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Market with memory

Analysis on different market data shows effects that can be explained by
taking memory into account in the modeling. Here we can refer to:

I The study of volatility in financial markets as well as commodity
markets shows evidence of a dependence on time with no
deterministic pattern. See e.g. Akgiray (1989), Bates (1996),
Bernard and Thomas (1989), Rubinstein (1994), Scott (1987).

I Studies on equity market microstructure, order books, with focus on
liquidity, as Bouchaud et al. (2009) and Gatheral et al. (2010)
reveal the presence of permanent effects mostly due to information
releases and the impact of large traders. These lead to questions of
optimal execution.

I Commodity markets have evidence of specific periodic fluctuations
that can be caused by time-delay influences: e.g. the time to
transport or time to construct has impact on prices. This delays
enter directly the market dynamics as they both effect and are
partially motivated by demand and supply rules. See Hale and
Verduyn Lunel (1993).



So to address some of these features models with delay, memory (or
hereditary structure) were introduced. Here we can refer to:

I M. Arriojas, Y. Hu, S-E A. Mohammed, and G. Pap (2007), M-H.
Chang and R. K. Youree (1999, 2007), Y. Kazmerchuk, A.
Swishchuk, and J. Wu (2005), G. Stoica (2005)

I Fruth et al. (2011), Huberman and Stanzi (2005), Malo and
Pennanen (2010)

I Küchler and Platen (2007)

All these models are represented by stochastic functional differential
equations (SFDE).
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1. The model via SFDEs

Complete probability space (Ω,F ,P)
A m-dim dimensional Brownian motion W (t), t ∈ [0,T ]
Its P-augmented natural filtration (Ft)t∈[0,T ]. We set F = FT .

Define M2 := L2(Ω,M2), where

M2 :=M0
2 := Rd ⊕ L2([−r , 0],Rd)

with the norm

‖(v , ϕ)‖M2 =
(
|v |2 + ‖ϕ‖2

L2([−r ,0],Rd )

)1/2

, ϕ ∈M2.

Notice: we say that η ∈ M2 when

E
(
|η(0)|2 + ‖η‖2

L2([−r ,0],Rd )

)
<∞.



We consider a risk-less bond

dB(t) = B(t)κ(t)dt with B(0) = 1

where κ ∈ L1([0,T ],R+), and a risky asset modeled by an SFDE:{
dS(t) = S(t)

{
µ(t,St)dt + σ(t,St)dW (t)

}
, t ∈ (0,T ]

S0 = η (F0-measurable in M2)

Here S· represents the segment of the past history:

∀(t, ω) St(ω, u) := S(ω, t + u), u ∈ [−r , 0] ∈M2

Denote, for each ω,

f (·,S·) := S(·)µ(·,S·) : [0,T ]×M2 → Rd

and
g(·,S·) := S(·)σ(·,S·) : [0,T ]×M2 → Rd×m

For every t, the matrix g(t,St) is assumed to have full rank.



SFDEs: existence and uniqueness

The SFDE:{
dx(t) = f (t, xt)dt + g(t, xt)dW (t), t ∈ (0,T ]

x0 = η (F0-measurable in M2)
(1)

Hypotheses (E):

(i) (Local Lipschitzianity): ∀n > 0, ∃Ln > 0 such that:

|f (t, ϕ1)− f (t, ϕ2)|Rd +‖g(t, ϕ1)−g(t, ϕ2)‖Rd×m 6 Ln‖ϕ1−ϕ2‖M2

for all t ∈ [0,T ] and ϕ1, ϕ2 ∈M2: ‖ϕ1‖M2 6 n, ‖ϕ2‖M2 6 n.

(ii) (Linear growth): ∃C > 0 such that:

|f (t, ψ)|Rd + ‖g(t, ψ)‖Rd×m 6 C (1 + ‖ψ‖M2 )

for all t ∈ [0,T ] and ψ ∈M2.



Existence and uniqueness of solution:
Under hypotheses (E), and given η, the SFDE (1) has a solution
ηx = ηx0 that is a stochastic process:

ηx : Ω× [−r ,T ] −→ Rd

with ηx(t) = η(t) for all t ∈ [−r , 0] P-a.s. such that

ηx ∈ L2(Ω,MT
2 ), MT

2 := Rd ⊕ L2([−r ,T ],Rd)

Moreover it admits an adapted modification:

∀t, ηx(t, ·) is Ft-measurable.

Given η, the solution is unique as element in L2(Ω,MT
2 ) admitting

adapted representative.

From now on we assume the existence of a solution to the given SFDEs.



We can consider the SFDE starting at s:{
dx(t) = f (t, xt)dt + g(t, xt)dW (t), t ∈ (s,T ]

xs = η (Fs -measurable in M2)
(2)

Under assumption (E) the solution of (2) exists and it is unique as
element in L2(Ω,MT

2 ) admitting adapted representative.

The solution is denoted: ηx s = ηx s(t), t ∈ [s − r ,T ].



Price functionals and derivatives
Consider a bounded function Φ :M2 → R+ and a fixed time T > 0.
Price functionals. Our targets are functionals of the form:

p(η) = E [Φ( ηx(T ), ηxT )] , η ∈M2

where ηx is the solution of an SFDE with initial condition η.

Delta. We will compute quantities of type:

∆η := Dp(η) = E [DΦ( ηx(T ), ηxT )] .(3)

However, Dp(η) is a functional. If we want an index, then there is choice.
To explain, one can choose a directional derivative:

∆h := lim
ε→0

p(η + εh)− p(η)

ε
=

d

dε
p(η + εh)

∣∣∣∣
ε=0

, h ∈M2

and this represents the rate of change near η along the direction h. Or
one could consider a form of ”worst case scenario” of type:

∆ := |||Dp(η)||| := sup
ψ∈M2
ψ 6=0

|Dp(η)(ψ)|
‖ψ‖M2

.



SFDEs: differentiability

References:

I ω-wise Fréchet differentiability of ηx(t) and ηxt is discussed in
Mohammed and Schetzow (2003).

I Malliavin differentiability of ηx(t) and ηxt is discussed in Yan and
Mohammed (2005), Pronk and Veraar (2004), and Carmona and
Tehranchi (2006).

Goal: we want to draw a relationship between the two types of derivative.

To this aim we introduce the following operators:

(4) X s
t (η, ω) :=

(
η(ω)x s(t)(ω), η(ω)x st (ω)

)
∈M2

for all s 6 t, η ∈ M2, ω ∈ Ω.

Semigroup property: X 0
t = X s

t ◦ X 0
s .

Under the following assumptions (D), X represents a Fréchet
differentiable stochastic flow associated to the SFDEs above.



Hypotheses (D):

(i) the functionals f is jointly continuous and it has continuous Fréchet
partial derivatives with respect to the second argument, i.e. for all
t ∈ [0,T ], the following bounded linear operators exist:

Df (t, ·) :M2 −→ L(M2,Rd)

ϕ −→ Df (t, ϕ)

Dg(t, ·) :M2 −→ L(M2,Rd×m)

ϕ −→ Dg(t, ϕ)

(ii) Df (t, ·) is continuous uniformly with respect to t, Dg(t, ·) is
continuous and globally bounded



Result from [MS2003]: Under Hypotheses (D), for coefficients f such
that there exist some constants C := C (T ) > 0 and γ := γ(T ) ∈ [0, 1)
such that

|f (t, ϕ)| 6 C
(
1 + ‖ϕ‖γM2

)
we can guarantee the Fréchet differentiability of X s

t (ϕ, ω) with respect to
ϕ ∈M2:

X s
t (ϕ, ω) ∈M2

DX s
t (ϕ, ω) ∈ L(M2,M2)

this gives the differentiability of the solution and the segment of the
SFDE.
Remark: alternative sufficient conditions can be given.

Result see [CT2006], [PV2004], [YM2005]: Under assumption (D),
we have also differentiability of the solution ηx(t) and its segments ηxt in
the sense of Malliavin D.



Theorem
Given the assumptions before. For any 0 6 s 6 t 6 T ] and η ∈M2, we
have that X 0

t (η) =
(
ηx(t), ηxt

)
is Malliavin differentiable and

X s
t (η, ω) =

(
ηx s(t, ω), ηx st (ω)

)
is Fréchet differentiable at η for all ω.

Moreover, we have the following relationship:

DX s
t

(
X 0
s (η, ω), ω

)
=
(
DsX

0
t (η, ·)

)
(ω) g−1

R

(
s,X 0

s (η, ω)
)
ρ0 ω − a.e.

where ρ0 :M2 −→ Rd is the ”evaluation at 0“, i.e. ρ0(ϕ(0), ϕ) = ϕ(0).
Here g−1

R denotes the right-inverse of the (d ×m)-matrix g .
The term DX s

t

(
X 0
s (η, ω), ω

)
stands for the Fréchet derivative of X s

t ,
given ω, evaluated at X 0

s (η, ω).

Proof. Based on chain rules for Malliavin derivative and Fréchet
derivatives, the semigroup property of {X s

t }s6t plus unicity of the
solution.

Corollary. In the conditions of the Theorem we also have:

DX 0
t (η, ω) =

(
DsX

0
t (η, ·)

)
(ω) g−1

R

(
s,X 0

s (η, ω)
)
ρ0 ◦ DX 0

s (η, ω)



Sensitivity analysis: Delta
Our targets are functionals of the form:

p(η) = E [Φ( ηx(T ), ηxT )] = E
[
Φ(X 0

T (η))
]
, η ∈M2

The Delta operator is of the form:

∆η := Dp(η) = E
[
DΦ(X 0

T (η))
]
.

Proposition.
Let a : [0,T ] −→ R integrating to 1, and assume Φ Fréchet differentiable
C 1 with bounded derivatives, then in the setting above we have:

∆η = E
[
Φ(X 0

T (η))w∆(η)
]

where

w∆(η)(ψ) =

∫ T

0

[
a(s)g−1

R (s, X 0
s (η))ρ0 ◦ DX 0

s (η)
]
(ψ)dW (s)

Notice: Assumptions on Φ are softened to Φ(X 0
T (η)) ∈ L2(Ω), by

approximation argument.



2. Risk-neutral approach: pricing and sensitivity analysis

Recall the model...
A risk-less bond

dB(t) = B(t)κ(t)dt with B(0) = 1

A risky asset:{
dS(t) = S(t)

{
µ(t,St)dt + σ(t,St)dW (t)

}
, t ∈ [0,T ]

S0 = η (F0-measurable in M2)

Assume that

Z (t) := exp

{
−
∫ t

0

θd(u,Su)dW (u)− 1

2

∫ t

0

θ2
d(u,Su)du

}
with θd(t,St) := µ(t,St)−κ(t)

σ(t,St)
, is a martingale.

Then dQ = Z (T )dP is a risk-neutral measure.



We consider a path dependent option of type Φ( ηS(T ), ηST ). The price
for the option is given by:

pQ(η) = EQ

[
Φ( ηS(T ), ηST )

B(T )

]

And the sensitivity to the initial condition is given by:

∆Q
η (ψ) := DpQ(η)(ψ) =

1

B(T )
EQ

[
Φ( ηS(T ), ηST )w∆(ψ)

]
,

where the weight is:

w∆(ψ) =

∫ T

0

a(s)σ−1
R (s, ( ηS(s), ηSs))DX 0

s (η)(ψ(0))dW (s),

Notation: DX 0
s (η)(ψ(0)) := ρ0 ◦ DX 0

s (η)(ψ).



Example: Küchler and Platen model. Commodity prices presenting
cyclical fluctuations:

S(t) = α1 exp {α2Y (t) + α3t} , t ∈ [0,T ]

where α1, α2 and α3 are adequate parameters and

dY (t) =

{
−µY (t − r)dt + σdW (t), t ∈ (0,T ]

η(t), t ∈ [−r , 0].

Explicitly, the price process is:

S(t) = α1 exp

{
α2

(
η(0)− µ

∫ t

0

Y (u − r)du + σW (t)

)
+ α3t

}
Consider Φ( ηS(T ), ηST ) with risk-neutral price

pQ(η) =
1

B(T )
EQ

[
Φ( ηS(T ), ηST )

]
.



The delta operator is

∆Q
η =

1

B(T )
EQ

[
Φ( ηS(T ), ηST )w∆(η)

]
,

with weight

w∆(η) =
1

α1α2σ

∫ T

0

a(s)ρ0

(
DX 0

s (η)
)
dW (s)

Then the Fréchet derivative above is given by

Dρ0

(
X 0
s (η)

)
= ηS(s)α2

[
ρ0 − µ

∫ s

0

D ηY (u − r)du

]
.

For a close expression, we assume that t ∈ [0, r ], then
Y (t − r) = η(t − r) and so D ηY (t − r) = ρt−r . Then

w∆(η) =
1

α1σ

∫ T

0

a(s)ηS(s)
[
ρ0 − µ

∫ s

0

ρu−rdu
]
dW (s).



3. Benchmark approach: pricing and sensitivity analysis

Benchmark pricing in short.
This pricing method exploit the relationship that exists between
numéraire and pricing measure. We refer to Platen and Heath (2006) for
details (plus related works).

The idea is to find the “appropriate” process G such that the discounted

prices S(t)
G(t) , t ∈ [0,T ], is a martingale under P.

The process G is called benchmark.

A self-financing portfolio π is fair if the benchmarked value Vπ(t)
G(t) ,

t ∈ [0,T ], is a martingale under P.

How to find G?



In this set-up one can find G solving the optimization problem:

V π∗
(T ) = sup

π∈A
E [logV π(T )],

where A denotes the set of self-financing portfolios with V strictly
positive. Then G := V π∗

.
In our framework, the SFDE for the value process is

dV (t)
V (t) = [κ(t) + (µ(t,St)− κ(t))π(t,St)]dt + σ(t,St)π(t,St)dW (t),
dS(t)
S(t) = µ(t,St)dt + σ(t,St)dW (t), t ∈ [0,T ]

V (0) = x , S0 = η

and one can show that the G corresponds to:
dG(t)
G(t) = [κ(t) + θ2

d(t,St)]dt + θd(t,St)dW (t), t ∈ [0,T ]
dS(t)
S(t) = µ(t,St)dt + σ(t,St)dW (t), t ∈ [0,T ]

G (0) = 1, S0 = η



Pricing formula.
For the European option Φ( ηS(T ), ηST ) ∈ L2(Ω,R+) we have that the
benchmark price is

p(η) := E

[
Φ( ηS(T ), ηST )

ηG (T )

]
, η ∈ M2.

Note that the numéraire depends on the initial path.



Sensitivity analysis: Delta.
In this case the formula of the delta operators is given by:

Dp(η) = E
[
Φ( ηS(T ), ηST )w∆

]
,

where,

w∆ = δ

(
a(·)g−1

R (·, ηS(·), ηS·)ρ0 ◦ DX 0
· (η)

ηG (T )

)
− D log ηG (T )

ηG (T )

and

D log ηG(T ) =

∫ T

0

θd (t, ηSt )

σ(t, ηSt )

[
Dµ(t, ηSt ) − θd (t, ηSt )Dσ(t, ηSt )

]
◦ DX0

t (η)dt

+

∫ T

0

[
Dµ(t, ηSt ) − θd (t, ηSt )Dσ(t, ηSt )

σ(t, ηSt )

]
◦ DX 0

t (η)dW (t)



Example: Classical Black and Scholes market.{
dS(t) = µS(t)dt + σS(t)dW (t), t ∈ (0,T ]

S(t) = η(t), t ∈ [−r , 0]

Observe that the initial condition is just relevant at the point t = 0.

In this case: G (t) = e(κ+ θ2

2 )t+θW (t) and:

Dp(η)(ψ)E
[
Φ( ηS(T ), ηST )w∆(ψ)

]
,

where (a ≡ 1/T )

w∆(η)(ψ) = δ

(
ψ(0)

Tη(0)σG (T )

)
=

1

G (T )
δ

(
ψ(0)

Tη(0)σ

)
− ψ(0)

Tη(0)σ

∫ T

0

Ds
1

G (T )
ds.

Then w∆(η)(ψ) = 1
G(T )

ψ(0)
Tη(0)σ (W (T ) + θT ) .

Also we consider the worst case evaluation with:

∆ = sup
ψ∈M2

‖ψ‖M2
=1

|Dp(η)(ψ)| =

∣∣∣∣E [ 1

G (T )

Φ( ηS(T ), ηST )

Tη(0)σ
(W (T ) + θT )

]∣∣∣∣
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Sketch of the proof. Fix ω. For any η̃ ∈M2:

η̃x s(t, ω) = ρ0(X s
t (η̃, ω))

= ρ0(η̃) +

∫ t

s

f (u, ·) ◦ X s
u (·, ω)(η̃)du +

∫ t

s

g(u, ·) ◦ X s
u (·, ω)(η̃)dW (u).

Compute the Fréchet derivative at η̃:

D η̃x s(t, ω) = Dρ0(η̃) +

∫ t

s

D[f (u, ·) ◦ X s
u (·, ω)](η̃)du

+

∫ t

s

D[g(u, ·) ◦ X s
u (·, ω)](η̃)dW (u).

Since ρ0 is a linear operator, then Dρ0(η̃) = ρ0 ∈ L(M2,Rd).
By use of chain rules, the evaluation at η̃ = X 0

s (η, ω), and the semigroup
property of the flow X s

u ◦ X 0
s = X 0

u , we obtain:

D η̃x s(t, ω) = ρ0 +

∫ t

s

D[f (u,X 0
u (η, ω))] ◦ DX 0

u (η, ω)du

+

∫ t

s

D[g(u,X 0
u (η, ω)))] ◦ DX 0

u (η, ω)dW (u)

(5)



We compute the Malliavin derivative of the solution at the point
0 6 s 6 t and use of chain rule:

Ds
ηx(t) =

∫ t

s

D[f (u,X 0
u (η)] ◦ Ds(X 0

u (η))du + g(s,X 0
s (η))

+

∫ t

s

D[g(u,X 0
u (η))] ◦ Ds(X 0

u (η))dW (u).

(6)



In order to compare the two derivatives (5) and (6), we consider a
representative in the Malliavin derivative representation and construct an
operator of transfer such that:

g(s,X 0
s (η, ω)) ◦ τs(·) = ρ0(·).

Indeed for ϕ ∈M2 we have

(
Ds

ηx(t)
)
◦ τs(ϕ) =

∫ t

s

D[f (u,X 0
u (η, ω))] ◦

(
Ds(X 0

u (η))
)
(ω) ◦ τs(ϕ)du

+ϕ(0) +

∫ t

s

D[g(u,X 0
u (η, ω))] ◦

(
Ds(X 0

u (η))
)
(ω) ◦ τs(ϕ)dW (u).

To complete we have to prove that, for η̃ = X 0
s (η):

‖
(
D η̃x s(t))(ϕ)

)
t
−
((
Ds

ηx(t)
)
◦ τs(ϕ)

)
t
‖2
L2(Ω,M2) = 0
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