Markovian fluid queues in ALM 6th AMaMeF and Banach Center Conference

Sarah DENDIEVEL & Guy LATOUCHE

Université libre de Bruxelles

June 15, 2013

1. Motivation

Asset and Liability Management

$$X(\cdot)$$

$$\begin{array}{c}
y \\
a \\
0 \\
b
\end{array}$$
Time

Figure: $X(t) = \ln \frac{A(t)}{L(t)}$ where $\{A(t)\}_{t\geq 0}$ is the asset process and $\{L(t)\}_{t>0}$ is the liability process

Goal:

$$\mathbb{P}\left[\min_{0 \le t \le \mathcal{T}} X(t) \ge b \text{ and } X(\mathcal{T}) > y | X(0) = a\right]$$

1. Motivation

► Markov modulated Brownian motion

$$X(t) = X(0) + \int_0^t \mu(\varphi(s)) ds + \int_0^t \sigma^2(\varphi(s)) dB(s)$$

where B(t) is a Brownian motion and where

- $-\varphi(s) \in \{1, ..., m\}$
- $-\mu(\varphi(s)) \in {\mu_1, ..., \mu_m}$
- $\sigma^2(\varphi(s)) \in \{\sigma_1^2, ..., \sigma_m^2\}$

1. Motivation

▶ Markov modulated Brownian motion

$$X(t) = X(0) + \int_0^t \mu(\varphi(s)) ds + \int_0^t \sigma^2(\varphi(s)) dB(s)$$

where B(t) is a Brownian motion and where

$$-\varphi(s) \in \{1, ..., m\}$$

$$-\mu(\varphi(s)) \in {\{\mu_1, ..., \mu_m\}}$$

-
$$\sigma^2(\varphi(s)) \in {\sigma_1^2, ..., \sigma_m^2}$$

► Markovian fluid queue (G. Latouche, G. Nguyen, The morphing of fluid queues into Markov-modulated Brownian motion)

$$X(t) = X(0) + \int_0^t \mu(\varphi(s)) ds + \sqrt{\lambda} \int_0^t (-1)^{\beta(s)} \sigma^2(\varphi(s)) ds$$

where

$$-\lambda > 0$$
,

$$-\beta(s) \in \{1, 2\}$$

Outline

1. Motivation

2. Markovian fluid queues

3. Erlangization method

4. Application

Markov process $\{(X(t), \varphi(t)) : t \in \mathbb{R}^+\}$

- $ightharpoonup X(t) \in \mathbb{R}^+$ is the continuous level
- ▶ $\varphi(t) \in \mathcal{S}$ is the phase : state of a discrete Markov chain with state space $\mathcal{S} = \mathcal{S}_+ \cup \mathcal{S}_-$ and infinitesimal generator T,

$$T = \left[\begin{array}{cc} T_{++} & T_{+-} \\ T_{-+} & T_{--} \end{array} \right]$$

where $T_{++}: \mathcal{S}_{+} \leadsto \mathcal{S}_{+}, T_{+-}: \mathcal{S}_{+} \leadsto \mathcal{S}_{-}, T_{-+}: \mathcal{S}_{-} \leadsto \mathcal{S}_{+}, T_{--}: \mathcal{S}_{-} \leadsto \mathcal{S}_{-}$

Evolution of the level, varies linearly according to the phase

$$X(t) = X(0) + \int_0^t c_{\varphi(s)} ds$$

Matrix of the rates

$$C = \operatorname{diag}(c_i : i \in \mathcal{S})$$

The matrix Ψ of the first return probability

$$\Psi_{ij} = \mathbb{P}[\theta(0) < \infty, \varphi(\theta(0)) = j | X(0) = 0, \varphi(0) = i]$$
 where $i \in \mathcal{S}_+, j \in \mathcal{S}_-$ and $\theta(0) = \inf\{t > 0 : X(t) = 0\}$

The matrix Ψ of the first return probability

$$\begin{split} &\Psi_{ij} = \mathbb{P}[\theta(0) < \infty, \varphi(\theta(0)) = j | X(0) = 0, \varphi(0) = i] \\ &\text{where } i \in \mathcal{S}_+, j \in \mathcal{S}_- \text{ and } \theta(0) = \inf\{t > 0 : X(t) = 0\} \end{split}$$

$$\hat{\Psi}_{ij} = \mathbb{P}[\theta(0) < \infty, \varphi(\theta(0)) = j | X(0) = 0, \varphi(0) = i]$$
 where $i \in \mathcal{S}_-, j \in \mathcal{S}_+$

Theorem

The matrix Ψ of first return probabilities is the solution of the Riccati equation

$$C_{+}^{-1}T_{++}\Psi+C_{+}^{-1}T_{+-}+\Psi\left|C_{-}^{-1}\right|T_{--}+\Psi\left|C_{-}^{-1}\right|T_{-+}\Psi=0$$

where
$$C_+ = diag(c_i : i \in S_+)$$
 and $C_- = diag(c_i : i \in S_-)$

(L.C.G. Rogers, Fluid models in queueing theory and Wiener-Hopf factorization of Markov chains)

Theorem

The matrix Ψ of first return probabilities is the solution of the Riccati equation

$$C_{+}^{-1}T_{++}\Psi+C_{+}^{-1}T_{+-}+\Psi\left|C_{-}^{-1}\right|T_{--}+\Psi\left|C_{-}^{-1}\right|T_{-+}\Psi=0$$

where
$$C_+ = diag(c_i : i \in S_+)$$
 and $C_- = diag(c_i : i \in S_-)$

(L.C.G. Rogers, Fluid models in queueing theory and Wiener-Hopf factorization of Markov chains)

Similar equation for the matrix $\hat{\Psi}$

The matrix $U = |C_{-}^{-1}| T_{--} + |C_{-}^{-1}| T_{-+} \Psi$

 ${\cal U}$ is the infinitisimal generator of the process observed only during those intervals of time in which

$$X(t) = \min_{0 \le u \le t} X(u)$$

Erlang distribution : $Y \sim \text{Erl}(\nu, L)$

$$\blacktriangleright \mathbb{E}(Y) = \frac{L}{\nu} = \mathcal{T}$$

▶ Probability density function : $f_Y(x) = \frac{\nu^L x^{L-1}}{(L-1)!} e^{-\nu x}$

Figure: $\operatorname{Erl}\left(\frac{L}{2}, L\right)$

Erlang distribution \rightrightarrows Continuous time Markov chain $\{\phi(t): t \in \mathbb{R}^+\}$

infinitesimal generator $L \times L$

$$N = \begin{bmatrix} -\nu & \nu & & & & \\ & -\nu & \ddots & & & \\ & & \ddots & & & \\ & & & -\nu & \nu & \\ & & & -\nu & \end{bmatrix}$$

Erlangization method in Markovian fluid queues

Markovian fluid queue $\{(X(t), \varphi(t)) : t \in \mathbb{R}^+\}$

+

Fixed time \sim Erlang Markov chain $\{\phi(t): t \in \mathbb{R}^+\}$

 \Downarrow

Erlangized Markovian fluid queue $\{(X(t), \Phi(t)) : t \in \mathbb{R}^+\}$

Erlangization method in Markovian fluid queues

Markovian fluid queue $\{(X(t), \varphi(t)) : t \in \mathbb{R}^+\}$

+

Fixed time \sim Erlang Markov chain $\{\phi(t): t \in \mathbb{R}^+\}$

 \Downarrow

Erlangized Markovian fluid queue $\{(X(t), \Phi(t)) : t \in \mathbb{R}^+\}$

We construct the fluid queue $\{(X(t), \Phi(t)) : t \in \mathbb{R}^+\}$ where

$$\Phi(t) = (\varphi(t), \phi(t))
= (i, k)$$

i.e. at time t, the phase is $i \in \mathcal{S}$ and t belongs to the k-th stage of Erlang process $k \in \{1, 2, ..., L\}$.

(S. Asmussen, F. Avram, M. Usábel, Erlangian approximations for finite time ruin probabilities.)

T is the infinitesimal generator of $\varphi(t)$

$$T = \left[\begin{array}{cc} T_{++} & T_{+-} \\ T_{-+} & T_{--} \end{array} \right]$$

and N is the infinitesimal generator of $\phi(t)$

$$N = \begin{bmatrix} -\nu & \nu & & & & \\ & -\nu & \ddots & & \\ & & \ddots & & \\ & & & -\nu \end{bmatrix}$$

The generator of $\Phi(\cdot)$ is Q and has block-matrices

	$\int T_{++} - \nu I$	νI]
	 	$T_{++} - \nu I$	
$Q_{++} = N \otimes I + I \otimes T_{++} =$			
			νI
			$T_{++} - \nu I$

$$Q_{++} = N \otimes I + I \otimes T_{++} = \begin{bmatrix} T_{++} - \nu I & \nu I & & & & \\ & T_{++} - \nu I & & & & \\ & & & \ddots & & \\ & & & & & \nu I \\ & & & & & T_{++} - \nu I \end{bmatrix}$$

The infinitesimal generator of $\Phi(\cdot)$ is

$$Q = \begin{bmatrix} N \otimes I + I \otimes T_{++} & I \otimes T_{+-} & -N\mathbf{1}_L \otimes \mathbf{1}_+ \\ I \otimes T_{-+} & N \otimes I + I \otimes T_{--} & -N\mathbf{1}_L \otimes \mathbf{1}_- \\ \hline 0 & 0 & 0 \end{bmatrix}$$

Joint distribution during the period [0,T]

$$\mathbb{P}\left[\min_{0 \leq t \leq T} X(t) \geq b \text{ and } X(T) > y | X(0) = a, \varphi(0) = i\right]$$

Today : y > a > b and $i \in \mathcal{S}_+$

Case 1 : $T \sim$ Exponential with parameter ν

The joint probability of the minimum reached during the exponential horizon and the level reached at the end of the exponential horizon given the initial level and phase

$$\mathbb{P}_i^a \left[\min_{0 \le t \le T} X(t) \ge b \& X(T) > y \right]$$

is given by the i-th component of the vector

$$\left(I - \Psi e^{U(a-b)} \hat{\Psi} e^{\hat{U}(a-b)}\right) e^{\hat{U}(y-a)} (I - \Psi \hat{\Psi})^{-1} (\mathbf{1} - \Psi \mathbf{1})$$

Notation

$$\mathbb{P}_i^a \left[\min_{0 \le t \le T} X(t) \ge b \text{ and } X(T) > y \right]$$

denotes $\mathbb{P}\left[\min_{0 \le t \le T} X(t) \ge b \text{ and } X(T) > y | X(0) = a, \varphi(0) = i\right]$

Remark 1 The matrices $\Psi, \hat{\Psi}, U, \hat{U}$ are those of the Erlangized fluid queue.

Remark 1 The matrices $\Psi, \hat{\Psi}, U, \hat{U}$ are those of the Erlangized fluid queue.

Remark 2

$$\mathbb{P}_i^a \left[\min_{0 \le t \le T} X(t) \ge b \text{ and } X(T) > y \right]$$

is equal to

$$\mathbb{P}_i^a \left[X(T) > y \right] - \mathbb{P}_i^a \left[\min_{0 \le t \le T} X(t) < b \text{ and } X(T) > y \right]$$

Remark 1 The matrices $\Psi, \hat{\Psi}, U, \hat{U}$ are those of the Erlangized fluid queue.

Remark 2

$$\mathbb{P}_i^a \left[\min_{0 \le t \le T} X(t) \ge b \text{ and } X(T) > y \right]$$

is equal to

$$\mathbb{P}_i^a \left[X(T) > y \right] - \mathbb{P}_i^a \left[\min_{0 \le t \le T} X(t) < b \text{ and } X(T) > y \right]$$

Remark 3

$$\mathbb{P}\left[\min_{0 \le t \le T} X(t) < b\right] = \mathbb{P}[\tau(b) < T]$$

where $\tau(b) = \inf\{t > 0 : X(t) < b\}$

Computation (keeping track of the phases...)

$$\mathbb{P}_i^a\left[\tau(b) < T \text{ and } X(T) > y\right] = \sum_{i \in \mathcal{I}} \mathbb{P}_{ij}^a[\tau(b) < T] \mathbb{P}_j^b[X(T) > y]$$

Computation (keeping track of the phases...)

$$\mathbb{P}_i^a\left[\tau(b) < T \text{ and } X(T) > y\right] = \sum_{i \in S} \mathbb{P}_{ij}^a\left[\tau(b) < T\right] \mathbb{P}_j^b\left[X(T) > y\right]$$

where

$$\begin{split} \mathbb{P}^a_{ij}[\tau(b) < T] &= \mathbb{P}[\tau(b) < T, \varphi(\tau(b)) = j | X(0) = a, \varphi(0) = i] \\ &= \sum_{k \in \mathcal{S}_-} \Psi_{ik} \left(e^{U(a-b)} \right)_{kj} \end{split}$$

Computation (keeping track of the phases...)

$$\mathbb{P}_i^a\left[\tau(b) < T \text{ and } X(T) > y\right] = \sum_{i} \mathbb{P}_{ij}^a\left[\tau(b) < T\right] \mathbb{P}_j^b\left[X(T) > y\right]$$

where

$$\mathbb{P}_{ij}^{a}[\tau(b) < T] = \mathbb{P}[\tau(b) < T, \varphi(\tau(b)) = j | X(0) = a, \varphi(0) = i]$$
$$= \sum_{k \in \mathcal{S}_{-}} \Psi_{ik} \left(e^{U(a-b)} \right)_{kj}$$

and
$$\mathbb{P}_{i}^{b}[X(T)>y]$$

$$= \mathbb{P}_{j}^{b}[X(T) > y | X(0) = b, \varphi(0) = j]$$

$$= \sum_{u \in \mathcal{S}_{+}} \sum_{v \in \mathcal{S}_{+}} \hat{\Psi}_{ju} \left\{ e^{\hat{U}(y-b)} \right\}_{uv} \left\{ (I - \Psi \hat{\Psi})^{-1} (\mathbf{1} - \Psi \mathbf{1}) \right\}_{v}$$

Case 2 : $T \sim$ Erlang with parameters ν and L

The joint probability of the minimum reached during the Erlang horizon and the level reached at the end of the exponential horizon given the initial level and phase

$$\mathbb{P}_i^a \left[\min_{0 \le t \le T} X(t) \ge b \& X(T) > y \right]$$

is given by the i-th component of the vector

$$\sum_{k=1}^{L} \left\{ e^{U^{(k)}(y-a)} \boldsymbol{h}^{(k^*)} \right\}$$

$$-\sum_{k=1}^{L} \left\{ \left[\sum_{n=1}^{k} \Psi^{(n)} e^{U^{(k-n)}(a-b)} \right] \left[\sum_{n=1}^{L-k} \hat{\Psi}^{(n)} \sum_{m=1}^{L-k-n} e^{\hat{U}^{(m)}(y-b)} \boldsymbol{h}^{(m^*)} \right] \right\}$$

with $k^* = L - k$ and $m^* = L - k - n - m$

Computation (keeping track of the phases and the stages...)

$$\mathbb{P}_i^a \left[\tau(b) < T \text{ and } X(T) > y \right] =$$

$$\sum_{k=1}^{L} \sum_{j \in \mathcal{S}} \mathbb{P}_{ij}^{a} [\phi(\tau(b)) = k] \mathbb{P}_{j}^{b} [X(T) > y | \phi(\tau(b)) = k]$$

Computation (keeping track of the phases and the stages...)

$$\mathbb{P}_i^a \left[\tau(b) < T \text{ and } X(T) > y \right] =$$

$$\sum_{k=1}^{L} \sum_{j \in \mathcal{S}_{-}} \mathbb{P}_{ij}^{a} [\phi(\tau(b)) = k] \mathbb{P}_{j}^{b} [X(T) > y | \phi(\tau(b)) = k]$$

where

$$\mathbb{P}_{ij}^{a}[\phi(\tau(b)) = k] = \sum_{n=1}^{k} \sum_{l \in \mathcal{S}_{-}} \Psi_{il}^{(n)} \left(e^{U^{(k-n+1)}(a-b)} \right)_{lj}$$

Computation (keeping track of the phases and the stages...)

$$\mathbb{P}_i^a \left[\tau(b) < T \text{ and } X(T) > y \right] =$$

$$\sum_{k=1}^{L} \sum_{j \in \mathcal{S}_{-}} \mathbb{P}_{ij}^{a} [\phi(\tau(b)) = k] \mathbb{P}_{j}^{b} [X(T) > y | \phi(\tau(b)) = k]$$

where

$$\mathbb{P}_{ij}^{a}[\phi(\tau(b)) = k] = \sum_{n=1}^{k} \sum_{l \in \mathcal{S}_{-}} \Psi_{il}^{(n)} \left(e^{U^{(k-n+1)}(a-b)} \right)_{lj}$$

and $\mathbb{P}_{i}^{b}[X(T) > y | \phi(\tau(b)) = k]$ equals

$$\sum_{v=1}^{L-k+1} \sum_{m=1}^{L-k-n+1} \sum_{v \in S} \sum_{v \in S} \hat{\Psi}_{ju}^{(n)} \left\{ e^{\hat{U}^{(m)}(y-b)} \right\}_{uv} \boldsymbol{h}_{v}^{(L-k-n-m+1)}$$

Recurrence equation

$$\boldsymbol{h^{(1)}} = (I - \Psi^{(1)}\hat{\Psi}^{(1)})^{-1}(\mathbf{1} - \Psi^{(1)}\mathbf{1})$$

and for n > 1,

$$h^{(n)} = 1 - \sum_{k=1}^{n} \Psi^{(k)} 1 + \sum_{i+j+l=n+2} \Psi^{(i)} \hat{\Psi}^{(j)} h^{(l)}$$

The *i*-th component of the vector $h^{(n)}$ is the probability that the process is above the level y after an Erlang horizon time period with n stages, given that the process starts in i an increasing phase, in the level y, i.e.

$$h_i^{(n)} = \mathbb{P}[X(T) > y | X(0) = y, \varphi(0) = i]$$

for $i \in S_+$ and where $T \sim \text{Erl}(\frac{n}{T}, n)$.

Thanks!

References

- S. Asmussen, F. Avram, M. Usábel, Erlangian approximations for finite time ruin probabilities. ASTIN Bulletin, 32, 2002
- 2. A. Badescu, L. Breuer, A. Da Silva Soares, G. Latouche, M-A.Remiche, D. Stanford, *Risk processes analyzed as fluid queues*, Scandinavian Actuarial Journal, 2005
- 3. G. Latouche, G. Nguyen, The morphing of fluid queues into Markov-modulated Brownian motion, submitted, 2013
- 4. L.C.G. Rogers, Fluid models in queueing theory and Wiener-Hopf factorization of Markov chains, Annals of Applied Probability, 1994
- 5. D. Stanford, K. Yu, J. Ren, Erlangian approximation to finite time ruin probabilities in perturbed risk models, Scandinavian Actuarial Journal, 2011