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Risk measures

1 Risk measures can be used to derive capital requirements in
order to quantify risks associated with positions in financial
and insurance markets.

2 The coherent risk measures form an important class, first
introduced in Artzner et al. (1997) [2] (e.g. expected
shortfall, or also called average value-at-risk).

3 As it is interesting to deal with partial information, conditional
risk measures arise.

4 Given a filtration, the theory of conditional risk measures can
be used to consider the evaluation of risk over time which
leads to dynamic risk measures.
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Our setup throughout the presentation

(a) Given a probability space (Ω,F ,P) with sub-σ-algebra G ⊂ F .

(b) X and Y are F-measurable losses/gains where losses are
positive.

(c) Given a G-measurable level δ with 0 ≤ δ ≤ 1 a.s.

(d) We use a general version of conditional expectation based on
r.v. which are σ-integrable w.r.t. G (He et al. [5, Chapter I.4]).

Definition (Conditional risk measure)

A map ρ: L0(P)→ LG,0(P) which is normalised, translation (or
cash) invariant and monotone is called a conditional risk measure
where L0(P) and LG,0(P) denote the equivalence classes of all F-
and G-measurable real-valued r.v.
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G-measurable upper envelope

Definition

For X define XG as the G-measurable upper envelope of X , i.e., as
the essential infimum of all G-measurable r.v. Z : Ω→ R ∪ {∞}
satisfying P(X ≤ Z ) = 1.

Properties (among others):

(a) XG is G-measurable and satisfies XG ≥ X a.s.

(b) If X is G-measurable, then XG = X a.s.

(c) If X ≤ Y a.s., then XG ≤ Y G a.s.

(d) (X + Y )G ≤ XG + Y G a.s.

(e) If X ,Y ≥ 0 a.s., then (X Y )G ≤ XGY G a.s.

(f) If Z is G-measurable, then (X + Z )G = XG + Z a.s.

(g) If Z ≥ 0 is G-measurable, then (X Z )G = XGZ a.s.
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Properties of the upper envelope

Lemma

The upper envelope XG is a coherent conditional risk measure.

Lemma

Given a filtration {Ft}t∈[0,∞). Then, the upper envelope is
time-consistent, i.e., for any two stopping times σ and τ with
σ ≤ τ a.s., we have that XFτ ≤ Y Fτ a.s. implies XFσ ≤ Y Fσ a.s.
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Definition of conditional lower quantiles

Definition

Define the lower δ-quantile qG,δ(X ) of X given G as the essential
infimum of all G-measurable r.v. Z : Ω→ R ∪ {∞} satisfying
P(X ≤ Z |G) ≥ δ a.s.

Remarks

(a) Usually δ = 0.9, 0.95, 0.995, . . . .

(b) Since the level of risk aversion depends on previous
developments in the market, δ can be chosen G-measurable.

(c) qG,0(X ) = −∞ and qG,1(X ) = XG , both a.s.

(d) qG,δ(X ) is G-measurable and satisfies P(qG,δ(X ) ≥ X |G)
a.s.
≥ δ.

(e) For trivial G, the definition above corresponds to usual lower
quantiles.
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Conditional stochastic order

Definition

(a) First order conditional stochastic dominance: If
E[h(X )|G] ≤ E[h(Y ) |G] a.s., for all increasing functions
h: R→ R such that h(X )− and h(Y )− are σ-integrable
w.r.t. G, then we define X ≺SD(1,G) Y .

(b) Second order conditional stochastic dominance: If
E[h(X )|G] ≤ E[h(Y ) |G] a.s., for all increasing and convex
functions h: R→ R such that h(X )− and h(Y )− are
σ-integrable w.r.t. G, then we define X ≺SD(2,G) Y .
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Conditional comonotonicity

Definition

X and Y are conditionally comonotonic w.r.t. G if
P(X ≤ x ,Y ≤ y |G) = min

{
P(X ≤ x |G),P(Y ≤ y |G)

}
a.s., for

all x , y ∈ R.

Remarks

(a) For trivial G the definition corresponds to the definition of
comonotonicity.

(b) We avoid a definition via conditional distributions and
corresponding transition kernels since their existence heavily
depends on the structure of (Ω,F).
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Properties of conditional lower quantiles I

Lemma

Let {δt}t∈[0,∞) be a G-measurable [0, 1]-valued process with
left-continuous and increasing paths. Then, there exists a version
of {qG,δt (X )}t∈[0,∞) with left-continuous and increasing paths.

Remark: From now on we always use this ‘nice’ version of
conditional lower quantiles.
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Properties of conditional lower quantiles II

Lemma

Let Z be a G-measurable real-valued r.v. Then, conditional lower
quantiles satisfy the following conditional properties:

(a) Positive homogeneity: If Z ≥ 0 a.s., then
qG,δ(Z X ) = Z qG,δ(X ) a.s.

(b) Translation (or cash) invariance: qG,δ(X + Z )
a.s.
= qG,δ(X ) + Z .

(c) Comonotonic additivity: If X and Y are conditionally

comonotonic w.r.t. G, then qG,δ(X + Y )
a.s.
= qG,δ(X ) + qG,δ(Y ).

(d) Monotonicity: If X ≺SD(1,G) Y , then qG,δ(X ) ≤ qG,δ(Y ) a.s.

(e) Law-invariance: If E[f (X )|G] = E[f (Y ) |G] a.s., for all

bounded and continuous f : R→ R, then qG,δ(X )
a.s.
= qG,δ(Y ).

J. Hirz (with K. Hirhager and U. Schmock) Conditional Risk Measures and Risk Capital Allocation 11



Preliminaries
Conditional Expected Shortfall (CES) and Beyond

Conditional Distortion Risk Measures (CDRM)
A Time Series Example

Definition of CES
Properties of CES
Definition of contributions to CES
Properties of contributions to CES

Definition of conditional expected shortfall

Definition

Define fG,δ,X : Ω→ [0, 1] by

fG,δ,X := 1{X>qG,δ(X )} + βG,δ,X1{X=qG,δ(X )}
where βG,δ,X : Ω→ [0, 1] is a G-measurable r.v. satisfying

βG,δ,X
a.s.
=


P(X≤qG,δ(X ) |G)− δ
P(X=qG,δ(X ) |G)

on {P(X = qG,δ(X ) |G) > 0} ,

0 otherwise .

Remark: E[fG,δ,X |G] = 1− δ a.s.
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Definition of conditional expected shortfall (CES)

Definition

Then, CES of X at level δ given G is defined by

ESδ[X |G] =


XG on {δ = 1} ,
1

1−δ E[fG,δ,XX |G] on {δ ∈ (0, 1)} ,

ess infδ′∈(0,1)
1

1−δ′E[fG,δ′,XX |G] otherwise .

Remark: Conditional expected shortfall can be defined using
acceptance sets. Under some continuity condition, conditional
convex risk measures have a robust representation in terms of a
penalty function (cf. Acciaio and Penner [1, Chapters 1.2 and 1.3]).

J. Hirz (with K. Hirhager and U. Schmock) Conditional Risk Measures and Risk Capital Allocation 13



Preliminaries
Conditional Expected Shortfall (CES) and Beyond

Conditional Distortion Risk Measures (CDRM)
A Time Series Example

Definition of CES
Properties of CES
Definition of contributions to CES
Properties of contributions to CES

Conditional optimality of fG,δ,X

Definition

Let Y ≥ 0 a.s. and assume that Y is σ-integrable with respect to
G. Define

FY
G,δ,X :=

{
f : Ω→ [0, 1]

∣∣f is F-measurable and

E[f Y |G] = E[fG,δ,X Y |G] a.s.
}
,

where fG,δ,X is defined as before.

Lemma

If 1{δ=0}X− and Y ≥ 0 are σ-integrable w.r.t. G, then
E[fG,δ,XX Y |G] is well-defined and

ess sup
f ∈FY

G,δ,X

E[f X Y |G] = E[fG,δ,XX Y |G] a.s.
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Additional definitions

Definition

Let 0 < δ < 1 a.s. Then, define

FG,δ :=
{

f : Ω→ [0,∞)
∣∣∣ E[f |G] = 1 a.s., f ≤ 1

1− δ
a.s.
}

and

FG,δ,X :=
{

f ∈ FG,δ
∣∣E[X+f |G] <∞ a.s. or E[X−f |G] <∞ a.s.

}
.

Remark: The definitions above are similar as in Schmock [7].
Note that, for H ⊂ G ⊂ F , we have FG,δ ⊂ FH,δ. Further,
FG,δ′ ⊂ FG,δ, for δ′ ≤ δ a.s.
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Quantile representation of conditional expected shortfall

Lemma

Let 0 < δ < 1 a.s. Then, CES at level δ satisfies

ESδ[X |G] =
1

1− δ

∫
[δ,1)

qG,t(X ) dt a.s.

Idea of proof: Let U be uniformly distributed on [0, 1] and
independent of G and show, for δ′ := P(X ≤ qG,δ(X ) |G),∫

[δ,1)
qG,t(X ) dt = E

[
qG,U(X )1{U>δ′}

∣∣G]+ qG,δ(X )(δ′ − δ)

= E
[
X 1{X>qG,δ(X )}

∣∣G]
+ E

[
qG,δ(X )

(
1{X≤qG,δ(X )} − δ

)∣∣G]
J. Hirz (with K. Hirhager and U. Schmock) Conditional Risk Measures and Risk Capital Allocation 16
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Alternative representation of conditional expectation

Corollary

Assume that X− is σ-integrable w.r.t. G. Then,

E[X |G] =

∫
(0,1)

qG,t(X ) dt a.s.
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Properties of conditional expected shortfall I

Lemma

Let Z be a G-measurable real-valued r.v. Then, CES at level δ
satisfies the following conditional properties:

(a) Positive homogeneity: If Z ≥ 0 a.s. is G-measurable, then
ESδ[ZX |G] = Z ESδ[X |G] a.s.

(b) Translation (or cash) invariance: If Z is G-measurable, then
ESδ[X + Z |G] = ESδ[X |G] + Z a.s.

(c) Subadditivity: ESδ[X + Y |G] ≤ ESδ[X |G] + ESδ[Y |G] a.s.,
where ∞−∞ :=∞.

(d) Comonotonic additivity: If X and Y are conditionally
comonotonic w.r.t. G, then
ESδ[X + Y |G] = ESδ[X |G] + ESδ[Y |G] a.s., where
∞−∞ :=∞.
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Properties of conditional expected shortfall II

Lemma (continued)

(e) Monotonicity: If X ≺SD(2,G) Y and if
X 1{δ=1} ≺SD(1,G) Y 1{δ=1}, then ESδ[X |G] ≤ ESδ[Y |G] a.s.

(f) Convexity: If Z is G-measurable with 0 ≤ Z ≤ 1 a.s., then

ESδ[ZX + (1− Z )Y |G]
a.s.
≤ Z ESδ[X |G] + (1− Z ) ESδ[Y |G].

(g) Law-invariance: If E[f (X )|G]
a.s.
= E[f (Y ) |G], for all bounded

and continuous f : R→ R, then ESδ[X |G] = ESδ[Y |G] a.s.

(h) Regularity: If A ∈ G, then X 1A = Y 1A a.s. implies
ESδ[X |G] 1A = ESδ[Y |G] 1A a.s.

(i) Bounds: Define E[X+ |G] /0 =∞, then

qG,δ(X ) ≤ ESδ[X |G] ≤ min
{

XG , E[X
+ |G]

1−δ
}

a.s.
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Properties of conditional expected shortfall III

Lemma (continued)

If in addition 0 < δ < 1 a.s., then:

(j) Scenario representations:

(1) ESδ[X |G ] = 1
1−δ ess supf∈F1

G,δ,X
E[f X |G ] a.s.

(2) ESδ[X |G ] = ess supf∈FG,δ,X
E[f X |G ] a.s.

(3) If either E[X+ |G ] <∞ or E[X− |G ] <∞, then we have
ESδ[X |G ] = ess supf∈FG,δ

E[f X |G ] a.s.

(4) ESδ[X |G ] = ess infZ∈LG,0(P)(Z + 1
1−δ E[(X − Z )+ |G ]) a.s.,

where LG,0(P) denotes the set of all G-measurable real-valued
r.v., Z = qG,δ(X ) takes this essential infimum.

(k) Fatou: Let {Xn}n∈N be a sequence of r.v. bounded from below
by some G-measurable r.v. C . Then, X := lim infn→∞ Xn

satisfies ESδ[X |G] ≤ lim infn→∞ ESδ[Xn |G] a.s.
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Properties of conditional expected shortfall IV

Corollary

Let {δt}t∈[0,∞) be a G-measurable [0, 1]-valued process with
increasing and continuous paths. Then, there exists a version of
{ESδt [X |G]}t∈[0,∞) with increasing and continuous paths on R.

Corollary

Given a filtration F = {Ft}t∈[0,∞) and assume that X is
σ-integrable w.r.t. F0. Let {δt}t∈[0,∞) be a [0, 1]-valued
F-adapted process with decreasing paths. Then,
{ESδt [X |Ft ]}t∈[0,∞) is a supermartingale.
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Remarks on conditional expected shortfall

(a) The properties above imply that CES is a coherent risk
measure (see also [1, Example 1.10]).

(b) In general, CES is not time-consistent. Note that at level
δ = 1, CES is time-consistent, even in a continuous-time
setting.

(c) The second scenario representation is equivalent to the widely
used dual definition of CES.
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Definition of contributions to conditional expected shortfall

Let L0(P) denote the vector space of all F-measurable real-valued
r.v. and let LG,1(P) and L−G,1(P) denote the cone of those

X ∈ L0(P) such that X and X−, resp., are σ-integrable w.r.t. G.

Definition

For a portfolio loss L ∈ L0(P) consider a subportfolio loss
X ∈ L0(P) with X 1{L≥qG,δ(L)}1{δ>0} ∈ L−G,1(P). Then, the CES
contribution of the subportfolio loss X to L at level δ is defined by

ESδ[X , L|G] =


XG on {δ = 1},
1

1−δ E[fG,δ,LX |G] on {δ ∈ (0, 1)},

ess infδ′∈(0,1)
1

1−δ′ E
[
fG,δ′,LX |G

]
otherwise .
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Preliminaries
Conditional Expected Shortfall (CES) and Beyond

Conditional Distortion Risk Measures (CDRM)
A Time Series Example

Definition of CES
Properties of CES
Definition of contributions to CES
Properties of contributions to CES

Properties of contributions to conditional expected
shortfall I

Lemma

Let L,X ,Y ∈ L0(P) with X 1{L≥qG,δ(L)}1{δ>0} ∈ L−G,1(P) and

Y 1{L≥qG,δ(L)}1{δ>0} ∈ L−G,1(P). Then, we get the following
conditional properties:

(a) Consistency with CES: ESδ[L, L|G] = ESδ[L|G].

(b) Diversification: ESδ[X , L|G] ≤ ESδ[X |G] a.s.

(c) Linearity: If Z1,Z2 ≥ 0 a.s. are G-measurable, then
ESδ[Z1X + Z2Y , L|G] = Z1 ESδ[X , L|G] + Z2 ESδ[Y , L|G]
a.s. on {δ < 1}. On {δ = 1} we have ‘≤’ instead.

(d) Translation (or cash) invariance: If Z is G-measurable, then
ESδ[X + Z , L|G] = ESδ[X , L |G] + Z a.s.

J. Hirz (with K. Hirhager and U. Schmock) Conditional Risk Measures and Risk Capital Allocation 24
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Properties of contributions to conditional expected
shortfall II

Lemma (continued)

(e) Monotonicity: If X
a.s.
≤ Y , then ESδ[X , L|G]

a.s.
≤ ESδ[Y , L|G].

(f) Independence: If δ < 1 a.s. and if X and fG,δ,L are
conditionally uncorrelated given G, ESδ[X , L|G] = E[X |G] a.s.

(g) Invariance of portfolio scale: If Z > 0 a.s. is G-measurable,
then ESδ[X ,Z L |G] = ESδ[X , L|G] a.s.

(h) Subportfolio continuity: If δ < 1 a.s. and if Y ∈ LG,1(P), then∣∣ESδ[X , L|G]− ESδ[Y , L|G]
∣∣ ≤ ESδ[|X − Y |, L|G]

≤ E[|X − Y | |G]

1− δ
a.s.
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Preliminaries
Conditional Expected Shortfall (CES) and Beyond

Conditional Distortion Risk Measures (CDRM)
A Time Series Example

Definition of CES
Properties of CES
Definition of contributions to CES
Properties of contributions to CES

Properties of contributions to conditional expected
shortfall III

Lemma (continued)

If in addition X ∈ LG,1(P) and P(L ≤ qG,δ(L) |G) = δ a.s. or if X
is a.s. constant on {L = qG,δ(L)}, then the following holds:

(i) Portfolio continuity: For every sequence {Ln}n∈N ⊂ L0(P)
converging to L in probability,
ESδ[X , L|G] = limn→∞ ESδ[X , Ln |G], in L1.

(j) Representation by directional derivative: Let δ < 1 a.s. Then

ESδ[X , L|G] = limn→∞
ESδ[L+εnX|G ]−ESδ[L|G ]

εn
, in L1, where

εn → 0, as n→∞.
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Definition of conditional distortion risk measures I

Definition

A function g : [0, 1]→ [0, 1] which is increasing and left-continuous
with g(0) = 0 and g(1) = 1, is called distortion function. Define
ḡ(δ) = 1− g(1− δ), for every δ ∈ [0, 1].

Definition

Let Lg ,G(P) denote the set of all F-measurable real-valued r.v. X
with ∫

[0,1]
q−G,δ(X ) ḡ(dδ) <∞ a.s.

J. Hirz (with K. Hirhager and U. Schmock) Conditional Risk Measures and Risk Capital Allocation 27



Preliminaries
Conditional Expected Shortfall (CES) and Beyond

Conditional Distortion Risk Measures (CDRM)
A Time Series Example

Definition of CDRM
Properties of CDRM
Conditional weighted expected shortfall (CWES)
Special case: Conditional beta-weighted expected shortfall

Definition of conditional distortion risk measures II

Definition

Consider a distortion function g and X ∈ Lg ,G(P). Then, we
define the conditional g-distortion risk measure by

ρg [X |G] =

∫
[0,1]

qG,δ(X ) ḡ(dδ) .

Special cases (with deterministic δ ∈ (0, 1)):

(a) Conditional lower quantile: g(t) :=

{
0 for 0 ≤ t ≤ 1− δ ,
1 for 1− δ < t ≤ 1 .

(b) CES: g(t) := min
{

t
1−δ , 1

}
, for t ∈ [0, 1].

Remark: C.f. Dhaene et al. [4] for the unconditional case.

J. Hirz (with K. Hirhager and U. Schmock) Conditional Risk Measures and Risk Capital Allocation 28



Preliminaries
Conditional Expected Shortfall (CES) and Beyond

Conditional Distortion Risk Measures (CDRM)
A Time Series Example

Definition of CDRM
Properties of CDRM
Conditional weighted expected shortfall (CWES)
Special case: Conditional beta-weighted expected shortfall

Properties of conditional distortion risk measures I

Lemma

Given a distortion function g and let X ,Y ∈ Lg ,G(P). Then, we
get the following conditional properties:

(a) Positive homogeneity: If Z ≥ 0 a.s. is G-measurable, then
ρg [Z X |G] = Zρg [X |G] a.s.

(b) Translation (or cash) invariance: If Z is G-measurable, then
ρg [X + Z |G] = ρg [X |G] + Z a.s.

(c) Comonotonic add.: If X and Y are conditionally comonotonic
w.r.t. G, then ρg [X + Y |G] = ρg [X |G] + ρg [Y |G] a.s.

(d) Monotonicity: If X ≺SD(1,G) Y , then ρg [X |G] ≤ ρg [Y |G] a.s.

(e) Monotonicity under concavity: If X ≺SD(2,G) Y and if g is
concave, then ρg [X |G] ≤ ρg [Y |G] a.s.
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Properties of conditional distortion risk measures

Lemma (continued)

(f) Subadditivity: If X + Y ∈ Lg ,G(P) and if g is concave, then
ρg [X + Y |G] ≤ ρg [X |G] + ρg [Y |G] a.s.

(g) Convexity: If Z is G-measurable with 0 ≤ Z ≤ 1 a.s. such that
Z X + (1− Z )Y ∈ Lg ,G(P) and if g is concave, then
ρg [Z X + (1− Z )Y |G] ≤ Z ρg [X |G] + (1− Z )ρg [Y |G] a.s.

(h) Law-invariance: If E[f (X ) |G]
a.s.
= E[f (Y ) |G], for all bounded

and continuous f : R→ R, then ρg [X |G] = ρg [Y |G] a.s.

(i) Alternative representation: ρg [X |G]
a.s.
=
∫
[0,1] qG,1−δ(X ) g(dδ).

(j) Derivative representation: If g is differentiable, then
ρg [X |G] =

∫
[0,1] qG,δ(X ) ḡ ′(δ) dδ a.s.
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Definition of conditional weighted expected shortfall

Definition

Let G : [0, 1]→ [0, 1] be an increasing and right-continuous
function with G (0) = 0 and G (1−) = 1. Let L′G ,G(P) denote the
set of all F-measurable real-valued r.v. X with∫

[0,1]
ES−δ [X |G] G (dδ) <∞ a.s.

Definition

Let X ∈ L′G ,G(P) and let {ESδ[X |G]}δ∈[0,1] denote the version of

CES with continuous paths on R. Then, conditional G -weighted
expected shortfall is defined by

ESG [X |G] =

∫
[0,1]

ESδ[X |G] G (dδ) .
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Conditional weighted expected shortfall as a conditional
distortion risk measure

Lemma

Let X ∈ L′G ,G(P). Then, ESG [X |G] is a CDRM with concave
distortion function

g(u) = 1−
∫
[0,1−u]

∫
[0,t]

G (dδ)

1− δ
dt , u ∈ [0, 1] .
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Properties of conditional weighted expected shortfall I

Lemma

If X ∈ L′G ,G(P), we get the following conditional properties:

(a) Bounds: We have, a.s.,∫
[0,1] qδ,G(X ) G (dδ) ≤ ESG [X |G] ≤ E

[
X+
∣∣G] ∫[0,1] 1

1−δ G (dδ)

(b) Quantile representations:

(1) ESG [X |G ] =
∫
[0,1]

1
1−δ

∫
[δ,1]

qt,G(X ) dt G (dδ) a.s.

(2) ESG [X |G ] =
∫
[0,1]

qt,G(X )
∫
[0,t]

G(dδ)
1−δ dt a.s.

(3) ESG [X |G ] =
∫
[0,1]

qt,G
(
X
∫
[0,t]

G(dδ)
1−δ

)
dt a.s.

(c) Distortion representation: If G is trivial, then
ESG [X |G] = E[Y ] a.s. where Y is a real-valued r.v. with

distribution function ḡ ◦ F , where ḡ(u) :=
∫
[0,u]

∫
[0,t]

G(dδ)
1−δ dt,

for u ∈ [0, 1], and F is the distribution function of X .
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Properties of conditional weighted expected shortfall II

Lemma (continued)

(d) Fatou: Let {Xn}n∈N be a sequence of r.v. bounded from below
by a G-measurable r.v. C . Then, X := lim infn→∞ Xn satisfies
ESG [X |G] ≤ lim infn→∞ ESG [Xn |G] a.s.

(e) Let {Xn}n∈N be a sequence of r.v. bounded from below by
some constant C and converging in probability to a r.v. X .
Then, (d) holds too.
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Special case: Conditional beta-weighted expected shortfall

Definition

Let α, β > −1 with α > β and let G denote a beta distribution
with parameters α− β and β + 1, i.e., the density of G is given by

fG(x) =
1

B(α− β, β + 1)
xα−β−1(1− x)β 1[0,1](x), x ∈ R .

Then, beta-weighted CES is given by

ESα,β[X |G] := ESG [X |G] .

Remark: If G is trivial, then this definition corresponds to
beta-value-at-risk (see Cherny and Madan [3]). In this case, fixing
β = 1 results in the so called alpha-value-at-risk.
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Special case: Conditional beta-weighted expected shortfall

Lemma

Let G be trivial and let α, β ∈ N with β < α. Let (X1, . . . ,Xα) be
a vector of α F-measurable independent, identically distributed
copies of X . Then,

ESα,β[X |G] = E
[

1

β

α∑
i=α−β+1

X(i)

]
where (X(1), . . . ,X(α)) is the order statistic of (X1, . . . ,Xα)
satisfying X(1) ≤ · · · ≤ X(α) a.s.

Remark: For alpha-value-at-risk, i.e. β = 1, we have
ESα,1[X |G] = E[max{X1, . . . ,Xα}]
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A time series example I

Let {Xt}t∈Z be a strictly stationary time series of negative log
returns of a portfolio with dynamics

Xt = µt + σt Zt , t ∈ Z ,
where {Zt}t∈Z are i.i.d. with zero mean, unit variance and
marginal distribution F .
For t ∈ Z, define Gt := σ(Xs , s ≤ t), and assume that µt and
σt > 0 a.s. are measurable w.r.t. Gt−1.
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A time series example II

Calculation of risk measures

Then, for fixed t ∈ Z and Gt−1-measurable level δ, we get:

(a) qδ,Gt−1(Xt) = µt + σt F←(δ) a.s., for t ∈ Z.

(b) ESδ[Xt |Gt−1] = µt + σt ESδ[Zt |Gt−1] a.s. and, on
{0 < δ < 1}, ESδ[Xt |Gt−1] = µt + σt

1−δ
∫
[δ,1) F←(u) du a.s.

(c) The CDRM with distortion function g is given by
ρg [Xt |Gt−1] = µt + σt

∫
[0,1] F←(u) ḡ(du) a.s.

Remark: This example is taken from McNeil and Frey [6]. For
GARCH-type models they provide an estimation procedure for
conditional lower quantiles and conditional expected shortfall.
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A time series example III

Now, consider a similar setup where

Xt = Xt,1 + Xt,2 , t ∈ Z ,
with Xt,i := µt,i + σt,i Zt such that σt,1 > σt,2 > 0 a.s. and µt,i ,
σt,i are Gt−1-measurable, for i = 1, 2 and t ∈ Z.

Calculation of risk measures

Then,

ESδ[Xt |Gt−1] = (µt,1 + µt,2) + (σt,1 + σt,2) ESδ[Zt |Gt−1] a.s.,

The conditional expected shortfall contributions of Xt,i to Xt is
given by

ESδ[Xt,i ,Xt |Gt−1] = µt,i + σt,i ESδ[Zt |Gt−1] a.s., for i = 1, 2 .
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A time series example IV

Alternatively, assume Xt,2 := µt,2 + σt,2 (−Zt).

Calculation of risk measures

Then,

ESδ[Xt |Gt−1] = (µt,1 + µt,2) + (σt,1 − σt,2) ESδ[Zt |Gt−1] a.s.

and of course

ESδ[Xt,1,Xt |Gt−1] = µt,1 + σt,1 ESδ[Zt |Gt−1] a.s.

Note: High sensitivity of conditional expected shortfall
contributions to the underlying dependence structure.
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Thank you for your attention!
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