Markovian fluid queues in ALM
 6th AMaMeF and Banach Center Conference

Sarah DENDIEVEL \& Guy LATOUCHE

Université libre de Bruxelles
June 15, 2013

1. Motivation

Asset and Liability Management

$X(\cdot)$

Figure: $X(t)=\ln \frac{A(t)}{L(t)}$ where $\{A(t)\}_{t \geq 0}$ is the asset process and $\{L(t)\}_{t \geq 0}$ is the liability process

Goal:

$$
\mathbb{P}\left[\min _{0 \leq t \leq \mathcal{T}} X(t) \geq b \text { and } X(\mathcal{T})>y \mid X(0)=a\right]
$$

1. Motivation

- Markov modulated Brownian motion

$$
X(t)=X(0)+\int_{0}^{t} \mu(\varphi(s)) d s+\int_{0}^{t} \sigma^{2}(\varphi(s)) d B(s)
$$

where $B(t)$ is a Brownian motion and where

- $\varphi(s) \in\{1, \ldots, m\}$
- $\mu(\varphi(s)) \in\left\{\mu_{1}, \ldots, \mu_{m}\right\}$
- $\sigma^{2}(\varphi(s)) \in\left\{\sigma_{1}^{2}, \ldots, \sigma_{m}^{2}\right\}$

1. Motivation

- Markov modulated Brownian motion

$$
X(t)=X(0)+\int_{0}^{t} \mu(\varphi(s)) d s+\int_{0}^{t} \sigma^{2}(\varphi(s)) d B(s)
$$

where $B(t)$ is a Brownian motion and where

- $\varphi(s) \in\{1, \ldots, m\}$
- $\mu(\varphi(s)) \in\left\{\mu_{1}, \ldots, \mu_{m}\right\}$
- $\sigma^{2}(\varphi(s)) \in\left\{\sigma_{1}^{2}, \ldots, \sigma_{m}^{2}\right\}$
- Markovian fluid queue (G. Latouche, G. Nguyen, The morphing of fluid
queues into Markov-modulated Brownian motion)

$$
X(t)=X(0)+\int_{0}^{t} \mu(\varphi(s)) d s+\sqrt{\lambda} \int_{0}^{t}(-1)^{\beta(s)} \sigma^{2}(\varphi(s)) d s
$$

where
$-\lambda>0$,
$-\beta(s) \in\{1,2\}$

Outline

\author{

1. Motivation
}
2. Markovian fluid queues
3. Erlangization method
4. Application

2. Markovian fluid queues

2. Markovian fluid queues

Markov process $\left\{(X(t), \varphi(t)): t \in \mathbb{R}^{+}\right\}$

- $X(t) \in \mathbb{R}^{+}$is the continuous level
- $\varphi(t) \in \mathcal{S}$ is the phase : state of a discrete Markov chain with state space $\mathcal{S}=\mathcal{S}_{+} \cup \mathcal{S}_{-}$and infinitesimal generator T,

$$
T=\left[\begin{array}{ll}
T_{++} & T_{+-} \\
T_{-+} & T_{--}
\end{array}\right]
$$

where $T_{++}: \mathcal{S}_{+} \rightsquigarrow \mathcal{S}_{+}, T_{+-}: \mathcal{S}_{+} \rightsquigarrow \mathcal{S}_{-}, T_{-+}: \mathcal{S}_{-} \rightsquigarrow \mathcal{S}_{+}$, $T_{--}: \mathcal{S}_{-} \rightsquigarrow \mathcal{S}_{-}$

Evolution of the level, varies linearly according to the phase

$$
X(t)=X(0)+\int_{0}^{t} c_{\varphi(s)} d s
$$

Matrix of the rates

$$
C=\operatorname{diag}\left(c_{i}: i \in \mathcal{S}\right)
$$

2. Markovian fluid queues

The matrix Ψ of the first return probability

$$
\Psi_{i j}=\mathbb{P}[\theta(0)<\infty, \varphi(\theta(0))=j \mid X(0)=0, \varphi(0)=i]
$$

where $i \in \mathcal{S}_{+}, j \in \mathcal{S}_{-}$and $\theta(0)=\inf \{t>0: X(t)=0\}$
2. Markovian fluid queues

The matrix Ψ of the first return probability Level

$$
\Psi_{i j}=\mathbb{P}[\theta(0)<\infty, \varphi(\theta(0))=j \mid X(0)=0, \varphi(0)=i]
$$

where $i \in \mathcal{S}_{+}, j \in \mathcal{S}_{-}$and $\theta(0)=\inf \{t>0: X(t)=0\}$

$$
\hat{\Psi}_{i j}=\mathbb{P}[\theta(0)<\infty, \varphi(\theta(0))=j \mid X(0)=0, \varphi(0)=i]
$$

where $i \in \mathcal{S}_{-}, j \in \mathcal{S}_{+}$

2. Markovian fluid queues

Theorem

The matrix Ψ of first return probabilities is the solution of the Riccati equation

$$
C_{+}^{-1} T_{++} \Psi+C_{+}^{-1} T_{+-}+\Psi\left|C_{-}^{-1}\right| T_{--}+\Psi\left|C_{-}^{-1}\right| T_{-+} \Psi=0
$$

where $C_{+}=\operatorname{diag}\left(c_{i}: i \in \mathcal{S}_{+}\right)$and $C_{-}=\operatorname{diag}\left(c_{i}: i \in \mathcal{S}_{-}\right)$
(L.C.G. Rogers, Fluid models in queueing theory and Wiener-Hopf factorization of Markov chains)

2. Markovian fluid queues

Theorem

The matrix Ψ of first return probabilities is the solution of the Riccati equation

$$
C_{+}^{-1} T_{++} \Psi+C_{+}^{-1} T_{+-}+\Psi\left|C_{-}^{-1}\right| T_{--}+\Psi\left|C_{-}^{-1}\right| T_{-+} \Psi=0
$$

where $C_{+}=\operatorname{diag}\left(c_{i}: i \in \mathcal{S}_{+}\right)$and $C_{-}=\operatorname{diag}\left(c_{i}: i \in \mathcal{S}_{-}\right)$
(L.C.G. Rogers, Fluid models in queueing theory and Wiener-Hopf factorization of Markov chains)

Similar equation for the matrix $\hat{\Psi}$

2. Markovian fluid queues

The matrix $U=\left|C_{-}^{-1}\right| T_{--}+\left|C_{-}^{-1}\right| T_{-+} \Psi$

U is the infinitisimal generator of the process observed only during those intervals of time in which

$$
X(t)=\min _{0 \leq u \leq t} X(u)
$$

3. Erlangization method

Erlang distribution : $Y \sim \operatorname{Erl}(\nu, L)$

- $\mathbb{E}(Y)=\frac{L}{\nu}=\mathcal{T}$
- $\operatorname{Var}(Y)=\frac{L}{\nu^{2}}=\frac{\mathcal{T}^{2}}{L}$
- Probability density function : $f_{Y}(x)=\frac{\nu^{L} x^{L-1}}{(L-1)!} e^{-\nu x}$

Figure: $\operatorname{Erl}\left(\frac{L}{2}, L\right)$
3. Erlangization method

Erlang distribution \rightrightarrows Continuous time Markov chain $\left\{\phi(t): t \in \mathbb{R}^{+}\right\}$

infinitesimal generator $L \times L$

$$
N=\left[\begin{array}{ccccc}
-\nu & \nu & & & \\
& -\nu & \ddots & & \\
& & \ddots & & \\
& & & -\nu & \nu \\
& & & & -\nu
\end{array}\right]
$$

3. Erlangization method

Erlangization method in Markovian fluid queues
Markovian fluid queue $\left\{(X(t), \varphi(t)): t \in \mathbb{R}^{+}\right\}$
$+$
Fixed time \sim Erlang Markov chain $\left\{\phi(t): t \in \mathbb{R}^{+}\right\}$
\Downarrow
Erlangized Markovian fluid queue $\left\{(X(t), \Phi(t)): t \in \mathbb{R}^{+}\right\}$

3. Erlangization method

Erlangization method in Markovian fluid queues
Markovian fluid queue $\left\{(X(t), \varphi(t)): t \in \mathbb{R}^{+}\right\}$
$+$
Fixed time \sim Erlang Markov chain $\left\{\phi(t): t \in \mathbb{R}^{+}\right\}$
\Downarrow
Erlangized Markovian fluid queue $\left\{(X(t), \Phi(t)): t \in \mathbb{R}^{+}\right\}$

We construct the fluid queue $\left\{(X(t), \Phi(t)): t \in \mathbb{R}^{+}\right\}$where

$$
\begin{aligned}
\Phi(t) & =(\varphi(t), \phi(t)) \\
& =(i, k)
\end{aligned}
$$

i.e. at time t, the phase is $i \in \mathcal{S}$ and t belongs to the k-th stage of Erlang process $k \in\{1,2, \ldots, L\}$.
(S. Asmussen, F. Avram, M. Usábel, Erlangian approximations for finite time ruin probabilities.)
3. Erlangization method

Phase

3. Erlangization method

T is the infinitesimal generator of $\varphi(t)$

$$
T=\left[\begin{array}{ll}
T_{++} & T_{+-} \\
T_{-+} & T_{--}
\end{array}\right]
$$

and N is the infinitesimal generator of $\phi(t)$

$$
N=\left[\begin{array}{cccc}
-\nu & \nu & & \\
& -\nu & \ddots & \\
& & \ddots & \\
& & & -\nu
\end{array}\right]
$$

The generator of $\Phi(\cdot)$ is Q and has block-matrices

$$
Q_{+-}=I \otimes T_{+-}=\left[\begin{array}{llll}
T_{+-} & & & \\
& T_{+-} & & \\
& & \ddots & \\
& & & T_{+-}
\end{array}\right]
$$

3. Erlangization method

$$
\left[\begin{array}{c|c|c|c}
T_{++}-\nu I & \nu I & & \\
\hline & T_{++}-\nu I & & \\
\hline & & \ddots & \\
& & & \\
\hline & & & \nu I \\
\hline & & & T_{++}-\nu I
\end{array}\right]
$$

3. Erlangization method

$$
Q_{++}=N \otimes I+I \otimes T_{++}=\left[\begin{array}{c|c|c|c}
T_{++}-\nu I & \nu I & & \\
\hline & T_{++}-\nu I & & \\
\hline & & \ddots & \\
& & & \\
\hline & & & \nu I \\
\hline & & & T_{++}-\nu I
\end{array}\right]
$$

The infinitesimal generator of $\Phi(\cdot)$ is

$$
Q=\left[\begin{array}{cc|c}
N \otimes I+I \otimes T_{++} & I \otimes T_{+-} & -N \mathbf{1}_{L} \otimes \mathbf{1}_{+} \\
I \otimes T_{-+} & N \otimes I+I \otimes T_{--} & -N \mathbf{1}_{L} \otimes \mathbf{1}_{-} \\
\hline 0 & 0 & 0
\end{array}\right]
$$

4. Application

Joint distribution during the period $[0, T]$

$$
\mathbb{P}\left[\min _{0 \leq t \leq T} X(t) \geq b \text { and } X(T)>y \mid X(0)=a, \varphi(0)=i\right]
$$

Today : $y>a>b$ and $i \in \mathcal{S}_{+}$

4. Application

Case 1: $T \sim$ Exponential with parameter ν
The joint probability of the minimum reached during the exponential horizon and the level reached at the end of the exponential horizon given the initial level and phase

$$
\mathbb{P}_{i}^{a}\left[\min _{0 \leq t \leq T} X(t) \geq b \& X(T)>y\right]
$$

is given by the i-th component of the vector

$$
\left(I-\Psi e^{U(a-b)} \hat{\Psi} e^{\hat{U}(a-b)}\right) e^{\hat{U}(y-a)}(I-\Psi \hat{\Psi})^{-1}(\mathbf{1}-\Psi \mathbf{1})
$$

Notation

$$
\mathbb{P}_{i}^{a}\left[\min _{0 \leq t \leq T} X(t) \geq b \text { and } X(T)>y\right]
$$

denotes $\mathbb{P}\left[\min _{0 \leq t \leq T} X(t) \geq b\right.$ and $\left.X(T)>y \mid X(0)=a, \varphi(0)=i\right]$

4. Application

Remark 1 The matrices $\Psi, \hat{\Psi}, U, \hat{U}$ are those of the Erlangized fluid queue.

4. Application

Remark 1 The matrices $\Psi, \hat{\Psi}, U, \hat{U}$ are those of the Erlangized fluid queue.

Remark 2

$$
\mathbb{P}_{i}^{a}\left[\min _{0 \leq t \leq T} X(t) \geq b \text { and } X(T)>y\right]
$$

is equal to

$$
\mathbb{P}_{i}^{a}[X(T)>y]-\mathbb{P}_{i}^{a}\left[\min _{0 \leq t \leq T} X(t)<b \text { and } X(T)>y\right]
$$

4. Application

Remark 1 The matrices $\Psi, \hat{\Psi}, U, \hat{U}$ are those of the Erlangized fluid queue.

Remark 2

$$
\mathbb{P}_{i}^{a}\left[\min _{0 \leq t \leq T} X(t) \geq b \text { and } X(T)>y\right]
$$

is equal to

$$
\mathbb{P}_{i}^{a}[X(T)>y]-\mathbb{P}_{i}^{a}\left[\min _{0 \leq t \leq T} X(t)<b \text { and } X(T)>y\right]
$$

Remark 3

$$
\mathbb{P}\left[\min _{0 \leq t \leq T} X(t)<b\right]=\mathbb{P}[\tau(b)<T]
$$

where $\tau(b)=\inf \{t>0: X(t)<b\}$

4. Application

Computation (keeping track of the phases...)

$$
\mathbb{P}_{i}^{a}[\tau(b)<T \text { and } X(T)>y]=\sum_{j \in \mathcal{S}_{-}} \mathbb{P}_{i j}^{a}[\tau(b)<T] \mathbb{P}_{j}^{b}[X(T)>y]
$$

4. Application

Computation (keeping track of the phases...)

$$
\mathbb{P}_{i}^{a}[\tau(b)<T \text { and } X(T)>y]=\sum_{j \in \mathcal{S}_{-}} \mathbb{P}_{i j}^{a}[\tau(b)<T] \mathbb{P}_{j}^{b}[X(T)>y]
$$

where

$$
\begin{aligned}
\mathbb{P}_{i j}^{a}[\tau(b)<T] & =\mathbb{P}[\tau(b)<T, \varphi(\tau(b))=j \mid X(0)=a, \varphi(0)=i] \\
& =\sum_{k \in \mathcal{S}_{-}} \Psi_{i k}\left(e^{U(a-b)}\right)_{k j}
\end{aligned}
$$

4. Application

Computation (keeping track of the phases...)

$$
\mathbb{P}_{i}^{a}[\tau(b)<T \text { and } X(T)>y]=\sum_{j \in \mathcal{S}_{-}} \mathbb{P}_{i j}^{a}[\tau(b)<T] \mathbb{P}_{j}^{b}[X(T)>y]
$$

where

$$
\begin{aligned}
& \begin{aligned}
& \mathbb{P}_{i j}^{a}[\tau(b)<T]=\mathbb{P}[\tau(b)<T, \varphi(\tau(b))=j \mid X(0)=a, \varphi(0)=i] \\
&=\sum_{k \in \mathcal{S}_{-}} \Psi_{i k}\left(e^{U(a-b)}\right)_{k j} \\
& \text { and } \mathbb{P}_{j}^{b}[X(T)>y] \\
& \quad=\mathbb{P}_{j}^{b}[X(T)>y \mid X(0)=b, \varphi(0)=j] \\
& \quad=\sum_{u \in \mathcal{S}_{+}} \sum_{v \in \mathcal{S}_{+}} \hat{\Psi}_{j u}\left\{e^{\hat{U}(y-b)}\right\}_{u v}\left\{(I-\Psi \hat{\Psi})^{-1}(\mathbf{1}-\Psi \mathbf{1})\right\}_{v}
\end{aligned} .
\end{aligned}
$$

4. Application

Case 2: $T \sim$ Erlang with parameters ν and L
The joint probability of the minimum reached during the Erlang horizon and the level reached at the end of the exponential horizon given the initial level and phase

$$
\mathbb{P}_{i}^{a}\left[\min _{0 \leq t \leq T} X(t) \geq b \& X(T)>y\right]
$$

is given by the i-th component of the vector

$$
\begin{gathered}
\sum_{k=1}^{L}\left\{e^{U^{(k)}(y-a)} \boldsymbol{h}^{\left(k^{*}\right)}\right\} \\
-\sum_{k=1}^{L}\left\{\left[\sum_{n=1}^{k} \Psi^{(n)} e^{U^{(k-n)}(a-b)}\right]\left[\sum_{n=1}^{L-k} \hat{\Psi}^{(n)} \sum_{m=1}^{L-k-n} e^{\hat{U}^{(m)}(y-b)} \boldsymbol{h}^{\left(m^{*}\right)}\right]\right\}
\end{gathered}
$$

with $k^{*}=L-k$ and $m^{*}=L-k-n-m$

4. Application

4. Application

Computation (keeping track of the phases and the stages...)
$\mathbb{P}_{i}^{a}[\tau(b)<T$ and $X(T)>y]=$

$$
\sum_{k=1}^{L} \sum_{j \in \mathcal{S}_{-}} \mathbb{P}_{i j}^{a}[\phi(\tau(b))=k] \mathbb{P}_{j}^{b}[X(T)>y \mid \phi(\tau(b))=k]
$$

4. Application

Computation (keeping track of the phases and the stages...)
$\mathbb{P}_{i}^{a}[\tau(b)<T$ and $X(T)>y]=$

$$
\sum_{k=1}^{L} \sum_{j \in \mathcal{S}_{-}} \mathbb{P}_{i j}^{a}[\phi(\tau(b))=k] \mathbb{P}_{j}^{b}[X(T)>y \mid \phi(\tau(b))=k]
$$

where

$$
\mathbb{P}_{i j}^{a}[\phi(\tau(b))=k]=\sum_{n=1}^{k} \sum_{l \in \mathcal{S}_{-}} \Psi_{i l}^{(n)}\left(e^{U^{(k-n+1)}(a-b)}\right)_{l j}
$$

4. Application

Computation (keeping track of the phases and the stages...)
$\mathbb{P}_{i}^{a}[\tau(b)<T$ and $X(T)>y]=$

$$
\sum_{k=1}^{L} \sum_{j \in \mathcal{S}_{-}} \mathbb{P}_{i j}^{a}[\phi(\tau(b))=k] \mathbb{P}_{j}^{b}[X(T)>y \mid \phi(\tau(b))=k]
$$

where

$$
\mathbb{P}_{i j}^{a}[\phi(\tau(b))=k]=\sum_{n=1}^{k} \sum_{l \in \mathcal{S}_{-}} \Psi_{i l}^{(n)}\left(e^{U^{(k-n+1)}(a-b)}\right)_{l j}
$$

and $\mathbb{P}_{j}^{b}[X(T)>y \mid \phi(\tau(b))=k]$ equals

$$
\sum_{n=1}^{L-k+1 L-k-n+1} \sum_{m=1} \sum_{u \in \mathcal{S}_{+}} \sum_{v \in \mathcal{S}_{+}} \hat{\Psi}_{j u}^{(n)}\left\{e^{\hat{U}^{(m)}(y-b)}\right\}_{u v} \boldsymbol{h}_{v}^{(L-k-n-m+1)}
$$

4. Application

Recurrence equation

$$
\boldsymbol{h}^{(\mathbf{1})}=\left(I-\Psi^{(1)} \hat{\Psi}^{(1)}\right)^{-1}\left(\mathbf{1}-\Psi^{(1)} \mathbf{1}\right)
$$

and for $n>1$,

$$
\boldsymbol{h}^{(n)}=\mathbf{1}-\sum_{k=1}^{n} \Psi^{(k)} \mathbf{1}+\sum_{i+j+l=n+2} \Psi^{(i)} \hat{\Psi}^{(j)} \boldsymbol{h}^{(l)}
$$

The i-th component of the vector $\boldsymbol{h}^{(n)}$ is the probability that the process is above the level y after an Erlang horizon time period with n stages, given that the process starts in i an increasing phase, in the level y, i.e.

$$
\boldsymbol{h}_{\boldsymbol{i}}^{(\boldsymbol{n})}=\mathbb{P}[X(T)>y \mid X(0)=y, \varphi(0)=i]
$$

for $i \in S_{+}$and where $T \sim \operatorname{Erl}\left(\frac{n}{\mathcal{T}}, n\right)$.

Thanks!

References

1. S. Asmussen, F. Avram, M. Usábel, Erlangian approximations for finite time ruin probabilities. ASTIN Bulletin, 32, 2002
2. A. Badescu, L. Breuer, A. Da Silva Soares, G. Latouche, M-A.Remiche, D. Stanford, Risk processes analyzed as fluid queues, Scandinavian Actuarial Journal, 2005
3. G. Latouche, G. Nguyen, The morphing of fluid queues into Markov-modulated Brownian motion, submitted, 2013
4. L.C.G. Rogers, Fluid models in queueing theory and Wiener-Hopf factorization of Markov chains, Annals of Applied Probability, 1994
5. D. Stanford, K. Yu, J. Ren, Erlangian approximation to finite time ruin probabilities in perturbed risk models, Scandinavian Actuarial Journal, 2011
