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1. Motivation
Asset and Liability Management

4
X()

Figure: X(t) =1n % where {A(t)}1>0 is the asset process and

{L(t)}4>0 is the liability process

Goal:

. S _
P [OISI?SHTX(IS) >band X(7) > y|X(0) =a »



1. Motivation

» Markov modulated Brownian motion

X(t) = X(0) + /0 1 (p(s)) ds + /0 o*(io(s))dB(s)

where B(t) is a Brownian motion and where
o(s) e {1,...,m}
u(s@( ) € {1, es pm}
o*(e(s)) € {ot,....o0.}
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1. Motivation

» Markov modulated Brownian motion

X@—X@+Auwmmuﬁ4#w@wmg

where B(t) is a Brownian motion and where
-o(s) e {1,...,m}
- 1 (p(s)) € {pu, s i}
- 0'2(90(3)) € {0%7 "'701271}

> Mal“kovian ﬂuld queue (G. Latouche, G. Nguyen, The morphing of fluid

queues into Markov-modulated Brownian motion)

Xw—X@+AMW@MHw5£FDMW@@MS

where
-A>0,
- [5(5) € {172}
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2. Markovian fluid queues

Phase
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2. Markovian fluid queues
Markov process {(X(t),¢(t)) : t € RT}
» X(t) € RT is the continuous level

» o(t) € S is the phase : state of a discrete Markov chain
with state space § = §;US_ and infinitesimal generator T,

o T++ T+_
it

where Ty : S ~> S, T4 Sy~ S, T :S_ ~ Sy,
T _:85 ~&_

Evolution of the level, varies linearly according to the phase

Matrix of the rates

6/24



2. Markovian fluid queues
The matrix ¥ of the first return probability

Level
A

0 \/\// Ti;e

Wi =P[O(0) < 00,9(0(0)) = j[X(0) = 0,¢(0) = i
where i € S;,j € S and 0(0) = inf{t > 0: X(¢t) =0}
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2. Markovian fluid queues
The matrix ¥ of the first return probability

Level
A

’ W WY Time

Wi =P[O(0) < 00,9(0(0)) = j[X(0) = 0,¢(0) = i
where i € S;,j € S and 0(0) = inf{t > 0: X(¢t) =0}

Wi =P[0(0) < 00,9(6(0)) = j[X(0) = 0,0(0) = i]
where i € S_,j € St
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2. Markovian fluid queues

Theorem
The matriz U of first return probabilities is the solution of the
Riccati equation

Ci'Ti U+ C' T+ U [CTH T+ U |CTH T4 ¥ =0
where Cy. = diag(c; 11 € S4) and C_ = diag(c; : 1 € S-)

(L.C.G. Rogers, Fluid models in queueing theory and Wiener-Hopf factorization of
Markov chains)
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2. Markovian fluid queues

Theorem
The matriz U of first return probabilities is the solution of the
Riccati equation

Ci'Ti U+ C' T+ U [CTH T+ U |CTH T4 ¥ =0
where Cy. = diag(c; 11 € S4) and C_ = diag(c; : 1 € S-)

(L.C.G. Rogers, Fluid models in queueing theory and Wiener-Hopf factorization of
Markov chains)

Similar equation for the matrix 0
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2. Markovian fluid queues
The matrix U = |[C_'|T__ +|CZ!| T, ¥

Time

0 VM (\AAVA]\’\/\/\A; :
y \1\/\/ R

U is the infinitisimal generator of the process observed only
during those intervals of time in which

A= gl X
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3. Erlangization method
Erlang distribution : Y ~Erl(v, L)
»E(Y)=L=T
> Var(Y) =% =17

L
pLgpl—1

» Probability density function : fy(x) = We_”“

[l <

451
—L=3
L=10
—L=25
——L=100
L=500

4l

3.5

3k

Figure: Erl (% , L)
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3. Erlangization method

Erlang distribution = Continuous time Markov chain

{o(t) : t e RT}

@ : @ V

infinitesimal generator L x L

-V v

v v
Absorbing
state
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3. Erlangization method
Erlangization method in Markovian fluid queues

Markovian fluid queue {(X(t),¢(t)) : t € RT} }
+

[ Fixed time ~ Erlang Markov chain {¢(t) : t € RT} j
4

[ Erlangized Markovian fluid queue {(X(¢), ®(¢)) : t € RT} J
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3. Erlangization method
Erlangization method in Markovian fluid queues

Markovian fluid queue {(X(t),¢(t)) : t € RT} }
+

[ Fixed time ~ Erlang Markov chain {¢(t) : t € RT} j
4

[ Erlangized Markovian fluid queue {(X(¢), ®(¢)) : t € RT} ]

We construct the fluid queue {(X(t), ®(#)) : t € RT} where

(1) = (p(t),o(1))
= (i,k)
i.e. at time ¢, the phase is 1€ S and ¢ belongs to the k-th stage
of Erlang process k € {1,2,..., L}.

(S. Asmussen, F. Avram, M. Usabel, Erlangian approzimations for finite time ruin
probabilities.)
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3. Erlangization method

Level

0 Time
Phase

4

0 Exp(v) Exp(v) Exp(v) Exp(v) Exp(v) Time
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3. Erlangization method
T is the infinitesimal generator of ()

_ | Ty T4
|2 r ]

and N is the infinitesimal generator of ¢(t)

—v
The generator of ¢(-) is @ and has block-matrices

T,
T,
Qi-=10T4_ =
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3. Erlangization method

Q4 = NRI+IRTy 4 =

i T++ —vl

vl

T++ — vl

vl

Ty —vl |
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3. Erlangization method

i T++ — vl vi 1
T++ —vl
Q4 = NRI+IRTy 4 =
vl
L Ty —vl |
The infinitesimal generator of ®(-) is
NQI+I1T+ IT®T,_ —N1p ® 14
Q= I®T | N@I+I®T _ | -N1,®1_

0 0 | 0
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4. Application
Joint distribution during the period [0, 7]

P mi_nTX(t) >band X(T') > y|X(0) = a,p(0) = 2]

Today : y >a >band i€ St
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4. Application

Case 1 : T ~ Exponential with parameter v

The joint probability of the minimum reached during the expo-
nential horizon and the level reached at the end of the exponential
horizon given the initial level and phase

a i >
P [OglgnTX(t) >b& X(T) >y

is given by the i-th component of the vector

(I — gelab) el <a—b>) =9 (1 — )11 — 1)

Notation

P?[min X(t)>band X(T) >y

denotes P [ming<;<7 X (t) > b and X (T') > y|X(0) = a, p(0) = i
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4. Application

Remark 1 The matrices W, \i', U, U are those of the Erlangized
fluid queue.
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4. Application

Remark 1 The matrices W, \il, U, U are those of the Erlangized
fluid queue.

Remark 2

i [ min_ X (t) > b and X(T) > y]

is equal to

P X(T) > y] — P¢ [OgiélTX(t) <band X(T) > y}

Remark 3

P |:OI§I?§HTX(t) < b} =P[r(b) < T]

where 7(b) = inf{t > 0: X (t) < b}
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4. Application
Computation (keeping track of the phases...)

P? [r(b) < T and X (T = > PY[r(b) < TIPY[X(T) > ]
JES—
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4. Application
Computation (keeping track of the phases...)

P? [r(b) < T and X (T = > PY[r(b) < TIPY[X(T) > ]
JES—

where

Pilr(b) <T] = Plr(b) <T,p(7(b)) = j|X(0) = a,(0) = ]
a—b

- Z Vi (eU( ) ))kj

keS—
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4. Application
Computation (keeping track of the phases...)

P? [r(b) < T and X (T = > PY[r(b) < TIPY[X(T) > ]
JES—
where
PLlr(0) <T] = Plr(b) <T,¢(r(b)) = jlX(0) = a,(0) = ]
- Z Wik (eU(a_b))kj

keS—

and IP’? (X (T) > vy
= PYX(T) > y|X(0) = b,¢(0) = ]

- Y Yy, { O(y-b) }w{(f—qf@)—lu—\m}

uES| vES L

v
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4. Application

Case 2 : T ~ Erlang with parameters v and L

The joint probability of the minimum reached during the Erlang
horizon and the level reached at the end of the exponential horizon
given the initial level and phase

i [ min X (t) > b & X(T) > y]

0<t<T

is given by the i-th component of the vector

S (e o)

k=1
Z\Il(n) Uk=7) (g—b) LZk\IJ(n Lin Um) (y— b )]}
n=1 m=1

withk*=L—-kandm*=L—-k—n—m
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4. Application

ST O OO —S>—>

21/24



4. Application
Computation (keeping track of the phases and the stages...)

P§ [7(b) < T and X(T) > y] =

Z S Py = KJF[X(T) > ylo(7(b)) = K]

k=1jeS_
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4. Application
Computation (keeping track of the phases and the stages...)

P§ [7(b) < T and X(T) > y] =

L
> > Bhlo(r(h) = MBIX(T) > ylé(r(b) = K]

k=1jeS_

where

PG [0(r (b)) = ZZ%( L)

n=11eS_
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4. Application
Computation (keeping track of the phases and the stages...)

P§ [7(b) < T and X(T) > y] =

L
> > Bhlo(r(h) = MBIX(T) > ylé(r(b) = K]

k=1jeS_

where

k
Bhlo(r) =K = D > w ()

n=11eS_
and IP’? [X(T) > y|lo(7(b)) = k] equals

L—k+1L—k—n+1

Z Z Z Z ‘I’]u { o0 (y— b)}w hS)L—k—n,—m+1)

n=1 m=1 ueSy veS4
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4. Application

Recurrence equation

hM = (1 — My~ — gy1)

and for n > 1,

R —1-Y w®ie S w0§0R0
k=1 it jHl=n+2

The i-th component of the vector h(™ is the probability that
the process is above the level y after an Erlang horizon time
period with n stages, given that the process starts in ¢ an
increasing phase, in the level y, i.e.

h{™ = PX(T) > y|X(0) = y, p(0) = ]

for ¢ € Sy and where T ~ Erl(%,n).
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Thanks !

References

1. S. Asmussen, F. Avram, M. Usébel, Erlangian
approzimations for finite time ruin probabilities. ASTIN
Bulletin, 32, 2002

2. A. Badescu, L. Breuer, A. Da Silva Soares, G. Latouche,
M-A.Remiche, D. Stanford, Risk processes analyzed as fluid
queues, Scandinavian Actuarial Journal, 2005

3. G. Latouche, G. Nguyen, The morphing of fluid queues into
Markov-modulated Brownian motion, submitted, 2013

4. L.C.G. Rogers, Fluid models in queueing theory and
Wiener-Hopf factorization of Markov chains, Annals of
Applied Probability, 1994

5. D. Stanford, K. Yu, J. Ren, Erlangian approximation to
finite time ruin probabilities in perturbed risk models,
Scandinavian Actuarial Journal, 2011

24/24



