Generalisation

4. Density Approach
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Single Default

Structural Approach

Assuming that some process X (e.g., the value of the firm) is observable, the
default time is defined as an FX stopping time (e.g., an hitting time for a
deterministic boundary).

If the process X is a traded asset and if the associated market (which includes a
savings account) is complete, the computation of the price requires the conditional
law of τ given FX , i.e.

P(τ > u|FX
t )

If X is continuous (more precisely if all F martingales are continuous), τ is
predictable and, for T > t, the quantity P(τ > T |FX

t ) goes to 0 when
t → τ, t < τ < T , fact that is not observed on the data.

If X is observable (and not continuous) the default time may be not predictable,
and closed form formulae for hitting times are difficult to obtain.
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Single Default

Partial Information.

If the value of the firm is not observable, one has to compute P(τ > u|FY
t ) where Y

is the observation process: this leads to (difficult) filtering problem (Runggaldier)

One can assume that the value of the firm is observed only at discrete times (Duffie
and Lando, J and Valchev) or observed with some noise (Coculescu et al.)
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Single Default

Guo et al. study a structural model with delayed information. Let

Xt = x +
∫ t

0

µ(Xs)ds +
∫ t

0

σ(Xs)dWs

the natural augmentation of the filtration generated by X is F, and τ is the
F-predictable stopping time defined by

τ = inf{t > 0, Xt ≤ b},
If δ > 0, they introduce, for t > δ the σ -algebra F̃t = Ft−δ ⊂ Ft, and for

0 < t < δ, F̃t is equal to the trivial σ-algebra.

Denoting by G̃t = F̃t ∨Ht the delayed information

G̃t := P(τ > t|F̃t) = KtΦ(Yt, δ, b)

where Kt = 11infs≤t−δ Xs>b, Yt = Xt−δ andΦ(x, u, y) = Px(infs≤u Xs > y).

dG̃t = Kt∂1Φ(Yt, δ, b)dYt +
1
2
Kt∂1,1Φ(Yt, δ, b)d 〈Y 〉t .
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Single Default

Intensity Based Approach

Let (Ω,G,P) be a probability space endowed with a filtration F.
An increasing nonnegative F-adapted process Λ is given.
We assume that there exists a random variable Θ, independent of F∞, with an
exponential law: P(Θ ≥ t) = e−t.

We define the random time τ as the first time when the process Λ is above the
random level Θ, i.e.,

τ = inf {t ≥ 0 : Λt ≥ Θ}.
In particular, {τ > s} = {Λs < Θ} and P(τ > t|Ft) = e−Λt .

Let G be the observation filtration, i.e. Gt = ∩s>tFs ∨ σ(s ∧ τ), then if X ∈ FT

E(X11{τ>T}|Gt) = 11{τ>t} eΛtE(Xe−ΛT |Ft).
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Single Default
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Single Default

In that case, immersion property holds, i.e., any F martingale is a G martingale.

If Λ is continuous (or simply F-predictable), the process Mτ
t := 11τ≤t − Λt∧τ is a

G-martingale.

In the case where F is a Brownian filtration, any G martingale Y can be written as

dYt = ϕtdWt + ψtdMτ
t

Setting Gt = P(τ > t|Ft) = e−Λt and, for a (bounded) predictable process h,

Yt = E(hτ |Gt) =: hτ11τ≤t + 11t<τ
Xt

Gt

one has

dYt = (ht − Xt

Gt
)dMτ

t + ϕtdWt
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Single Default

Example where Λ is not continuous.

Let F be the filtration of a Poisson process N and Λt = e−Nt , and let M be the
compensated martingale Mt = Nt − λt. The process Mτ

t := 11τ≤t − (1− 1
e )λ(t ∧ τ)

is a G-martingale. Any G martingale Y can be written as

dYt = ϕtdMt + ψtdMτ
t

Setting Gt = P(τ > t|Ft) = e−Nt and

Yt = E(hτ |Gt) = hτ11τ≤t + 11t<τ
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Gt
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Gt
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Jumps are brutal and full of zasadzkas 20
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Single Default

Density Approach

Here, we assume that there exists pt(u) such that

P(τ > θ|Ft) =
∫ ∞

θ

pt(u)f(u)du

where f is the density law of τ . Then,

• Gt := P(τ > t|Ft) = mt −
∫ t

0
ps(s)f(s)ds where m is an F-martingale

• 11τ≤t −
∫ t

0
ps(s)
Gs−

f(s)ds =: 11τ≤t − Λt∧τ is a G martingale

• For X ∈ FT , the pricing formula is

E(X11T<τ |Gt) = 11t<τ
1
Gt
E(XGT |Ft)

• This model corresponds to the case τ = inf{t : Λt ≥ Θ} where Θ IS NOT
independent from F.
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Single Default

• Y is a G martingale (Yt = yt11t<τ + yt(τ)11τ≤t) if and only if
(i) for any u, the processes (yt(u)pt(u), t ≥ u) are F martingales
(ii) E(Yt|Ft) = ytGt +

∫∞
t

yt(s)pt(s)f(s)ds is an F martingale

• If X is an F-martingale, then

Xt = X̃t +
∫ t∧τ

0

d〈X,G〉s
Gs−

+
∫ t

t∧τ

d〈X, f.(τ)〉s
fs−(τ)

,

where X̃ is an G-martingale.

• Immersion property is equivalent to ft(u) = fu(u) for t > u.

• G admits a multiplicative decomposition as Gt = mte
−Λt where m is an F-local

martingale. If immersion holds, Gt = e−Λt .
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Single Default

Random times with the same intensity

If Gt = mte
−Λt where m is an F-local martingale and Λ an F-predictable increasing

process, then Λ is the intensity process, i.e., 11τ≤t − Λt∧τ is a G martingale, and, if
Λt =

∫ t

0
λsds, the intensity rate λ satisfies

λt = lim
1
h
P(t < τ ≤ t + h|Gt)

Here, we shall construct three random times having the same intensity (in the same
filtration)

Let W be a Brownian motion on the probability space (Ω,P) and F be its natural
filtration.

1) Let ϑ a random variable independent of F∞, with an exponential law of
parameter λ. Then, λ is the F-intensity rate of ϑ
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Single Default

2) Let us assume that N is an F local martingale such that Nte
−λt is valued in

[0, 1]. Then, it is possible to construct a random time τ such that

Zt := P(τ > t|Ft) = Nte
−λt

To do that, one needs to construct a candidate to be the conditional law of τ given
Ft. This can be done setting

P(τ ≤ θ|Ft) = (1− Zt) exp−
∫ t

θ

Zs

1− Zs
λ ds

It remains to give an example of N which is a martingale such that Nte
−λt is

valued in [0, 1]

We set Nt = eλte−2Yt with

dYt = (Yt +
λ

2
)dt +

√
YtdWt, Y0 = 0
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Single Default

3) Another random time τ̂ can be constructed so that Zt = e−λt.

Let Mu be the solution of

dMu
t = Mu

t (Mu
t − (1− e−λt))dWt, for t ≥ u

Mu
u = Zu = e−λu

Then, one can construct τ̂ so that, for u < t, P(τ̂ ≤ u|Ft) = Mu
t

This time τ̂ is such that any bounded F martingale stopped at τ̂ is a G martingale.
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Examples

It is not easy to find examples on a given probability space:
The quantities P (τ > u|Ft) = Mu

t are a family of martingales, depending of a
parameter, increasing with respect to that parameter

The quantities pt(u) are positive martingales such that
∫∞
0

pt(u)f(u)du = 1

A possible construction is to start with a model where τ is independent from F∞,
with law η and to set dQ = βt(τ)dP. Then the F-conditional density of τ under Q is

Q(τ ∈ du|Ft) =
1

mβ
t

βt(u)f(u)du

where mβ
t =

∫∞
0

βt(u)f(u)du
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Questions, Comments

Pricing of an FT measurable payoff X (case r = 0)

• Is the price of X equal to E(X|Ft) or to E(X|Gt) ? This question is of main
importance in case of several defaults.
The price is E(X|Ft) if there exists an hedging portfolio, hence the second question
is does there exist an F-adapted price process? If yes, this price process must be as
well a (P,F) martingale and a (P,G) martingale under the pricing measure P, and
immersion holds true (therefore E(X|Ft) = E(X|Gt)).

• If τ is a totally inaccessible G stopping time, how to compute the intensity of τ?
• If there is no default-free asset, what is the meaning of F? Pricing of a GT

measurable payoff of the form X11T<τ for X ∈ GT (case r = 0) reduces to pricing of
X̃11T<τ for X̃ ∈ FT since there exists such a X̃ so that X11T<τ = X̃11T<τ .
• One can ask the following question. Let G be a filtration and τ a G stopping
time. Is it possible to find F such that G is the enlarged filtration with F not equal
to G. No answer.

30



Single Default

Questions, Comments

Pricing of an FT measurable payoff X (case r = 0)

• Is the price of X equal to E(X|Ft) or to E(X|Gt) ? This question is of main
importance in case of several defaults.
The price is E(X|Ft) if there exists an hedging portfolio, hence the second question
is does there exist an F-adapted price process? If yes, this price process must be as
well a (P,F) martingale and a (P,G) martingale under the pricing measure P, and
immersion holds true (therefore E(X|Ft) = E(X|Gt)).

• If τ is a totally inaccessible G stopping time, how to compute the intensity of τ?

• If there is no default-free asset, what is the meaning of F? Pricing of a GT

measurable payoff of the form X11T<τ for X ∈ GT (case r = 0) reduces to pricing of
X̃11T<τ for X̃ ∈ FT since there exists such a X̃ so that X11T<τ = X̃11T<τ .

• One can ask the following question. Let G be a filtration and τ a G stopping
time. Is it possible to find F such that G is the enlarged filtration with F not equal
to G. No answer.

31



Single Default

Density approach is useful (only?) for life after default

Assume that
P(τ ∈ du|Ft) = pt(u)du

where p(u) is a family of strictly positive martingales and Gt = Nte
−Λt .

Let P∗ be defined as
dP∗|Gt = L∗t dP|Gt

where L∗ is the (P,G)-martingale defined as

L∗t = 11{t<τ} + 11{t≥τ}λτe−Λτ
Nt

pt(τ)

It can be proved that
dP∗|Ft = NtdP|Ft = NtdP|Ft

and that P∗ and P coincide on Gτ . Moreover, immersion holds true under P∗, and
the intensity of τ is the same under P and P∗. It follows that

EP(X11{T<τ}|Gt) = E∗(X11{T<τ}|Gt) = 11{t<τ}
1

e−Λt
E∗(e−ΛT X|Ft)
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Let us now study the pricing of a recovery. Let Z be an F-predictable bounded
process.

EP(Zτ11{t<τ≤T }|Gt) = 11{t<τ}
1
Gt
EP(−

∫ T

t

ZudGu|Ft)

= 11{t<τ}
1
Gt
EP(

∫ T

t

ZuNuλue−Λudu|Ft)

= E∗(Zτ11{t<τ≤T}|Gt)

= 11{t<τ}
1

e−Λt
E∗(

∫ T

t

Zuλue−Λudu|Ft)
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Single Default

The problem is different for pricing a recovery paid at maturity. If both quantities
EP(X11τ<T |Gt) and E∗(X11τ<T |Gt) are the same, this would imply that immersion
holds under P.
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Single Default

Hence, non-immersion property is important while evaluating recovery paid at
maturity ( P∗ and P do not coincide on F∞) or while evaluating equity derivatives.
It is also important for multi-default setting, where, in general, immersion does not
hold between the various filtrations.
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Single Default

Arbitrages:

under which conditions on τ the G market is arbitrage free? For answer, attend to
C. Fontana talk for honest times in the Brownian case and A. Aksamit for a jump
case. Roughly speaking, there are no arbitrages (of the first kind) before τ , there
may have arbitrages immediately before τ and immediately after τ . Under specific
conditions (in a model with jumping F martingales), there are no arbitrages (of the
first kind) after τ .
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Multi Defaults

Multi Defaults

1. Intensity Based Approach

2. Marked Point Processes

3. Ranked Default Times

4. Ranked Default Times with Reference Filtration

5. A General Construction

6. Exemples
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Multi Defaults

In literature and in practice, default correlation is one key subject in the credit risk
analysis.

• bottom-up approach for individual credit names and their dependence

– intensity correlation models (Duffie and Garleanu) with extension of
contagious impact (Jarrow and Yu, Herbertsson)

– latent variable models with copulas (Li, Frey and McNeil, Laurent et al.)

– markov dynamic copula models (Bielecki et al.)

• top-down approach for cumulative losses

– ordered defaults and loss process dynamics (Arnsdorf and Halperin, Cont
and Minca, Filipovic and Overbeck, Giesecke et al., Schönbucher...)
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Multi Defaults

Intensity Based Approach

• A first class of models consist of

τi = inf{t : Λi
t ≥ Θi}

where Λi are F adapted increasing processes, Θi’s independent of F and correlated

• Another class of models (contagion effect)

τi = inf{t : Λi
t ≥ Θi}

where Λi depends on (τj , j 6= i)
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Multi Defaults

Marked Point Processes

We recall some results on Marked Point Processes which will be useful for
top-down approach for cumulative losses.

A MPP M is a sequence (σk, Yk)k≥1 where

1. The random variables σk satisfy 0 < σk < σk+1, σ0 = 0

2. The r.vs Yk (the marks) are valued in Rd

We note (Mt, t ≥ 0) the history of M (the marked point process filtration
generated by M) so that Mσk

= σ{(σ1, Y1), . . . , (σk, Yk)}.
To any MPP, we associate the random measure µ defined as, for C ∈ B(Rd \ 0),

µ(]0, t]× C) =
∑

k

11{(σk,Yk)∈]0,t]×C}
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Multi Defaults

For any integrable r.v. U , setting σ0 = 0, one has

E(U |Mt) =
∑

k≥0

11{σk<t≤σk+1}
E(11{t<σk+1}U |Mσk

)
P(t < σk+1|Mσk

)
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Multi Defaults

An important tool is ηk+1|k(dt, dy), the regular version of the conditional
distribution of (σk+1, Yk+1) w.r.t. Mσk

.

The compensator of the point process M is the (unique) random measure ν(dt, dy)
such that for any (bounded) predictable function K, the process K ? (µ− ν) is a
local martingale, where

(K ? (µ− ν))t =
∫

]0,t]×Rd

K(·; s, y)(µ(·; ds, dy)− ν(·; ds, dy))

given by

ν(dt, dy) =
∑

k≥0

11{σk≤t<σk+1}
P((σk+1, Yk+1) ∈ (dt, dx)|Mσk

)
P(σk+1 ≥ t|Mσk

)

=
∑

k≥0

11{σk≤t<σk+1}
ηk+1|k(dt, dy)

ηk+1|k([t,∞[×Rd)
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Multi Defaults

Ranked Default Times

We restrict our attention to a finite number of ranked default times (σk, k ≤ n). We
set σ0 = 0, σn+1 = ∞ and σ = (σ1, . . . , σn). This is a MPP (without marks!)

We assume that the law of the vector σ has a density η(u), i.e.,

E[f(σ)] =
∫

Rn
+

f(u)η(u)du,

Here, we make use of the following notation

• u = (u1, · · · , un), u(k:p) = (uk, · · · , up), u(p) = u(1:p)

• du = du1 · · · dun, du(k:p) = duk . . . dup

• u > θ stands for ui > θi for all i ∈ {1, · · · , n}
• ∫

]t,+∞[
f(u(k:n))du(k:n) :=

∫
]t,+∞[

duk · · ·
∫
]t,+∞[

dun f(uk, . . . , un).

The (marginal) density of σ(k) is

η(k)(u(k)) =
∫

Rn−k
+

η(u)du(k+1:n)
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Furthermore, on σk ≤ t < σk+1

P(σk+1 > θ|Mt) =
∫ ∞

θ

ηk+1|k(s)ds

where

ηk+1|k(s) =
1

η(k)(σ(k))

∫

Rn−(k+2)
+

η(σ(k), s, u(k+2:n)) du(k+2:n)

It follows that

E(f(σ)|Mt) =
∫

Rn
+

f(u)ηMt (du)

where, on the set σk ≤ t < σk+1

ηMt (du) =
11{t<u(k+1:n)}∫∞
t

ηk+1|k(s)ds
δσ(k)(du(k)) η(u(k),u(k+1:n))du(k+1:n)
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Let Nt =
∑n

k=1 11{σk≤t}. The compensator of N is

Λt =
∫ t∧σn

0

λsds =
n−1∑

k=0

∫ t∧σk+1

σk

1∫∞
s

ηk+1|k(y)dy
ηk+1|k(s)ds

where

ηk+1|k(s) =
1

η(k)(σ(k))

∫

Rn−(k+2)
+

η(σ(k), s, u(k+2:n)) du(k+2:n)
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Ranked Default Times with Reference Filtration

We assume now that a reference filtration F is given and that there exists a family
of Ft ⊗ B(Rn

+)-measurable functions (ω, u) → ηt(ω, u) such that

E[f(σ)|Ft] =
∫

Rn
+

f(u)ηt(u)du,

We denote by G the filtration Gt = Ft ∨Mt.

It can be useful to keep in mind that, if one defines

dQ|Ft∨σ(σ) =
1

ηt(σ)
dP|Ft∨σ(σ)

then, F and σ are independent under Q, and Q|Ft = P|Ft .
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Ranked Default Times with Reference Filtration

We assume now that a reference filtration F is given and that there exists a family
of Ft ⊗ B(Rn

+)-measurable functions (ω, u) → ηt(ω, u) such that

E[f(σ)|Ft] =
∫

Rn
+

f(u)ηt(u)du,

We denote by G the filtration Gt = Ft ∨Mt.

It can be useful to keep in mind that, if one defines

dQ|Ft∨σ(σ) =
1

ηt(σ)
dP|Ft∨σ(σ)

then, F and σ are independent under Q, and Q|Ft = P|Ft .
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The marginal density of σ(k) with respect to Ft is given by

ηt
(k)

(
u(k)

)
=

∫

Rn−k
+

ηt(u)du(k+1:n)

and, on σk ≤ t < σk+1,

P(σk+1 > θ|Gt) =
∫ ∞

θ

η
k+1|k
t (s)ds

where
η

k+1|k
t (s) =

1

η
(k)
t (σ(k))

∫

Rn−(k+2)
ηt(σ(k), s, u(k+2,n)) du(k+2,n)

It follows that
E(f(σ)|Gt) =

∫

Rn
+

f(u)µGt (du)

where, on the set σk ≤ t < σk+1

µGt (du) =
11{t<u(k+1,n)}∫∞

t
ηt

k+1|k(s)ds
δσ(k)(du(k)) ηt(u) du(k+1,n)
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Furthermore, for YT (u) a family of positive FT adapted random variables,

E(YT (σ)|Gt) =
∫

Rn
+

1
ηt(u)

E(YT (u)ηT (u)|Ft)µt(du)

=
n−1∑

k=0

11{σk≤t<σk+1}∫∞
t

η
k+1|k
t (s)ds

∫ ∞

t

E(YT (u)ηT (u)|Ft)|u(k)=σ(k)du(k+1,n)
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Let Nt =
∑n

k=1 11{σk≤t}. The compensator of N in the filtration G is

Λt =
∫ t∧σn

0

λsds =
n−1∑

k=0

∫ t∧σk+1

σk

1∫∞
s

η
k+1|k
s (y)dy

ηk+1|k
s (s)ds =

n−1∑

k=0

∫ t∧σk+1

σk

λk
sds

Note that λk
s depends on σ(k).
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A General Construction

The random variable Ξ is a random variable of law η taking values in a complete
metric space E with countable base and equipped with Borel σ-algebra B(E). The
main example is Ξ = (τk, Yk)1≤k≤n where τ is a sequence (not necessarily ranked)
of random times and Yk some marks.

Without loss of generality, we assume that Ξ is the canonical map from
E in E, defined as Ξ(χ) = χ so that E(f(Ξ)) =

∫
E

f(χ)η(dχ) where η is the law of
Ξ.
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• The “default-free” information is represented by a filtered probability space
(Ω,F,P).

• We denote be σ the ranked sequence of times, the filtration Mt is the one of the
associated MMP M = (σk, Yσk

)k.

• The filtration F is considered as well on Ω or on the product space.

• The filtration J is defined as Jt = Ft ⊗ σ(Ξ).

• The filtration G is Gt = Ft ∨Mt.

All the filtrations are defined in such a way that they satisfy usual conditions.
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We start with the fundamental case where the two sources of risks are independent
(i.e., the random variable Ξ is independent from F∞), the probability measure is
the product measure P0

(dω, dχ) = P(dω)⊗ η(dχ).
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The conditional law of Ξ given Mt is denoted by ηMt .

Given a non-negative measurable function Y on Ω× E,

E0
[Y (., Ξ)|F∞ ∨Mt] =

∫

E

Y (., χ)ηMt (dχ) =: ηMt (Y )

which is F∞ ∨Mt-measurable.

One should take care about the notation: ηM refers to the filtration
F∞ ∨Mt and not to Mt.

Note that, from the independence assumption, E0
(f(Ξ)|Mt) = E0

(f(Ξ)|Mt ∨ F∞).
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Given a non-negative measurable function Y on Ω× E (that is (ω, χ) → Y (ω, χ)),
there exists a family of F-adapted processes, parameterized by χ, say Y F (χ), such
that P-a.s, for any χ ∈ E and for any t ≥ 0, Y F

t (χ) = E[Y (·, χ)|Ft].

An useful example is Y = Xh(Ξ) where X ∈ F∞.

We shall call Y F the universal version of conditional expectation.

One has E0
(Y |Jt) = Y F

t (Ξ) and, for any Jt-measurable r.v. Yt

E0
(Yt|Gt) =

∫

E

Yt(χ)ηMt (dχ) =: ηMt (Yt).

Jt = Ft ∨ σ(Ξ), Gt = Ft ∨Mt, ηMt (Y ) = E0
[Y (., Ξ)|F∞ ∨Mt], Y Ft (χ) = E[Y (·, χ)|Ft] 55
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Consider now a non-negative measurable random variable Y on Ω× E. The
calculation of its conditional expectation w.r.t. Gt can be done in two different ways
as shown below:

On the one hand, using the notation of the universal martingale

E0
[Y |Gt] = E0

[E0
[Y |Ht] | Gt] = E0

[Y F
t | Gt] = ηMt (Y F

t )

On the other hand, using the intermediary σ-algebra F∞ ∨Mt

E0
[Y |Gt] = E0

[E0
[Y |F∞ ∨Mt] | Gt] = E0

[ηMt (Y )|Gt] = (ηMt (Y ))Ft
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In the general case, we characterize the dependence between Ξ and F = (Ft)t≥0 by
a change of probability w.r.t. the probability measure P0

.

We suppose that there exist a positive F⊗ σ(Ξ)-martingale βt(ω, Ξ) with
expectation under P0

equal to 1 and we define the probability measure P on Jt by

P(dω, dχ) = βt(ω, χ)P0
(dω, dχ)

In the following, we suppose the process βF > 0 where βFt (χ) = E0
(βT (·, χ)|Jt).
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We can generate different types of density processes depending on the structure
information:

βJt = E0
[βT |Jt] = βFt (Ξ)

βMt = E0
[βT |F∞ ∨Mt] = ηMt (βT )

βGt = E0
[βT |Gt] = (βMt )Ft = ηMt (βFt )

Then

E(f(Ξ)|Mt ∨ F∞) =
∫

E

f(χ)ηMt (dχ) =
∫

E

f(χ)
βT (χ)ηMt (dχ)

βMt

E(f(Ξ)|Gt) =
∫

E

f(χ)ηGt (dχ) =
∫

E

f(χ)
βFt (χ)ηMt (dχ)

βGt

and, for any integrable GT measurable random variable YT

E[YT | Gt] =
E0

[YT βT |Gt]

E0
[βT |Gt]

=
ηMt ((YT βT )Ft )

ηMt (βFt )

Jt = Ft ∨ σ(Ξ) 58
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Examples

Giesecke Example

Let τk, k = 1, . . . , N be a family of independent random times, with a unit
exponential law, independent of F and, for any i,

G(−i) = F ∨Hk, k 6= i

where Hk
t = σ(τk ∧ t). The processes Mk

t = Hk
t − (t ∧ τk) are G martingales.

We assume that λi is a G−i adapted non negative process

dλi
t = −αi(λi

t − λ̄i)dt + σidWt + dL−i
t

where L
(−i)
t =

∑
k 6=i 11τk≤t.

We define ζ as dζt = ζt−
∑

(λi
t − 1)dM i

t , and dQ = ζtdP.

Under Q, the intensity of τk is λk, and τk = inf{t :
∫ t

0
λk

sds > Θk} where
Θk =

∫ τk

0
λk

sds are independent r.vs with exponential law.

W is a (Q,G) Brownian motion.
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Gaussian model

Let fi, i = 1, . . . , n be a family of functions with L2 norm equal to 1 and
Xi =

∫∞
0

fi(s)dBi
s where Bi are F-BMs with correlation ρi,j .

Then
P(Xi > θi, ∀i = 1, . . . , n|Ft)

= Φ∗n(
θ1√

1− ρ2
1

−m1
t , . . . ,

θn√
1− ρ2

n

−mn
t ; γ(t))

where
• mi

t =
∫ t

0
fi(s)dBi

s

• Φ∗n(x1, . . . , xn; γ(t)) = P(G(t)
i > xi, ∀i = 1, . . . , n)

where G(t) = (G(t)
i , i = 1, . . . , n) is a Gaussian vector, centered, with covariance

matrix γ(t) with

γi,j(t) =
∫ ∞

t

fi(s)fj(s)ρi,jds .

Let Ki be an increasing function from R to R+ with inverse ki and τi = Ki(Xi).
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Then
P(τi > ti, ∀i = 1, . . . , n|Ft)

= Φ∗n(
k1(t1)√
1− ρ2

1

−m1
t , . . . ,

kn(tn)√
1− ρ2

n

−mn
t ; γ(t), t)

In particular,

P(τi > ti) = Φ∗(
ki(ti)√
1− ρ2

i

)

where Φ∗(x) is the survival function of a standard Gaussian law.
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Uniform law (From Kchia and Larson)

One starts with r.v. Ui, with exponential law, independent from F and R a r.v.
with given conditional density pt(r). Set τi = RUi. Then

P(τi > ti, i = 1, . . . , n|Ft) =
∫

pt(r)
n∏

i=1

(1− ti
r

)+
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Hawkes processes

An inhomogeneous Poisson process is a counting process such that Nt −
∫ t

0
λ(s)ds

where λ is a deterministic function. A self-exciting process N is a counting process
with intensity

λt = λ0(t) +
∑

s≤t

g(t− s)dNs = λ0(t) +
∑

k,Tk≤t

g(t− Tk)

In this specification, the intensity of N is updated with default information along
the path. The construction of N can be done using change of time procedure.
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Joint defaults
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Joint defaults

The density approach does not allow joint default, which are of main importance in
a counterparty approach.

We consider a Markovian model of credit risk in which simultaneous defaults are
possible.

We model the pair H = (H1, H2) as an inhomogeneous Markov chain with state
space E = {(0, 0), (1, 0), (0, 1), (1, 1)}, and generator matrix at time t given by the
following matrix A(t), where the first to fourth rows (or columns) correspond to the
four possible states (0, 0), (1, 0), (0, 1) and (1, 1) of Ht :

A(t) =




−(`1(t) + `2(t) + `3(t)) `1(t) `2(t) `3(t)

0 −(`2(t) + `3(t)) 0 `2(t) + `3(t)

0 0 −(`1(t) + `3(t)) `1(t) + `3(t)

0 0 0 0




.

where `’s are deterministic functions of time.
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Let us further introduce the processes H{1}, H{2} and H{1,2} standing for the
indicator processes of a default of the firm alone, of the counterpart alone, and of a
simultaneous default of the firm and the counterpart, respectively.

H
{1}
t = 11τ1≤t,τ1 6=τ2 , H

{2}
t = 11τ2≤t,τ1 6=τ2 , H

{1,2}
t = 11τ1=τ2≤t .
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The H-intensity of Hι is of the form qι(t,Ht) = qι(t,H1
t ,H2

t ) for a suitable function
qι(t, h):

q{1}(t, h) = 11h1=0 (11h2=0`1(t) + 11h2=1(`1 + `3)(t))

q{2}(t, h) = 11h2=0 (11h1=0`2(t) + 11e1=1(`2 + `3)(t))

q{1,2}(t, h) = 11h=(0,0)`3(t) .

The processes M i defined by, for i = 1, 2,

M i
t = Hi

t −
∫ t

0

(1−Hi
s)(`i + `3)(s)ds ,

are H-martingales.

The processes H1 and H2 are H-Markov processes

One has,

P(τ1 > s, τ2 > t) = exp
(
−

∫ s

0

`1(u)du−
∫ t

0

`2(u)du−
∫ s∨t

0

`3(u)du

)
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Thank you for your attention
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