Convex
duality and
mathemati-
cal
finance

Duality methods for pricing contingent claims

Kristina Rognlien Dahl
Department of Mathematics, University of Oslo

June 10th, AMaMeF 2013

Plan

Convex
duality and
mathemati-
cal
finance

- Introduction.

Introduction
Duality
theory
Pricing
Final
comments

- Conjugate duality. The pricing problem: No short-selling and inside information.

Plan

Convex
duality and

- Introduction.
- Conjugate duality.

The pricing problem: No short-selling and inside information.

Analysis of the problem via conjugate duality.

Plan

- Introduction.
- Conjugate duality.
- The pricing problem: No short-selling and inside information.

Analysis of the problem via conjugate duality.

- Introduction.
- Conjugate duality.
- The pricing problem: No short-selling and inside information.
- Analysis of the problem via conjugate duality.

$2 / 24$

- Introduction.
- Conjugate duality.
- The pricing problem: No short-selling and inside information.
- Analysis of the problem via conjugate duality.
- Consequences.
- Introduction.
- Conjugate duality.
- The pricing problem: No short-selling and inside information.
- Analysis of the problem via conjugate duality.
- Consequences.

Topic

Convex
duality and mathemati-
cal
finance

Introduction

Duality
theory
Pricing
Final
comments

Duality methods in mathematical finance: Hot topic!

Duality methods used in: Pricing problems. Arhitrage prohlems Utility maximization problems. - Convex risk measures.

Recent work by King, Kramkov and Schachermayer, Pennanen and Rogers

Topic

Duality methods in mathematical finance: Hot topic! Duality methods used in:

- Pricing problems.
- Arbitrage problems.
- Utility maximization problems.
- Convex risk measures.

Topic

Convex
duality and mathemati-
cal
finance

Introduction
Duality
theory
Pricing
Final
comments

Duality methods in mathematical finance: Hot topic!
Duality methods used in:

- Pricing problems.
- Arbitrage problems.
- Utility maximization problems.
- Convex risk measures.

Recent work by King, Kramkov and Schachermayer, Pennanen, and Rogers.

Topic

Convex
duality and mathemati-
cal
finance

Introduction
Duality
theory
Pricing
Final
comments

Duality methods in mathematical finance: Hot topic!
Duality methods used in:

- Pricing problems.
- Arbitrage problems.
- Utility maximization problems.
- Convex risk measures.

Recent work by King, Kramkov and Schachermayer, Pennanen, and Rogers.

A main idea of duality

Convex
duality and mathemati-
cal
finance

Introduction

Duality theory

Pricing
Final
comments

Beginning with a difficult primal optimization problem, derive a dual problem which gives bounds on the optimal value.

A main idea of duality

Convex
duality and mathemati-
cal
finance

Introduction

Duality theory

Pricing
Final
comments

Beginning with a difficult primal optimization problem, derive a dual problem which gives bounds on the optimal value.

Conjugate duality

Convex
duality and
mathemati-
cal
finance

Introduction
Duality
theory
Pricing
Final
comments

Introduced by Rockafellar (1974).

Conjugate duality

Convex
duality and mathematical finance

Introduction

Duality theory

Pricing
Final
comments

Introduced by Rockafellar (1974).
Let X be a linear space, and $f: X \rightarrow \mathbb{R}$ a function.

Conjugate duality

Convex
duality and mathematical finance

Introduction

Duality theory

Pricing
Final comments

Introduced by Rockafellar (1974).
Let X be a linear space, and $f: X \rightarrow \mathbb{R}$ a function.
Primal problem:

$$
\min _{x \in X} f(x)
$$

Find function $F: X \times U \rightarrow \mathbb{R}$ (where
perturbation space) s.t.

$$
f(x)=F(x, 0)
$$

F is called the perturbation function
Would like to choose U and F s.t. F is a closed, jointly convex
function of x and u.

Conjugate duality

Convex
duality and mathematical finance

Introduction
Duality theory

Pricing
Final
comments

Introduced by Rockafellar (1974).
Let X be a linear space, and $f: X \rightarrow \mathbb{R}$ a function.
Primal problem:

$$
\min _{x \in X} f(x)
$$

Find function $F: X \times U \rightarrow \overline{\mathbb{R}}$ (where U is a linear space: the perturbation space) s.t.

$$
f(x)=F(x, 0),
$$

F is called the perturbation function.
Would like to choose U and F s.t. F is a closed, jointly convex
function of x and u.

Conjugate duality

Convex
duality and mathematical
finance

Introduction
Duality theory

Pricing
Final comments

Introduced by Rockafellar (1974).
Let X be a linear space, and $f: X \rightarrow \mathbb{R}$ a function.
Primal problem:

$$
\min _{x \in X} f(x)
$$

Find function $F: X \times U \rightarrow \overline{\mathbb{R}}$ (where U is a linear space: the perturbation space) s.t.

$$
f(x)=F(x, 0)
$$

F is called the perturbation function.
Would like to choose U and F s.t. F is a closed, jointly convex function of x and u.

Optimal value function and paired spaces

Convex
duality and mathematical finance

Introduction
Duality theory

Pricing
Final comments

Correspondingly, define the optimal value function

$$
\varphi(u)=\inf _{x \in X} F(x, u), \quad u \in U
$$

If the perturbation function F is jointly convex, $\varphi(\cdot)$ is conve
as well.
Pairing of two linear spaces U and Y : A real valued bilinear
form

Optimal value function and paired spaces

Convex
duality and mathematical finance

Introduction

Duality theory

Pricing
Final comments

Correspondingly, define the optimal value function

$$
\varphi(u)=\inf _{x \in X} F(x, u), \quad u \in U
$$

If the perturbation function F is jointly convex, $\varphi(\cdot)$ is convex as well.

Pairing of two linear spaces U and Y : A real valued bilinear form

Two linear spaces are paired if they have a pairing and compatible topologies (i.e. locally convex topologies s.t is continuous, and any continuous linear function on U is of this form for some $y \in Y$)

Optimal value function and paired spaces

Convex
duality and mathematical
finance

Introduction

Duality theory

Pricing
Final
comments

Correspondingly, define the optimal value function

$$
\varphi(u)=\inf _{x \in X} F(x, u), \quad u \in U
$$

If the perturbation function F is jointly convex, $\varphi(\cdot)$ is convex as well.

Pairing of two linear spaces U and Y : A real valued bilinear form $\langle\cdot, \cdot\rangle$ on $U \times Y$.

Two linear spaces are paired if they have a pairing and compatible topologies (i.e. locally convex topologies s.t is continuous, and any continuous linear function on U is of this form for some $y \in Y$)

Optimal value function and paired spaces

Correspondingly, define the optimal value function

$$
\varphi(u)=\inf _{x \in X} F(x, u), \quad u \in U
$$

If the perturbation function F is jointly convex, $\varphi(\cdot)$ is convex as well.

Pairing of two linear spaces U and Y : A real valued bilinear form $\langle\cdot, \cdot\rangle$ on $U \times Y$.

Two linear spaces are paired if they have a pairing and compatible topologies (i.e. locally convex topologies s.t. $\langle\cdot, v\rangle$ is continuous, and any continuous linear function on U is of this form for some $y \in Y$).

Optimal value function and paired spaces

Correspondingly, define the optimal value function

$$
\varphi(u)=\inf _{x \in X} F(x, u), \quad u \in U
$$

If the perturbation function F is jointly convex, $\varphi(\cdot)$ is convex as well.

Pairing of two linear spaces U and Y : A real valued bilinear form $\langle\cdot, \cdot\rangle$ on $U \times Y$.

Two linear spaces are paired if they have a pairing and compatible topologies (i.e. locally convex topologies s.t. $\langle\cdot, v\rangle$ is continuous, and any continuous linear function on U is of this form for some $y \in Y$).

The Lagrange function and the dual problem

Convex

$$
K(x, y)=\inf \{F(x, u)+\langle u, y\rangle: u \in U\} .
$$

Choose linear space Y paired with U and V paired with X. Define the Lagrange function $K: X \times Y \rightarrow \overline{\mathbb{R}}$ by

[^0]
The Lagrange function and the dual problem

Convex

$$
K(x, y)=\inf \{F(x, u)+\langle u, y\rangle: u \in U\} .
$$

Theorem

If $F(x, u)$ is closed and convex in u, then

$$
f(x)=\sup _{y \in Y} K(x, y) .
$$

Motivated by this, define the

The Lagrange function and the dual problem

Convex

Choose linear space Y paired with U and V paired with X. Define the Lagrange function $K: X \times Y \rightarrow \overline{\mathbb{R}}$ by

$$
K(x, y)=\inf \{F(x, u)+\langle u, y\rangle: u \in U\} .
$$

Theorem

If $F(x, u)$ is closed and convex in u, then

$$
f(x)=\sup _{y \in Y} K(x, y) .
$$

Motivated by this, define the dual problem,

$$
\max _{y \in Y} g(y)
$$

where $g(y):=\inf _{x \in X} K(x, y)$.

The Lagrange function and the dual problem

Convex

Choose linear space Y paired with U and V paired with X. Define the Lagrange function $K: X \times Y \rightarrow \overline{\mathbb{R}}$ by

$$
K(x, y)=\inf \{F(x, u)+\langle u, y\rangle: u \in U\} .
$$

Theorem

If $F(x, u)$ is closed and convex in u, then

$$
f(x)=\sup _{y \in Y} K(x, y) .
$$

Motivated by this, define the dual problem,

$$
\max _{y \in Y} g(y)
$$

where $g(y):=\inf _{x \in X} K(x, y)$.

Conjugate duality: the dual problem

Convex
duality and mathemati-
cal finance

Introduction
Duality theory

Pricing
Final
comments

Hence we have a primal problem

$$
\min _{x \in X} f(x),
$$

and a corresponding dual problem

The optimal value of this dual problem gives a lower bound on
the optimal value of the primal problem.

Conjugate duality: the dual problem

Convex
duality and mathemati-
cal finance

Introduction

Duality theory

Pricing
Final comments

Hence we have a primal problem

$$
\min _{x \in X} f(x)
$$

and a corresponding dual problem

$$
\max _{y \in Y} g(y) .
$$

The optimal value of this dual problem gives a lower bound on
the optimal value of the primal problem
Can sometimes show no duality gap

Conjugate duality: the dual problem

Convex
duality and mathematical finance

Introduction

Duality theory

Pricing
Final comments

Hence we have a primal problem

$$
\min _{x \in X} f(x)
$$

and a corresponding dual problem

$$
\max _{y \in Y} g(y) .
$$

The optimal value of this dual problem gives a lower bound on the optimal value of the primal problem.

Can sometimes show no duality gap.

Conjugate duality: the dual problem

Convex
duality and mathematical
finance

Introduction

Duality theory

Pricing
Final comments

Hence we have a primal problem

$$
\min _{x \in X} f(x)
$$

and a corresponding dual problem

$$
\max _{y \in Y} g(y)
$$

The optimal value of this dual problem gives a lower bound on the optimal value of the primal problem.

Can sometimes show no duality gap.

Duality result

Convex
duality and mathematical
finance

Introduction
Duality theory

Pricing
Final comments

Important duality result by Rockafellar:
Theorem
The function g in (D) is closed and concave. Also

$$
\sup _{y \in Y} g(y)=\operatorname{cl}(\operatorname{co}(\varphi))(0)
$$

and

$$
\inf _{x \in X} f(x)=\varphi(0)
$$

The theorem implies: If φ is convex, the lower semi-continuity of φ is sufficient for the absence of duality gap.

The financial market model

Convex
duality and
mathemati-
cal
finance

- Probability space (Ω, \mathcal{F}, P).

Introduction
Duality
theory
Pricing
Final
comments

The financial market model

Convex
duality and mathemati-
cal finance

- Probability space (Ω, \mathcal{F}, P).
- $N+1$ assets: N risky assets, one bond.

The financial market model

- Probability space (Ω, \mathcal{F}, P).
- $N+1$ assets: N risky assets, one bond.
- Price processes (stochastic): $S_{0}(t, \omega)$ (bond), $S_{1}(t, \omega), \ldots, S_{N}(t, \omega)$.
- Assume that the price processes are discounted.

The financial market model

- Probability space (Ω, \mathcal{F}, P).
- $N+1$ assets: N risky assets, one bond.
- Price processes (stochastic): $S_{0}(t, \omega)$ (bond), $S_{1}(t, \omega), \ldots, S_{N}(t, \omega)$.
- Assume that the price processes are discounted.
- Time: $t=0,1, \ldots, T$.

The financial market model

- Probability space (Ω, \mathcal{F}, P).
- $N+1$ assets: N risky assets, one bond.
- Price processes (stochastic): $S_{0}(t, \omega)$ (bond), $S_{1}(t, \omega), \ldots, S_{N}(t, \omega)$.
- Assume that the price processes are discounted.
- Time: $t=0,1, \ldots, T$.

The seller

Convex
duality and
mathemati-
cal
finance

Introduction
Duality
theory
Pricing
Final
comments

Consider a seller in this market, selling a contingent claim: B. Associated to this seller there is a The prices S are assumed to be adapted to this filtration: Seller knows prices, and mavbe something more

The seller

Convex
duality and
mathemati-
cal
finance
Consider a seller in this market, selling a contingent claim: B. Associated to this seller there is a filtration: $\left(\mathcal{G}_{t}\right)_{t}$.

Introduction
Duality
theory
Pricing
Final
comments

The prices S are assumed to be adapted to this filtration: Seller knows prices, and maybe something more
"'e: (Gt) theed not be generäted by S : Seller has a general level of inside information.

Consider a seller in this market, selling a contingent claim: B. Associated to this seller there is a filtration: $\left(\mathcal{G}_{t}\right)_{t}$.

The prices S are assumed to be adapted to this filtration: Seller knows prices, and maybe something more.

Note: $\left(\mathcal{G}_{t}\right)_{t}$ need not be generated by S : Seller has a general level of inside information.

Also: Seller hot allowed to short sell in asset 1
(Asset 1 is chosen to simplify notation: Also holds for arbitrary set of stocks with no short selling.)

Consider a seller in this market, selling a contingent claim: B. Associated to this seller there is a filtration: $\left(\mathcal{G}_{t}\right)_{t}$.

The prices S are assumed to be adapted to this filtration: Seller knows prices, and maybe something more.

Note: $\left(\mathcal{G}_{t}\right)_{t}$ need not be generated by S : Seller has a general level of inside information.

Also: Seller not allowed
(Asset 1 is chosen to simplify notation: Also holds for arbitrary set of stocks with no short selling.)

Consider a seller in this market, selling a contingent claim: B. Associated to this seller there is a filtration: $\left(\mathcal{G}_{t}\right)_{t}$.

The prices S are assumed to be adapted to this filtration: Seller knows prices, and maybe something more.
Note: $\left(\mathcal{G}_{t}\right)_{t}$ need not be generated by S : Seller has a general level of inside information.

Also: Seller not allowed to short sell in asset 1.
(Asset 1 is chosen to simplify notation: Also holds for arbitrary set of stocks with no short selling.)

The seller's pricing problem

Convex duality and mathematical finance

Introduction
Duality
theory
Pricing
Final
comments

Which price must the seller demand?

where $v \in \mathbb{R}$ and H is $\left(\mathcal{G}_{t}\right)_{t}$-adapted
'lence: Mininnize the price of the claim s.t. the seller can pay B
at time T from investments in an affordable, self-financing,
predictable portfolio, which does not sell short in asset 1

The seller's pricing problem

Convex
duality and mathematical
finance

Introduction
Duality
theory
Pricing
Final
comments

Which price must the seller demand?

$$
\inf _{\{v, H\}} \quad v
$$

subject to

$$
\begin{aligned}
S(0) \cdot H(0) & \leq v, \\
S(T) \cdot H(T-1) & \geq B \quad \text { for } \omega \in \Omega, \\
S(t) \cdot \Delta H(t) & =0 \quad \text { for } 1 \leq t \leq T-1, \quad \text { and for } \omega \in \Omega, \\
H_{1}(t) & \geq 0 \quad \text { for } 0 \leq t \leq T-1, \quad \text { and for } \omega \in \Omega
\end{aligned}
$$

where $v \in \mathbb{R}$ and H is $\left(\mathcal{G}_{t}\right)_{t}$-adapted.
Hence: Minimize the price of the claim s.t. the seller can pay B
at time T from investments in an affordable, self-financing,
predictable portfolio.

The seller's pricing problem

Convex
duality and mathematical
finance

Introduction

Duality
theory
Pricing
Final
comments

Which price must the seller demand?

$$
\inf _{\{v, H\}} \quad v
$$

subject to

$$
\begin{aligned}
S(0) \cdot H(0) & \leq v, \\
S(T) \cdot H(T-1) & \geq B \quad \text { for } \omega \in \Omega, \\
S(t) \cdot \Delta H(t) & =0 \quad \text { for } 1 \leq t \leq T-1, \quad \text { and for } \omega \in \Omega, \\
H_{1}(t) & \geq 0 \quad \text { for } 0 \leq t \leq T-1, \text { and for } \omega \in \Omega
\end{aligned}
$$

where $v \in \mathbb{R}$ and H is $\left(\mathcal{G}_{t}\right)_{t}$-adapted.
Hence: Minimize the price of the claim s.t. the seller can pay B at time T from investments in an affordable, self-financing, predictable portfolio, which does not sell short in asset 1 .

Deriving the dual problem via conjugate duality

Convex

duality and mathematical
finance

Introduction
Duality
theory
Pricing

Choose the perturbation function F to be:

$$
\begin{aligned}
F(H, u):=S(0) \cdot H(0) ; & B-S(T) \cdot H(T-1) \leq u_{1}, \\
& S(t) \cdot \Delta H(t)=u_{2}^{t} \forall 1 \leq t \leq T-1, \\
& -H_{1}(t) \leq u_{3}^{t} \forall 0 \leq t \leq T-1, \\
& S(0) \cdot H(0) \geq u_{4} \text { and }
\end{aligned}
$$

$$
F(H, u):=\infty \quad \text { otherwise. }
$$

where the inequalities hold a.e. and

$$
u=\left(u_{1},\left(u_{2}^{t}\right)_{t=1}^{T-1},\left(u_{3}^{t}\right)_{t=0}^{T-1}, u_{4}\right), u \in \mathcal{L}^{p}\left(\Omega, \mathcal{F}, P: \mathbb{R}^{2 T+1}\right)
$$

Deriving the dual problem via conjugate duality

Convex

duality and mathematical
finance

Introduction
Duality
theory
Pricing

Choose the perturbation function F to be:

$$
\begin{aligned}
F(H, u):=S(0) \cdot H(0) ; & B-S(T) \cdot H(T-1) \leq u_{1}, \\
& S(t) \cdot \Delta H(t)=u_{2}^{t} \forall 1 \leq t \leq T-1, \\
& -H_{1}(t) \leq u_{3}^{t} \forall 0 \leq t \leq T-1, \\
& S(0) \cdot H(0) \geq u_{4} \text { and }
\end{aligned}
$$

$$
F(H, u):=\infty \quad \text { otherwise. }
$$

where the inequalities hold a.e. and
$u=\left(u_{1},\left(u_{2}^{t}\right)_{t=1}^{T-1},\left(u_{3}^{t}\right)_{t=0}^{T-1}, u_{4}\right), u \in \mathcal{L}^{p}\left(\Omega, \mathcal{F}, P: \mathbb{R}^{2 T+1}\right)$
Get corresponding Lagrange function $K(H, y)$.

The dual problem

Convex
duality and mathematical finance

Introduction
Duality
theory
Pricing

Also get corresponding dual problem:
$\sup _{\left\{y \in Y: y_{1} \geq 0\right\}} \quad \mathbb{E}\left[y_{1} B\right]$
s.t.
(i)

$$
\int_{A} S_{i}(0) d P=\int_{A} y_{2}^{1} S_{i}(1) d P
$$

(i)* $\quad \int_{A} S_{1}(0) d P \geq \int_{A} y_{2}^{1} S_{1}(1) d P$,
(ii) $\quad \int_{A} y_{2}^{t} S_{i}(t) d P=\int_{A} y_{2}^{t+1} S_{i}(t+1) d P$,
(ii) $\quad \int_{A} S_{1}(t) y_{2}^{t} d P \geq \int_{A} y_{2}^{t+1} S_{1}(t+1) d P$,
(iii) $\quad \int_{A} y_{2}^{T-1} S_{i}(T-1) d P=\int_{A} y_{1} S_{i}(T) d P$,
(iii) ${ }^{*} \quad \int_{A} y_{2}^{T-1} S_{1}(T-1) d P \geq \int_{A} y_{1} S_{1}(T) d P$.
where (i), (ii) and (iii) hold for $i \neq 1$, and (i), (i)* are for $A \in \mathcal{G}_{0}$, (ii) and (ii)* for $A \in \mathcal{G}_{t}, t=1, \ldots, T-2$, and (iii), (iii)* for $A \in \mathcal{G}_{T-1}$.

Rewrite the dual problem

Want to make dual problem more interpretable.
Denote by $\overline{\mathcal{M}}_{1}^{a}(S, \mathcal{G})$ the set of absolutely continuous probability measures Q s.t. the prices $S_{0}, S_{2}, \ldots, S_{N}$ are Q-martingales and S_{1} is a Q-super-martingale (w.r.t. $\left.\left(\mathcal{G}_{t}\right)_{t}\right)$.

Theorem
The dual problem is equivalent to the following optimization problem.

$$
\sup _{Q \in \overline{\mathcal{M}}_{1}^{a}(S, \mathcal{G})} \mathbb{E}_{Q}[B] .
$$

Idea of proof

Convex
duality and mathemati-
cal
finance
Show maximizing sets are equivalent.

Introduction
Duality
theory
Pricing
Final
comments

Change of measure under conditional expectation.
Dadon-N:Ioodym theoram
Induction
Double axpectation (tower property)

Idea of proof

Convex
duality and
mathemati-
cal
finance

Introduction
Duality
theory
Pricing
Final
comments

Show maximizing sets are equivalent.
Use:

- Change of measure under conditional expectation.
- Radon-Nikodym theorem.
- Induction.
- Double expectation (tower property).
- Martingale/super-martingale definition.

Strong duality

Convex
duality and mathemati-
cal finance

Introduction

Duality
theory
Pricing
Final
comments

Would like to prove that there is no duality gap.
Do this via theorem from Pennanen and Perkkiö which guarantees lower semi-continuity (l.s.c.) of value function From duality theorem of Rockafellar (and setup), function implies no duality gap (since we chose the perturbation function F convex)

Strong duality

Convex
duality and mathematical
finance

Introduction

Duality
theory
Pricing
Final
comments

Would like to prove that there is no duality gap.
Do this via theorem from Pennanen and Perkkiö which guarantees lower semi-continuity (l.s.c.) of value function.

From duality theorem of Rockafellar (and setup) function implies no duality gap (since we chose the perturbation function F convex)

Hence value(primal)=value(dual), so the contingent claim is

Strong duality

Would like to prove that there is no duality gap.
Do this via theorem from Pennanen and Perkkiö which guarantees lower semi-continuity (l.s.c.) of value function.

From duality theorem of Rockafellar (and setup), I.s.c. of value function implies no duality gap (since we chose the perturbation function F convex).

Hence value(primal)=value(dual), so the seller's price of the contingent claim is

Strong duality

Would like to prove that there is no duality gap.
Do this via theorem from Pennanen and Perkkiö which guarantees lower semi-continuity (l.s.c.) of value function.
From duality theorem of Rockafellar (and setup), I.s.c. of value function implies no duality gap (since we chose the perturbation function F convex).
Hence value(primal)=value(dual), so the seller's price of the contingent claim is

$$
\sup _{Q \in \overline{\mathcal{M}}_{1}^{a}(S, \mathcal{G})} \mathbb{E}_{Q}[B] .
$$

The price

Convex
duality and mathemati-
cal
finance

The previous derivation goes through similarly if there are short selling constraints on several of the risky assets.

Introduction

Duality
theory
Pricing
Final
comments
ming

The price

The previous derivation goes through similarly if there are short selling constraints on several of the risky assets.

Hence the price of B for a seller who has short selling constraints on risky assets $1, \ldots, k$, where $k \in\{1, \ldots, N\}$ is

$$
\beta:=\sup _{Q \in \overline{\mathcal{M}}_{1, \ldots, k}^{a}}(S, \mathcal{G}) \mathbb{E}_{Q}[B] .
$$

where $\overline{\mathcal{M}}_{1, \ldots, k}^{a}(S, \mathcal{G})$ is the set of abs. cont. probability measures Q s.t. the prices $S_{0}, S_{k+1}, \ldots, S_{N}$ are Q-martingales and S_{1}, \ldots, S_{k} are Q-super-martingales (w.r.t. $\left.\left(\mathcal{G}_{t}\right)_{t}\right)$.

Can also be seen from Kramkov anc
Pulido, but with different approach.

The price

The previous derivation goes through similarly if there are short selling constraints on several of the risky assets.

Hence the price of B for a seller who has short selling constraints on risky assets $1, \ldots, k$, where $k \in\{1, \ldots, N\}$ is

$$
\beta:=\sup _{Q \in \overline{\mathcal{M}}_{1, \ldots, k}^{a}}(S, \mathcal{G}) \mathbb{E}_{Q}[B] .
$$

where $\overline{\mathcal{M}}_{1, \ldots, k}^{a}(S, \mathcal{G})$ is the set of abs. cont. probability measures Q s.t. the prices $S_{0}, S_{k+1}, \ldots, S_{N}$ are Q-martingales and S_{1}, \ldots, S_{k} are Q-super-martingales (w.r.t. $\left.\left(\mathcal{G}_{t}\right)_{t}\right)$.

Can also be seen from Kramkov and Föllmer combined with Pulido, but with different approach.

Implications

Convex
duality and mathemati-
cal
finance

Introduction
Duality
theory
Pricing
Final
comments

We compare the price offered by a seller with short selling constraints to that of an unconstrained seller.

Implications

We compare the price offered by a seller with short selling constraints to that of an unconstrained seller.

Theorem
The difference between the prices offered by the two sellers is

$$
\beta-\sup _{Q \in \mathcal{M}^{e}(S, \mathcal{G})} \mathbb{E}_{Q}[B] \geq 0
$$

where β is defined as above.

Proof.
Use previous result with no shortselling, or see Delbaen and Schachermayer.

Implications (continued)

Convex
duality and mathemati-
cal finance

Introduction
Duality
theory
Pricing
Final
comments

Can also compare the prices offered by two sellers with different levels of information.

Consider two sellers, both with short selling constraints on risky assets $1,2, \ldots, k$. Let their filtrations be denoted by $\left(\mathcal{G}_{+}\right)_{+}$and $\left(\mathcal{H}_{t}\right)_{t}$ respectively. Assume one seller has more information than the other seller (so, $\mathcal{H}_{t} \subseteq \mathcal{G}_{t}$ for all $0 \leq t \leq T$). Then the difference between the prices offered by the two sellers is

Implications (continued)

Can also compare the prices offered by two sellers with different levels of information.

Theorem

Consider two sellers, both with short selling constraints on risky assets $1,2, \ldots, k$. Let their filtrations be denoted by $\left(\mathcal{G}_{t}\right)_{t}$ and $\left(\mathcal{H}_{t}\right)_{t}$ respectively. Assume one seller has more information than the other seller (so, $\mathcal{H}_{t} \subseteq \mathcal{G}_{t}$ for all $0 \leq t \leq T$). Then the difference between the prices offered by the two sellers is

$$
\sup _{Q \in \overline{\mathcal{M}}_{1,2, \ldots, k}^{1}(S, \mathcal{H})} \mathbb{E}_{Q}[B]-\sup _{Q \in \overline{\mathcal{H}_{1,2, \ldots, k}(S, \mathcal{G})}} \mathbb{E}_{Q}[B] \geq 0 .
$$

Implications (continued)

Can also compare the prices offered by two sellers with different levels of information.

Theorem

Consider two sellers, both with short selling constraints on risky assets $1,2, \ldots, k$. Let their filtrations be denoted by $\left(\mathcal{G}_{t}\right)_{t}$ and $\left(\mathcal{H}_{t}\right)_{t}$ respectively. Assume one seller has more information than the other seller (so, $\mathcal{H}_{t} \subseteq \mathcal{G}_{t}$ for all $0 \leq t \leq T$). Then the difference between the prices offered by the two sellers is

$$
\sup _{Q \in \overline{\mathcal{M}}_{1,2, \ldots, k}^{1}(S, \mathcal{H})} \mathbb{E}_{Q}[B]-\sup _{Q \in \overline{\mathcal{H}_{1,2, \ldots, k}(S, \mathcal{G})}} \mathbb{E}_{Q}[B] \geq 0 .
$$

Implications

Convex
duality and mathematical finance

Introduction

Duality
theory
Pricing
Final
comments

In particular, the seller with more information will offer B at a lower price than the seller with less information.

Implications

Convex
duality and mathematical
finance

Introduction

Duality
theory
Pricing
Final
comments

In particular, the seller with more information will offer B at a lower price than the seller with less information.

Idea of proof:

- Definitions of martingale/super-martingale.
- Double expectation (tower property).

Implications

Convex

In particular, the seller with more information will offer B at a lower price than the seller with less information.

Idea of proof:

- Definitions of martingale/super-martingale.
- Double expectation (tower property).

This theorem can give understanding of the origin of price bubbles in financial markets:

- Several buyers believe they have extra information.
- Buyers will offer high prices for B.
- Hence price of claim increases: Bubble.
- If it turns out that the buyers beliefs were wrong, the bubble bursts.

Final comments

Convex
duality and mathemati-
cal
finance

Introduction
Duality
theory
Pricing
Final comments

Goal of presentation: Study how duality methods can be used to solve a pricing problem.

Final comments

Convex

Goal of presentation: Study how duality methods can be used to solve a pricing problem.

Conjugate duality method:

- Have primal optimization problem: Seller's pricing problem.

Final comments

Convex
finance

Introduction

Duality
theory
Pricing
Final
comments

Goal of presentation: Study how duality methods can be used to solve a pricing problem.

Conjugate duality method:

- Have primal optimization problem: Seller's pricing problem.
- Define suitable perturbation function F.
- Find corresponding Lagrange function K - Find corresponding dual problem, which gives lower bound

Final comments

Convex
finance

Introduction

Duality
theory
Pricing
Final
comments

Goal of presentation: Study how duality methods can be used to solve a pricing problem.

Conjugate duality method:

- Have primal optimization problem: Seller's pricing problem.
- Define suitable perturbation function F.
- Find corresponding Lagrange function K.
- Find corresponding dual problem, which gives lower bound of the primal problem - Rewrite dual problem so that it can be interpreted

Final comments

Convex
finance

Introduction

Duality
theory
Pricing
Final
comments

Goal of presentation: Study how duality methods can be used to solve a pricing problem.

Conjugate duality method:

- Have primal optimization problem: Seller's pricing problem.
- Define suitable perturbation function F.
- Find corresponding Lagrange function K.
- Find corresponding dual problem, which gives lower bound of the primal problem.
- Rewrite dual problem so that it can be interpreted.
- Show that there is no duality gap (using theorems by Rockafellar and Pennanen and Perkkiö).

Final comments

Convex

Goal of presentation: Study how duality methods can be used to solve a pricing problem.

Conjugate duality method:

- Have primal optimization problem: Seller's pricing problem.
- Define suitable perturbation function F.
- Find corresponding Lagrange function K.
- Find corresponding dual problem, which gives lower bound of the primal problem.
- Rewrite dual problem so that it can be interpreted.

Hope this presentation has illustrated potential for exploiting

Final comments

Convex
duality and mathematical
finance

Goal of presentation: Study how duality methods can be used to solve a pricing problem.

Conjugate duality method:

- Have primal optimization problem: Seller's pricing problem.
- Define suitable perturbation function F.
- Find corresponding Lagrange function K.
- Find corresponding dual problem, which gives lower bound of the primal problem.
- Rewrite dual problem so that it can be interpreted.
- Show that there is no duality gap (using theorems by Rockafellar and Pennanen and Perkkiö).

Hope this presentation has illustrated potential for exploiting duality theory in many other problems, í, matanaticate financenac

Final comments

Convex

Goal of presentation: Study how duality methods can be used to solve a pricing problem.

Conjugate duality method:

- Have primal optimization problem: Seller's pricing problem.
- Define suitable perturbation function F.
- Find corresponding Lagrange function K.
- Find corresponding dual problem, which gives lower bound of the primal problem.
- Rewrite dual problem so that it can be interpreted.
- Show that there is no duality gap (using theorems by Rockafellar and Pennanen and Perkkiö).

Hope this presentation has illustrated potential for exploiting duality theory in many other problems in mathematical finance!

Convex
duality and
mathemati－
cal finance

Introduction
Duality
theory
Pricing
Final
comments

Thank you for your attention！
 .-

Some key references

Pennanen, T.: Convex duality in stochastic optimization and mathematical finance. Mathematics of Opererations Research. 36, 340-362 (2011)

囯 Pennanen, T., Perkkiö, A.P.: Stochastic programs without duality gaps. Mathematical Programming. 136, 91-110 (2012)

國 Rockafellar, R. T.: Conjugate Duality and Optimization. Society for Industrial and Applied Mathematics, Philadelphia (1974)
Rockafellar, R. T.: Convex Analysis. Princeton University Press, Princeton, (1972)

[^0]: Motivated by this, define the dual problem,

