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Introduction.
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The pricing problem: No short-selling and inside
information.
Analysis of the problem via conjugate duality.
Consequences.
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Topic

Duality methods in mathematical finance: Hot topic!

Duality methods used in:
Pricing problems.
Arbitrage problems.
Utility maximization problems.
Convex risk measures.

Recent work by King, Kramkov and Schachermayer, Pennanen,
and Rogers.
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A main idea of duality

Beginning with a difficult primal optimization problem, derive a
dual problem which gives bounds on the optimal value.
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Conjugate duality

Introduced by Rockafellar (1974).
Let X be a linear space, and f : X → R a function.
Primal problem:

min
x∈X

f (x)

Find function F : X × U → R̄ (where U is a linear space: the
perturbation space) s.t.

f (x) = F (x , 0),

F is called the perturbation function.
Would like to choose U and F s.t. F is a closed, jointly convex
function of x and u.
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Optimal value function and paired spaces

Correspondingly, define the optimal value function

ϕ(u) = inf
x∈X

F (x , u) , u ∈ U.

If the perturbation function F is jointly convex, ϕ(·) is convex
as well.

Pairing of two linear spaces U and Y : A real valued bilinear
form 〈·, ·〉 on U × Y .

Two linear spaces are paired if they have a pairing and
compatible topologies (i.e. locally convex topologies s.t. 〈·, v〉
is continuous, and any continuous linear function on U is of this
form for some y ∈ Y ).
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The Lagrange function and the dual problem

Choose linear space Y paired with U and V paired with X .
Define the Lagrange function K : X × Y → R̄ by

K (x , y) = inf{F (x , u) + 〈u, y〉 : u ∈ U}.

Theorem

If F (x , u) is closed and convex in u, then

f (x) = sup
y∈Y

K (x , y).

Motivated by this, define the dual problem,

max
y∈Y

g(y)

where g(y) := infx∈X K (x , y).
7/24
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Conjugate duality: the dual problem

Hence we have a primal problem

min
x∈X

f (x),

and a corresponding dual problem

max
y∈Y

g(y).

The optimal value of this dual problem gives a lower bound on
the optimal value of the primal problem.

Can sometimes show no duality gap.
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Duality result

Important duality result by Rockafellar:

Theorem

The function g in (D) is closed and concave. Also

sup
y∈Y

g(y) = cl(co(ϕ))(0)

and

inf
x∈X

f (x) = ϕ(0).

The theorem implies: If ϕ is convex, the lower semi-continuity
of ϕ is sufficient for the absence of duality gap.
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The financial market model

Probability space (Ω,F , P).
N + 1 assets: N risky assets, one bond.
Price processes (stochastic): S0(t, ω) (bond),
S1(t, ω), . . . , SN(t, ω).
Assume that the price processes are discounted.
Time: t = 0, 1, . . . , T .
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The seller

Consider a seller in this market, selling a contingent claim: B.

Associated to this seller there is a filtration: (Gt)t .

The prices S are assumed to be adapted to this filtration: Seller
knows prices, and maybe something more.

Note: (Gt)t need not be generated by S : Seller has a general
level of inside information.

Also: Seller not allowed to short sell in asset 1.

(Asset 1 is chosen to simplify notation: Also holds for arbitrary
set of stocks with no short selling.)

11/24
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The seller’s pricing problem

Which price must the seller demand?

inf{v ,H} v
subject to

S(0) · H(0) ≤ v ,

S(T ) · H(T − 1) ≥ B for ω ∈ Ω,

S(t) ·∆H(t) = 0 for 1 ≤ t ≤ T − 1, and for ω ∈ Ω,

H1(t) ≥ 0 for 0 ≤ t ≤ T − 1, and for ω ∈ Ω

where v ∈ R and H is (Gt)t-adapted.

Hence: Minimize the price of the claim s.t. the seller can pay B
at time T from investments in an affordable, self-financing,
predictable portfolio, which does not sell short in asset 1.

12/24
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Deriving the dual problem via conjugate duality

Choose the perturbation function F to be:

F (H, u) := S(0) · H(0); B − S(T ) · H(T − 1) ≤ u1,

S(t) ·∆H(t) = ut
2 ∀ 1 ≤ t ≤ T − 1,

−H1(t) ≤ ut
3 ∀ 0 ≤ t ≤ T − 1,

S(0) · H(0) ≥ u4 and
F (H, u) := ∞ otherwise.

where the inequalities hold a.e. and
u = (u1, (ut

2)
T−1
t=1 , (ut

3)
T−1
t=0 , u4), u ∈ Lp(Ω,F , P : R2T+1)

Get corresponding Lagrange function K (H, y).

13/24
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The dual problem

Also get corresponding dual problem:

sup{y∈Y :y1≥0} E[y1B]

s.t.
(i)

∫
A Si (0)dP =

∫
A y1

2 Si (1)dP,

(i)∗
∫
A S1(0)dP ≥

∫
A y1

2 S1(1)dP,

(ii)
∫
A y t

2Si (t)dP =
∫
A y t+1

2 Si (t + 1)dP,

(ii)∗
∫
A S1(t)y t

2dP ≥
∫
A y t+1

2 S1(t + 1)dP,

(iii)
∫
A yT−1

2 Si (T − 1)dP =
∫
A y1Si (T )dP,

(iii)∗
∫
A yT−1

2 S1(T − 1)dP ≥
∫
A y1S1(T )dP.

where (i), (ii) and (iii) hold for i 6= 1, and (i), (i)∗ are for
A ∈ G0, (ii) and (ii)∗ for A ∈ Gt , t = 1, . . . , T − 2, and (iii),
(iii)∗ for A ∈ GT−1.

14/24
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Rewrite the dual problem

Want to make dual problem more interpretable.

Denote by M̄a
1(S ,G) the set of absolutely continuous

probability measures Q s.t. the prices S0, S2, . . . , SN are
Q-martingales and S1 is a Q-super-martingale (w.r.t. (Gt)t).

Theorem

The dual problem is equivalent to the following optimization
problem.

supQ∈M̄a
1(S ,G) EQ [B].

15/24
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Idea of proof

Show maximizing sets are equivalent.

Use:
Change of measure under conditional expectation.
Radon-Nikodym theorem.
Induction.
Double expectation (tower property).
Martingale/super-martingale definition.

16/24



Convex
duality and
mathemati-

cal
finance

Introduction

Duality
theory

Pricing

Final
comments

Idea of proof

Show maximizing sets are equivalent.

Use:
Change of measure under conditional expectation.
Radon-Nikodym theorem.
Induction.
Double expectation (tower property).
Martingale/super-martingale definition.

16/24



Convex
duality and
mathemati-

cal
finance

Introduction

Duality
theory

Pricing

Final
comments

Strong duality

Would like to prove that there is no duality gap.

Do this via theorem from Pennanen and Perkkiö which
guarantees lower semi-continuity (l.s.c.) of value function.

From duality theorem of Rockafellar (and setup), l.s.c. of value
function implies no duality gap (since we chose the perturbation
function F convex).

Hence value(primal)=value(dual), so the seller’s price of the
contingent claim is

sup
Q∈M̄a

1(S ,G)

EQ [B].
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The price

The previous derivation goes through similarly if there are short
selling constraints on several of the risky assets.

Hence the price of B for a seller who has short selling
constraints on risky assets 1, . . . , k , where k ∈ {1, . . . , N} is

β := supQ∈M̄a
1,...,k (S ,G) EQ [B].

where M̄a
1,...,k(S ,G) is the set of abs. cont. probability

measures Q s.t. the prices S0, Sk+1, . . . , SN are Q-martingales
and S1, . . . , Sk are Q-super-martingales (w.r.t. (Gt)t).

Can also be seen from Kramkov and Föllmer combined with
Pulido, but with different approach.
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Implications

We compare the price offered by a seller with short selling
constraints to that of an unconstrained seller.

Theorem

The difference between the prices offered by the two sellers is

β − supQ∈Me(S ,G) EQ [B] ≥ 0,

where β is defined as above.

Proof.
Use previous result with no shortselling, or see Delbaen and
Schachermayer.
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Implications (continued)

Can also compare the prices offered by two sellers with
different levels of information.

Theorem

Consider two sellers, both with short selling constraints on risky
assets 1, 2, . . . , k. Let their filtrations be denoted by (Gt)t and
(Ht)t respectively. Assume one seller has more information
than the other seller (so, Ht ⊆ Gt for all 0 ≤ t ≤ T). Then the
difference between the prices offered by the two sellers is

sup
Q∈M̄a

1,2,...,k (S ,H)

EQ [B]− sup
Q∈M̄a

1,2,...,k (S ,G)

EQ [B] ≥ 0.
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Implications

In particular, the seller with more information will offer B at a
lower price than the seller with less information.

Idea of proof:
Definitions of martingale/super-martingale.
Double expectation (tower property).

This theorem can give understanding of the origin of price
bubbles in financial markets:

Several buyers believe they have extra information.
Buyers will offer high prices for B.
Hence price of claim increases: Bubble.
If it turns out that the buyers beliefs were wrong, the
bubble bursts.
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Final comments

Goal of presentation: Study how duality methods can be used
to solve a pricing problem.

Conjugate duality method:
Have primal optimization problem: Seller’s pricing
problem.
Define suitable perturbation function F .
Find corresponding Lagrange function K .
Find corresponding dual problem, which gives lower bound
of the primal problem.
Rewrite dual problem so that it can be interpreted.
Show that there is no duality gap (using theorems by
Rockafellar and Pennanen and Perkkiö).

Hope this presentation has illustrated potential for exploiting
duality theory in many other problems in mathematical finance!
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Thank you for your attention!
:-)
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